/usr/share/gap/lib/rwssmg.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 | #############################################################################
##
#W rwssmg.gi GAP library Isabel Araújo
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declarations for semigroups defined by rws.
## JDM
############################################################################
##
#F ReducedConfluentSemigroupRwsNC( <kbrws>)
##
## if we have a knuth bendix rws that we know is reduced and
## confluent we can certainly transform it into a reduced
## confluent rewriting system
## This performs no checking!!!
##
BindGlobal("ReducedConfluentRwsFromKbrwsNC",
function(kbrws)
local fam,rws;
fam := NewFamily("Family of reduced confluent rewriting systems",
IsReducedConfluentRewritingSystem);
rws:= Objectify(NewType(fam,IsAttributeStoringRep and
IsReducedConfluentRewritingSystem), rec());
SetRules(rws,StructuralCopy(Rules(kbrws)));
rws!.tzrules:=StructuralCopy(kbrws!.tzrules);
rws!.tzordering:=StructuralCopy(kbrws!.tzordering);
SetIsReduced(rws,true);
SetIsConfluent(rws,true);
SetFamilyForRewritingSystem(rws, FamilyForRewritingSystem(kbrws));
SetOrderingOfRewritingSystem(rws,OrderingOfRewritingSystem(kbrws));
if IsElementOfFpSemigroupFamily(FamilyForRewritingSystem(kbrws)) then
SetIsBuiltFromSemigroup(rws,true);
elif IsElementOfFpMonoidFamily(FamilyForRewritingSystem(kbrws)) then
SetIsBuiltFromMonoid(rws,true);
fi;
return rws;
end);
############################################################################
##
#A ReducedConfluentRewritingSystem( <S>)
##
## returns a reduced confluent rewriting system of the fp semigroup
## <S> with respect to the shortlex ordering on words.
##
InstallMethod(ReducedConfluentRewritingSystem,
"for an fp semigroup", true,
[IsFpSemigroup], 0,
function(S)
local wordord;
wordord := ShortLexOrdering(ElementsFamily(FamilyObj(
FreeSemigroupOfFpSemigroup(S))));
return ReducedConfluentRewritingSystem(S,wordord);
end);
InstallMethod(ReducedConfluentRewritingSystem,
"for an fp monoid", true,
[IsFpMonoid], 0,
function(M)
local wordord;
wordord := ShortLexOrdering(ElementsFamily(FamilyObj(
FreeMonoidOfFpMonoid(M))));
return ReducedConfluentRewritingSystem(M,wordord);
end);
############################################################################
##
#A ReducedConfluentRewritingSystem( <S>,<ordering>)
##
## returns a reduced confluent rewriting system of the fp semigroup/monoid
## <S> with respect to a supplied reduction order.
##
InstallOtherMethod(ReducedConfluentRewritingSystem,
"for an fp semigroup and an ordering on the underlying free semigroup", true,
[IsFpSemigroup, IsOrdering], 0,
function(S,ordering)
local kbrws,rws;
if HasReducedConfluentRewritingSystem(S) and
IsIdenticalObj(ordering,
OrderingOfRewritingSystem(ReducedConfluentRewritingSystem(S))) then
return ReducedConfluentRewritingSystem(S);
fi;
# we start by building a knuth bendix rws for the semigroup
kbrws := KnuthBendixRewritingSystem(S,ordering);
# then we make it confluent (and reduced)
MakeConfluent(kbrws);
# we now check whether the attribute is already set
# (for example, there is an implementation of MakeConfluent that
# stores it immediately)
# if the attribute is not set we set it here
rws := ReducedConfluentRwsFromKbrwsNC(kbrws);
if not(HasReducedConfluentRewritingSystem(S)) then
SetReducedConfluentRewritingSystem(S, rws);
fi;
return rws;
end);
InstallOtherMethod(ReducedConfluentRewritingSystem,
"for an fp monoid and an ordering on the underlying free monoid", true,
[IsFpMonoid, IsOrdering], 0,
function(M,ordering)
local kbrws, rws;
if HasReducedConfluentRewritingSystem(M) and
IsIdenticalObj(ordering,
OrderingOfRewritingSystem(ReducedConfluentRewritingSystem(M))) then
return ReducedConfluentRewritingSystem(M);
fi;
# we start by building a knuth bendix rws for the monoid
kbrws := KnuthBendixRewritingSystem(M,ordering);
# then we make it confluent (and reduced)
MakeConfluent(kbrws);
# we now check whether the attribute is already set
# (for example, there is an implementation of MakeConfluent that
# stores it immediately)
# if the attribute is not set we set it here
rws := ReducedConfluentRwsFromKbrwsNC(kbrws);
if not(HasReducedConfluentRewritingSystem(M)) then
SetReducedConfluentRewritingSystem(M, rws);
fi;
return rws;
end);
############################################################################
##
#A ReducedConfluentRewritingSystem( <S>,<lteq>)
##
## returns a reduced confluent rewriting system of the fp semigroup
## <S> with respect to a supplied reduction order.
## lteq(<a>,<b>) returns true iff <a> <= <b> in the order corresponding
## to lteq.
##
InstallOtherMethod(ReducedConfluentRewritingSystem,
"for an fp semigroup and an order on the underlying free semigroup", true,
[IsFpSemigroup, IsFunction], 0,
function(S,lteq)
return ReducedConfluentRewritingSystem(S,
OrderingByLessThanOrEqualFunctionNC(ElementsFamily(FamilyObj(
FreeSemigroupOfFpSemigroup(S))),lteq,[IsReductionOrdering]));
end);
#############################################################################
##
#M IsConfluent(<RWS>)
##
## checks confluence of a rewriting system built from a monoid
##
InstallMethod(IsConfluent,
"for a monoid or a semigroup rewriting system", true,
[IsRewritingSystem], 0,
function(rws)
local p,r,i,b,l,u,v,w,rules;
# this method only works for rws which are built from
# monoid or semigroups
# if not (IsBuiltFromMonoid(rws) or IsBuiltFromSemigroup(rws)) then
# TryNextMethod();
#fi;
rules:=Rules(rws);
for p in rules do
for r in rules do
for i in [1..Length(p[1])] do
# b is a sufix of p[1]
b := Subword(p[1],Length(p[1])-i+1,Length(p[1]));
l := LengthOfLongestCommonPrefixOfTwoAssocWords(b,r[1]);
# b and r overlap iff |b|=l or |r|=l
# if |b|=l it means that p[1] and r[1] overlap
# if |r|=l it means that r[1] is a subword of p[1]
# if one of these cases occur then confluence might fail
if Length(b)=l or Length(r[1])=l then
# let u be the longest common prefix of b and r[1]
u := Subword(b,1,l);
# Now, if we have b=ud and r=ue
# either d or e is empty
# and if p[1]=ab then to check confluence we have to
# check the equality of the reduced forms of
# the words v=ar[2]d and w=p[2]e
# so in p[1] we substitute the first occurence of u in b by r[2]
v := SubstitutedWord(p[1],u,Length(p[1])-i+1,r[2]);
# and in r[1] we substitute the first occurence of u by p[2]
w := SubstitutedWord(r[1],u,1,p[2]);
# the reduced form of v and w must be equal if the rws is confluent
if ReducedForm(rws,v)<>ReducedForm(rws,w) then
return false;
fi;
fi;
od;
od;
od;
# at this stage we know that the rws is confluent
return true;
end);
############################################################################
##
#A PrintObj(<rws>)
##
##
InstallMethod(ViewObj, "for a semigroup rewriting system", true,
[IsRewritingSystem and IsBuiltFromSemigroup], 0,
function(rws)
Print("Rewriting System for ");
Print(SemigroupOfRewritingSystem(rws));
Print(" with rules \n");
Print(Rules(rws));
end);
InstallMethod(ViewObj, "for a monoid rewriting system", true,
[IsRewritingSystem and IsBuiltFromMonoid], 0,
function(rws)
Print("Rewriting System for ");
Print(MonoidOfRewritingSystem(rws));
Print(" with rules \n");
Print(Rules(rws));
end);
#############################################################################
##
#F ReduceWordUsingRewritingSystem (<RWS>,<w>)
##
## w is a word of a free monoid or a free semigroup, RWS is a Rewriting System
## Given a rewriting system and a word in the free structure underlying it,
## uses the rewriting system to reduce the word and return
## a 'minimal' one.
##
InstallGlobalFunction(ReduceLetterRepWordsRewSys,REDUCE_LETREP_WORDS_REW_SYS);
InstallGlobalFunction(ReduceWordUsingRewritingSystem,
function(rws,w)
local v;
#check that rws is Rewriting System
if not IsRewritingSystem(rws) then
Error("Can only reduce word given Rewriting System");
elif not IsAssocWord(w) then
Error("Can only reduce word from free monoid");
fi;
v:=AssocWordByLetterRep(FamilyObj(w),
ReduceLetterRepWordsRewSys(rws!.tzrules,LetterRepAssocWord(w)));
return v;
end);
#############################################################################
##
#M ReducedForm(<RWS>, <e>)
##
InstallMethod(ReducedForm,
"for a semigroup rewriting system and a word on the underlying free semigroup", true,
[IsRewritingSystem and IsBuiltFromSemigroup, IsAssocWord], 0,
function(rws,w)
if not (w in FreeSemigroupOfRewritingSystem(rws)) then
Error( Concatenation(
"Usage: ReducedForm(<rws>, <w>)", "- <w> in FreeSemigroupRewritingSystem(<rws>)") );;
fi;
return ReduceWordUsingRewritingSystem(rws,w);
end);
InstallMethod(ReducedForm,
"for a monoid rewriting system and a word on the underlying free monoid",
true,
[IsRewritingSystem and IsBuiltFromMonoid, IsAssocWord], 0,
function(rws,w)
if not (w in FreeMonoidOfRewritingSystem(rws)) then
Error( Concatenation( "Usage: ReducedForm(<rws>, <w>)", "- <w> in FreeMonoidOfRewritingSystem(<rws>)") );;
fi;
return ReduceWordUsingRewritingSystem(rws,w);
end);
#############################################################################
##
#M FreeSemigroupOfRewritingSystem(<RWS>)
##
##
InstallMethod(FreeSemigroupOfRewritingSystem,
"for a semigroup rewriting system", true,
[IsRewritingSystem and IsBuiltFromSemigroup], 0,
function(rws)
return FreeSemigroupOfFpSemigroup(
SemigroupOfRewritingSystem(rws));
end);
#############################################################################
##
#M FreeMonoidOfRewritingSystem(<RWS>)
##
InstallMethod(FreeMonoidOfRewritingSystem,
"for a monoid rewriting system", true,
[IsRewritingSystem and IsBuiltFromMonoid], 0,
function(rws)
return FreeMonoidOfFpMonoid(
MonoidOfRewritingSystem(rws));
end);
#############################################################################
##
#M GeneratorsOfRws(<RWS>)
##
InstallOtherMethod(GeneratorsOfRws,
"for a monoid rewriting system", true,
[IsRewritingSystem and IsBuiltFromSemigroup], 0,
function(rws)
return GeneratorsOfSemigroup(FreeSemigroupOfRewritingSystem(rws));
end);
#############################################################################
##
#M GeneratorsOfRws(<RWS>)
##
InstallOtherMethod(GeneratorsOfRws,
"for a monoid rewriting system", true,
[IsRewritingSystem and IsBuiltFromMonoid], 0,
function(rws)
return GeneratorsOfMonoid(FreeMonoidOfRewritingSystem(rws));
end);
#############################################################################
##
#E
|