/usr/share/gap/lib/schursym.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 | #############################################################################
##
#W schursym.gi GAP library Lukas Maas
#W & Jack Schmidt
##
#Y Copyright (C) 2009, The GAP group
##
## This file contains the implementation for Schur covers of symmetric and
## alternating groups on Coxeter or standard generators.
##
#############################################################################
##
## Faithful, irreducible representations of minimal degree of the double
## covers of symmetric groups can be constructed inductively using the
## methods of http://arxiv.org/abs/0911.3794
##
## The inductive formulation uses a number of helper routines which are
## wrapped inside a function call to keep from declaring a large number
## of (private) global variables.
##
Perform( [1], function(x)
local S, S1, coeffS2, S2, coeffS3, S3, bmat, spinsteps, SpinDimSym,
BasicSpinRepSymPos, BasicSpinRepSymNeg, BasicSpinRepSym,
SanityCheckPos, SanityCheckNeg, BasicSpinRepSymTest;
## let 2S+(n) = < t_1, ..., t_(n-1) > subject to the relations
## (t_i)^2 = z for 1 <= i <= n-1,
## z^2 = 1,
## ( t_i*t_(i+1) )^3 = z for 1 <= i <= n-2,
## t_i*t_j = z*t_j*t_i for 1 <= i, j <= n-1 with | i - j | > 1.
##
## The following functions allow the construction of basic spin
## representations of 2S+(n) over fields of any characteristic.
## SpinDimSym
## IN integers n >= 4, p >= 0
## OUT the degree of a basic spin repr. of 2S(n) over a field of
## characteristic p
SpinDimSym:= function( n, p )
local r;
r:= n mod 2;
if r = 0 then
return 2^((n-2)/2);
elif p = 0 then
return 2^((n-1)/2);
elif r = 1 and n mod p = 0 then
return 2^((n-3)/2);
else
return 2^((n-1)/2);
fi;
end;
## SanityCheckPos
## IN A record containing the matrices in T, the degree of the symmetric
## group n, and the characteristic f the field p
## OUT true if the matrices in T are the right size, over the right field, and
## satisfy the presentation for 2S(n) given above. Also checks the
## components Sym and Alt if present.
SanityCheckPos := function( input )
local i, j;
if input.n <> Length( input.T ) + 1 then
Print("#I SanityCheckPos: Wrong degree: ",input.n," vs. ",Length(input.T)+1,"\n");
return false;
fi;
if input.p <> Characteristic( input.T[1] ) then
Print("#I SanityCheckPos: Wrong characteristic: ",input.p," vs. ",Characteristic(input.T[1]),"\n");
return false;
fi;
if SpinDimSym( input.n, input.p ) <> Length( input.T[1] ) then
Print( "#I SanityCheckPos: Wrong degree: ",SpinDimSym( input.n, input.p )," vs. ",Length( input.T[1] ),"\n" );
return false;
fi;
if not ForAll( input.T, mat -> Size(mat) = Size(mat[1]) and Size(mat)=Size(input.T[1])) then
Print("#I SanityCheckPos: Matrices not all same size\n");
return false;
fi;
for i in [ 1 .. input.n-1 ] do
if not IsOne(-input.T[i]^2) then
Print( "#I SanityCheckPos: Wrong order for T[",i,"]\n");
return false;
fi;
od;
for i in [ 1 .. input.n-2 ] do
if not IsOne( -( input.T[i]*input.T[i+1] )^3 ) then
Print( "#I SanityCheckPos: Braid relation failed at position ", i, "\n" );
return false;
fi;
for j in [ i+2 .. input.n-1 ] do
if not IsOne( - ( input.T[i]*input.T[j] )^2 ) then
Print( "#I SanityCheckPos: Commutator relation failed for ( ", i, ", ", j ," )\n" );
return false;
fi;
od;
od;
if IsBound( input.Sym ) then
if not input.Sym[1] = Product( Reversed( input.T ) ) then
Print( "SanityCheckPos: Wrong Sym[1]\n" );
return false;
fi;
if not input.Sym[2] = input.T[1] then
Print( "SanityCheckPos: Wrong Sym[2]\n" );
return false;
fi;
fi;
if IsBound( input.Alt ) then
if not input.Alt[1] = Product( Reversed( input.T{[1..2*Int((input.n-1)/2)]} ) ) then
Print( "SanityCheckPos: Wrong Alt[1]\n" );
return false;
fi;
if not input.Alt[2] = input.T[input.n-1]*input.T[input.n-2] then
Print( "SanityCheckPos: Wrong Alt[2]\n" );
return false;
fi;
fi;
return true;
end;
## SanityCheckNeg
## IN A record containing the matrices in T, the degree of the symmetric
## group n, and the characteristic f the field p
## OUT true if the matrices in T are the right size, over the right field, and
## satisfy the presentation for 2S-(n) given above. Also checks the
## components Sym and Alt if present.
SanityCheckNeg := function( S, p )
local d, deg, z, t, i, j;
d:= Length( S );
deg:= Length( S[1] );
if SpinDimSym( d+1, p ) <> deg then
Print( "#I SanityCheckNeg: wrong degree!\n" );
return false;
fi;
#Print( "#I SanityCheckNeg: degree: ", deg , "\n" );
for i in [ 1 .. d ] do
if not IsOne( S[i]^2 ) then
Print( "#I SanityCheckNeg: order failed at position ", i, "\n" );
return false;
fi;
od;
for i in [ 1 .. d-1 ] do
if not IsOne( ( S[i]*S[i+1] )^3 ) then
Print( "#I SanityCheckNeg: braid relation failed at position ", i, "\n" );
return false;
fi;
for j in [ i+2 .. d ] do
if S[i]*S[j] <> -S[j]*S[i] then
Print( "#I SanityCheckNeg: commuting relation failed for ( ", i, ", ", j ," )\n" );
return false;
fi;
od;
od;
#Print( "#I SanityCheckNeg: all relations satisfied\n" );
return true;
end;
## bmat -- blck matrix maker
## IN the blocks a,b,c,d of the matrix [[a,b],[c,d]]
## OUT a normal matrix with the same entries as the corresponding block
## matrix.
bmat := function(a,b,c,d)
local mat;
mat := DirectSumMat( a, d );
if b <> 0 then mat{[1..Length(a)]}{[1+Length(a[1])..Length(mat[1])]} := b; fi;
if c <> 0 then mat{[1+Length(a)..Length(mat)]}{[1..Length(a[1])]} := c; fi;
return mat;
end;
## construction S of Definition 4 / Lemma 5
## IN an input record with n,p,T and optionally Sym and/or Alt,
## where n,p satisfy the hypothesis of Def 4 / Lemma 5
## OUT the same, but for 2S(n+1)
S:= function( old )
local new, I, z, i;
#Print("S from ",old.n," to ",new.n,"\n");
new := rec( n := old.n+1, p:=old.p, T:=[] );
for i in [ 1 .. new.n-3 ] do
new.T[i] := DirectSumMat( old.T[i], -old.T[i] );
od;
I := old.T[1]^0;
z := 0*old.T[1];
new.T[new.n-2] := bmat( old.T[new.n-2], -I, 0, -old.T[new.n-2] );
new.T[new.n-1] := bmat( z, I, -I, z );
if IsBound( old.Sym ) then
new.Sym := [];
if new.n < 5
then new.Sym[1] := Product(Reversed(new.T));
else new.Sym[1] := bmat( 0*old.Sym[1], (-1)^new.n*old.Sym[1], -old.Sym[1], (-1)^new.n*old.T[new.n-2]*old.Sym[1] );
fi;
new.Sym[2] := new.T[1];
fi;
if IsBound( old.Alt ) then
new.Alt := [];
if IsOddInt(new.n)
then new.Alt[1] := new.Sym[1];
else new.Alt[1] := -new.T[new.n-1]*new.Sym[1];
fi;
new.Alt[2] := new.T[new.n-1]*new.T[new.n-2];
fi;
Assert( 1, SanityCheckPos( new ) );
return new;
end;
## construction S1 of Lemma 7
## IN an input record with n,p,T and optionally Sym and/or Alt,
## where n,p satisfy the hypothesis of Lemma 7
## OUT the same, but for 2S(n+1)
S1:= function( old )
local new, J;
#Print("S1 from ",old.n," to ",new.n,"\n");
new := rec( n := old.n + 1, p := old.p, T := ShallowCopy( old.T ) );
J := Sum( [1..new.n-2], k -> k*old.T[k] );
if new.p = 2 and 2 = new.n mod 4 then
new.T[new.n-1] := J + J^0;
else
new.T[new.n-1] := J;
fi;
if IsBound( old.Sym ) then
new.Sym := [];
new.Sym[1] := new.T[new.n-1]*old.Sym[1];
new.Sym[2] := old.Sym[2];
fi;
if IsBound( old.Alt ) then
new.Alt := [];
if IsOddInt(new.n)
then new.Alt[1] := new.Sym[1];
else new.Alt[1] := old.Alt[1];
fi;
new.Alt[2] := new.T[new.n-1]*new.T[new.n-2];
fi;
Assert( 1, SanityCheckPos( new ) );
return new;
end;
## return alpha ( = alpha^+ ) and beta as in Lemma 10
## here n(n-1)(n-2) must not be divisible by p
coeffS2:= function( n, p )
local one, a, b, c, alpha;
if p = 0 then
c:= n-2;
alpha:= (n-1)^-1*( 1 + Sqrt( -n*c^-1 ) );
else
one:= Z( p )^0;
c:= (n-2) mod p;
a:= -n*c^-1 mod p;
a:= LogFFE( a*one, Z(p^2) ) / 2;
b:= (n-1)^-1 mod p;
alpha:= b*(one+Z(p^2)^a);
fi;
return rec( alpha:= alpha, beta:= alpha*c );
end;
## construction S2 of Lemma 10
## IN an input record with n,p,T and optionally Sym and/or Alt,
## where n,p satisfy the hypothesis of Lemma 10
## OUT the same, but for 2S(n+2)
S2:= function( old )
local mid, new, coeffs, a, b, J, I;
#Print("S2 from ",old.n," to ",old.n+2," via S\n");
mid := S( old );
new := rec( n := mid.n + 1, p := mid.p, T := ShallowCopy( mid.T ) );
coeffs:= coeffS2( new.n, new.p );
a := coeffs.alpha;
b := coeffs.beta;
J := Sum( [ 1 .. new.n-3 ], k-> k*old.T[k] );
I := old.T[1]^0;
new.T[new.n-1] := bmat( -a*J, (b-1)*I, b*I, a*J );
if IsBound( old.Sym ) then
new.Sym := [];
new.Sym[1] := new.T[new.n-1]*mid.Sym[1];
new.Sym[2] := mid.Sym[2];
fi;
if IsBound( old.Alt ) then
new.Alt := [];
if IsOddInt( new.n )
then new.Alt[1] := new.Sym[1];
else new.Alt[1] := mid.Sym[1];
fi;
new.Alt[2] := new.T[new.n-1]*new.T[new.n-2];
fi;
Assert( 1, SanityCheckPos( new ) );
return new;
end;
## coeffS3 - a needed coefficient
## IN A prime p, or p = 0
## OUT Sqrt(-1) in GF(p^2) or CF(4)
coeffS3:= function( p )
if 0 = p then return E(4);
elif 2 = p then return Z(2);
elif 1 = p mod 4 then return Z(p)^((p-1)/4);
else return Z(p^2)^((p^2-1)/4);
fi;
end;
## construction S3 of Lemma 11
## IN an input record with n,p,T and optionally Sym and/or Alt,
## where n,p satisfy the hypothesis of Lemma 11
## OUT the same, but for 2S(n+4)
S3:= function( old )
local mid, new, a, J0, I, J;
#Print("S3 from ",old.n," to ",old.n+4," via S,S1,S\n");
mid := S( S1( S( old ) ) ); # now at n-1
new := rec( n := mid.n + 1, p := mid.p, T := ShallowCopy( mid.T ) );
a := coeffS3( old.p );
J0:= Sum( [1..new.n-5], k-> k*old.T[k] );
I := old.T[1]^0;
J := a*bmat(J0, 2*I, 2*I, -J0);
new.T[new.n-1] := bmat( J, -J^0, 0, -J );
if IsBound( old.Sym ) then
new.Sym := [];
new.Sym[1] := new.T[new.n-1]*mid.Sym[1];
new.Sym[2] := mid.Sym[2];
fi;
if IsBound( old.Alt ) then
new.Alt := [];
if IsOddInt( new.n )
then new.Alt[1] := new.Sym[1];
else new.Alt[1] := mid.Alt[1];
fi;
new.Alt[2] := new.T[new.n-1]*new.T[new.n-2];
fi;
Assert( 1, SanityCheckPos( new ) );
return new;
end;
## spinsteps
## IN the degree n and characteristic p > 2
## OUT a list which describes the steps of construction
spinsteps:= function( n, p )
local d, k, kmodp, parity;
d:= [];
k:= n;
while k > 4 do
kmodp:= k mod p;
parity:= k mod 2;
if kmodp > 2 then
if parity = 1 then
Add( d, 0 );
k:= k-1;
else
Add( d, 2 );
k:= k-2;
fi;
elif kmodp = 0 then
Add( d, 1 );
k:= k-1;
elif kmodp = 1 then
Add( d, 0 );
k:= k-1;
else
if parity = 1 then
Add( d, 0 );
k:= k-1;
else
Add( d, 3 );
k:= k-4;
fi;
fi;
od;
return Reversed( d );
end;
## construction of a basic spin rep. of 2S+(n) in characteristic p
BasicSpinRepSymPos := function( n, p )
local z, M, k, i, kmodp, steps;
if not IsPosInt(n) or not IsInt(p) or n < 4 or not ( p = 0 or IsPrime( p ) ) then
return fail;
fi;
## get the spin reps for 2S(4)
z := coeffS3(p);
if p = 0 then
M:= rec(
n := 2,
p := 0,
T := [ [ [ z ] ] ],
Sym := [~.T[1]],
Alt :=[]
);
M:= S2( M );
elif p = 2 then
M:= rec(
n := 2,
p := 2,
T := [ [ [ z ] ] ],
Sym := [~.T[1]],
Alt :=[]
);
M:= S1( S( M ) );
elif p = 3 then
M:= rec(
n := 3,
p := 3,
T := [ [ [ z ] ], [ [ z ] ] ],
Sym := [ [ [ z^2 ] ], ~.T[1] ],
Alt:=[ ~.Sym[1] ]
);
M:= S( M );
else # p>3
M:= rec(
n := 2,
p := p,
T := [ [ [ z ] ] ],
Sym := [ ~.T[1]],
Alt:=[]
);
M:= S2( M );
fi;
if n = 4 then return M; fi;
if ValueOption("Sym") <> true and ValueOption("Alt")<>true then Unbind(M.Sym); fi;
if ValueOption("Alt") <> true then Unbind(M.Alt); fi;
if p = 0 then
if n mod 2 = 0 then
k:= (n-4)/2;
for i in [ 1 .. k ] do
M:= S2( M );
od;
else
k:= (n-5)/2;
for i in [ 1 .. k ] do
M:= S2( M );
od;
# now M is a b.s.r. of 2S( n-1 )
M:= S( M );
fi;
elif p = 2 then
k:= 5;
while k <= n do
if k mod 2 = 1 then
M:= S( M );
else
M:= S1( M );
fi;
k:= k+1;
od;
else # p >= 3
steps:= spinsteps( n, p );
for k in steps do
if k = 0 then
M := S( M );
elif k = 1 then
M := S1( M );
elif k = 2 then
M := S2( M );
else
M := S3( M );
fi;
od;
fi;
Assert( 1, SanityCheckPos( M ) );
return M;
end;
BasicSpinRepSymNeg := function( n, p )
local T, S;
T := BasicSpinRepSymPos( n, p );
S := rec( n := T.n, p := T.p, T := coeffS3( p ) * T.T );
if IsBound( T.Sym ) then S.Sym := [ coeffS3( p )^(n-1) * T.Sym[1], S.T[1] ]; fi;
if IsBound( T.Alt ) then S.Alt := [ (-1)^Int((n-1)/2)*T.Alt[1], -T.Alt[2] ]; fi;
Assert( 1, SanityCheckNeg( S.T, p ) );
return S;
end;
BasicSpinRepSym := function( n, p, sign )
if sign in [ 1, '+', "+", 4 ] then return BasicSpinRepSymPos(n,p);
elif sign in [ -1, '-', "-", 2 ] then return BasicSpinRepSymNeg(n,p);
else Error("<sign> should be +1 or -1");
fi;
end;
##########################################################################
##
## Method Installations
##
InstallGlobalFunction( BasicSpinRepresentationOfSymmetricGroup,
function(arg)
local n, p, s, mats;
if Length(arg) < 1 then Error("Usage: BasicSpinRepresentationOfSymmetricGroup( <n>, <p>, <sign> );"); fi;
n := arg[1];
if Length(arg) < 2 then p := 3; else p := arg[2]; fi;
if Length(arg) < 3 then s := 1; else s := arg[3]; fi;
mats := BasicSpinRepSym(n,p,s).T;
if p = 2 then return List( mats, mat -> ImmutableMatrix( GF(p), mat ) );
elif p > 0 then return List( mats, mat -> ImmutableMatrix( GF(p^2), mat ) ); fi;
return mats;
end );
InstallMethod( SchurCoverOfSymmetricGroup,
"Use Lukas Maas's inductive construction of a basic spin rep",
[ IsPosInt, IsInt, IsInt ],
function( n, p, s )
local mats, grp;
if p = 2 then return fail; fi; # need a faithful rep
if n < 4 then TryNextMethod(); fi;
mats := BasicSpinRepSym(n,p,s:Sym);
mats.Z := -mats.T[1]^0;
grp := Group( mats.Sym );
Assert( 3, Size( grp ) = 2*Factorial( n ) );
SetSize( grp, 2*Factorial(n) );
Assert( 3, Center( grp ) = Subgroup( grp, [ mats.Z ] ) );
SetCenter( grp, SubgroupNC( grp, [ mats.Z ] ) );
Assert( 3, IsAbelian( Center( grp ) ) );
SetIsAbelian( Center( grp ), true );
Assert( 3, Size( Center( grp ) ) = 2 );
SetSize( Center( grp ), 2 );
Assert( 3, AbelianInvariants( Center( grp ) ) = [ 2 ] );
SetAbelianInvariants( Center( grp ), [ 2 ] );
return grp;
end );
InstallMethod( DoubleCoverOfAlternatingGroup,
"Use Lukas Maas's inductive construction of a basic spin rep",
[ IsPosInt, IsInt ],
function( n, p )
local mats, grp;
if p = 2 then return fail; fi; # need a faithful rep
mats := BasicSpinRepSym(n,p,1:Alt);
mats.Z := -mats.T[1]^0;
grp := Group( mats.Alt );
Assert( 3, Size( grp ) = Factorial( n ) );
SetSize( grp, Factorial(n) );
Assert( 3, Center( grp ) = Subgroup( grp, [ mats.Z ] ) );
SetCenter( grp, SubgroupNC( grp, [ mats.Z ] ) );
Assert( 3, IsAbelian( Center( grp ) ) );
SetIsAbelian( Center( grp ), true );
Assert( 3, Size( Center( grp ) ) = 2 );
SetSize( Center( grp ), 2 );
Assert( 3, AbelianInvariants( Center( grp ) ) = [ 2 ] );
SetAbelianInvariants( Center( grp ), [ 2 ] );
if n >= 5 then
Assert( 3, IsPerfectGroup( grp ) );
SetIsPerfectGroup( grp, true );
fi;
return grp;
end );
BasicSpinRepSymTest := function(n,p)
local mats, smtx, grp, sign;
for sign in [1,-1] do
mats := BasicSpinRepSym(n,p,sign).T;
if p > 0 then
smtx := GModuleByMats( mats, Field(Flat(mats)) );
Assert( 0, SMTX.IsAbsolutelyIrreducible( smtx ) );
fi;
grp := Group( mats.Sym );
if n > 4 or p <> 2 then
Assert( 0, Size( grp ) = 2*Factorial(n)/GcdInt(p,2) );
Assert( 0, Size( Center( grp ) ) = 2/GcdInt(p,2) );
Assert( 0, Size( DerivedSubgroup( grp ) ) = Factorial(n)/GcdInt(p,2) );
Assert( 0, IsSubgroup( DerivedSubgroup( grp ), Center( grp ) ) );
Assert( 0, AbelianInvariants( grp ) = [ 2 ] );
if n > 4 then Assert( 0, IsSimpleGroup( DerivedSubgroup( grp ) / Center( grp ) ) ); fi;
fi;
grp := Group( mats.Alt );
if n > 4 or p <> 2 then
Assert( 0, Size( grp ) = Factorial(n)/GcdInt(p,2) );
Assert( 0, Size( Center( grp ) ) = 2/GcdInt(p,2) );
Assert( 0, Size( DerivedSubgroup( grp ) ) = Factorial(n)/GcdInt(p,2) );
if n > 4 then Assert( 0, IsSimpleGroup( DerivedSubgroup( grp ) / Center( grp ) ) ); fi;
fi;
od;
return true;
end;
end );
#############################################################################
##
## Other method installations that do not require direct access to the
## inductive procedure.
##
#############################################################################
##
## Convenience routines that supply default values.
##
InstallOtherMethod( SchurCoverOfSymmetricGroup,
"Sign=+1 by default",
[ IsPosInt, IsInt ],
function( n, p )
return SchurCoverOfSymmetricGroup( n, p, 1 );
end );
InstallOtherMethod( SchurCoverOfSymmetricGroup,
"P=3, Sign=+1 by default",
[ IsPosInt ],
function( n )
return SchurCoverOfSymmetricGroup( n, 3, 1 );
end );
InstallOtherMethod( DoubleCoverOfAlternatingGroup,
"P=3 by default",
[ IsPosInt ],
function( n )
return DoubleCoverOfAlternatingGroup( n, 3 );
end );
#############################################################################
##
## Quickly setup the standard epimorphisms
##
InstallMethod( EpimorphismSchurCover,
"Use library copy of double cover",
[ IsNaturalSymmetricGroup ],
function( sym )
local dom, deg, cox, chr, grp, hom, img;
dom := MovedPoints( sym );
deg := Size( dom );
if deg < 4 then return IdentityMapping( sym ); fi;
cox := List( [1..deg-1], i -> (dom[i],dom[i+1]) );
Assert( 1, ForAll( cox, gen -> gen in sym ) );
#chr := First( [3,5,7], p -> 0 = deg mod p );
#if chr = fail then chr := 3; fi;
chr := 3; # appears to be the best choice regardless of deg
grp := SchurCoverOfSymmetricGroup( deg, chr, 1 );
img := [ Product( Reversed( cox ) ), cox[1] ];
if AssertionLevel() > 2 then
hom := GroupHomomorphismByImages( grp, sym, GeneratorsOfGroup( grp ), img );
Assert( 3, KernelOfMultiplicativeGeneralMapping( hom ) = Center( grp ) );
else
dom := RUN_IN_GGMBI; RUN_IN_GGMBI := true;
hom := GroupHomomorphismByImagesNC( grp, sym, GeneratorsOfGroup( grp ), img );
RUN_IN_GGMBI := dom;
SetKernelOfMultiplicativeGeneralMapping( hom, Center( grp ) );
fi;
return hom;
end );
InstallMethod( EpimorphismSchurCover,
"Use library copy of double cover",
[ IsNaturalAlternatingGroup ],
function( alt )
local dom, deg, cox, chr, grp, hom, img;
dom := MovedPoints( alt );
deg := Size( dom );
if deg < 4 then return IdentityMapping( alt ); fi;
if deg in [6,7] then TryNextMethod(); fi;
cox := List( [1..deg-1], i -> (dom[i],dom[i+1]) );
Assert( 1, ForAll( [1..deg-2], i -> cox[i]*cox[i+1] in alt ) );
chr := 3;
grp := DoubleCoverOfAlternatingGroup( deg, chr );
img := [ Product( Reversed( cox{[1..2*Int((deg-1)/2)]} ) ), cox[deg-1]*cox[deg-2] ];
if AssertionLevel() > 2 then
hom := GroupHomomorphismByImages( grp, alt, GeneratorsOfGroup( grp ), img );
Assert( 3, KernelOfMultiplicativeGeneralMapping( hom ) = Center( grp ) );
else
dom := RUN_IN_GGMBI; RUN_IN_GGMBI := true;
hom := GroupHomomorphismByImagesNC( grp, alt, GeneratorsOfGroup( grp ), img );
RUN_IN_GGMBI := dom;
SetKernelOfMultiplicativeGeneralMapping( hom, Center( grp ) );
fi;
return hom;
end );
###########################################################################
##
## Special cases just handled explicitly
##
InstallMethod( SchurCoverOfSymmetricGroup,
"Use explicit matrix reps for degrees 1,2,3",
[ IsPosInt, IsInt, IsInt ],
1,
function( n, p, ignored )
local R;
if p = 0 then R := Integers; else R:=GF(p); fi;
if n = 1 then return TrivialSubgroup( GL(1,R) );
elif n = 2 and p<>2 then return Group( -One(GL(1,R)) );
elif n = 3 and p<>3 then return Group( [ [[0,1],[-1,-1]], [[0,1],[1,0]] ]*One(R) );
elif n = 2 and p = 2 then return Group( [[1,1],[0,1]]*One(R) ); # indecomposable, not irreducible
elif n = 3 and p = 3 then return Group( [ [[0,1],[-1,-1]], [[0,1],[1,0]] ]*One(R) ); # indecomposable, not irreducible
else TryNextMethod();
fi;
end );
InstallMethod( EpimorphismSchurCover,
"Use copy of AtlasRep's 6-fold cover",
[ IsNaturalAlternatingGroup ],
1,
function( alt )
local dom, deg, cox, img, z, gen, grp, cen, hom;
dom := MovedPoints( alt );
deg := Size( dom );
if deg = 6 then
z := Z(25);
gen := [
[ [ z^ 0, z^16, z^22, z^ 8, z^ 8, z^13 ],
[ z^ 0, z^22, z^ 0, z^ 7, z^11, z^16 ],
[ z^11, z^ 7, z^ 0, z^ 6, z^10, z^ 7 ],
[ z^ 2, z^ 0, z^ 3, z* 0, z^18, z^21 ],
[ z^21, z^ 9, z^ 2, z^12, z^ 5, z^20 ],
[ z , z^ 5, z^ 2, z^ 4, z^16, z^ 6 ] ],
[ [ z^18, z^23, z^ 0, z^ 2, z^23, z^17 ],
[ z^ 2, z^10, z^17, z* 0, z^ 0, z^18 ],
[ z^17, z^ 4, z^12, z^23, z^22, z^ 4 ],
[ z , z^12, z , z^18, z^11, z^ 2 ],
[ z^21, z^ 4, z^15, z^ 8, z^19, z* 0 ],
[ z^ 8, z^ 6, z^14, z^18, z^18, z^ 9 ] ] ];
grp := Group( gen );
Assert( 2, Size( grp ) = 6*5*4*3*2/2 * 6 );
SetSize( grp, 6*5*4*3*2/2 * 6 );
cen := SubgroupNC( grp, [ DiagonalMat( [ z^4, z^4, z^4, z^4, z^4, z^4 ] ) ] );
Assert( 1, Size( cen ) = 6 );
SetSize( cen, 6 );
Assert( 1, IsAbelian( cen ) );
SetIsAbelian( cen, true );
Assert( 1, AbelianInvariants( cen ) = [ 2, 3 ] );
SetAbelianInvariants( cen, [ 2, 3 ] );
Assert( 2, Center(grp) = cen );
SetCenter( grp, cen );
elif deg = 7 then
z := Z(25);
gen := [
[ [ z* 0, z^14, z^10, z^19, z^11, z^ 6 ],
[ z^19, z^12, z^ 9, z , z^ 0, z ],
[ z^ 8, z^18, z^10, z^ 2, z^20, z^15 ],
[ z^ 2, z^ 0, z^23, z^ 0, z^12, z^ 5 ],
[ z^20, z^ 8, z^20, z^23, z^16, z^ 0 ],
[ z^10, z^ 2, z^13, z^ 5, z^20, z^11 ] ],
[ [ z^ 7, z^ 6, z^10, z^23, z^ 6, z^ 0 ],
[ z^14, z^19, z^ 9, z^22, z^ 2, z^ 0 ],
[ z^10, z^16, z^17, z^15, z^17, z^14 ],
[ z^ 0, z^17, z^10, z^13, z , z^ 6 ],
[ z^13, z^ 9, z^ 2, z^12, z^ 8, z^ 7 ],
[ z^ 8, z^ 8, z^16, z^23, z^ 4, z^19 ] ] ];
grp := Group( gen );
Assert( 2, Size( grp ) = 7*6*5*4*3*2/2 * 6 );
SetSize( grp, 7*6*5*4*3*2/2 * 6 );
cen := SubgroupNC( grp, [ DiagonalMat( [ z^4, z^4, z^4, z^4, z^4, z^4 ] ) ] );
Assert( 1, Size( cen ) = 6 );
SetSize( cen, 6 );
Assert( 1, IsAbelian( cen ) );
SetIsAbelian( cen, true );
Assert( 1, AbelianInvariants( cen ) = [ 2, 3 ] );
SetAbelianInvariants( cen, [ 2, 3 ] );
Assert( 2, Center(grp) = cen );
SetCenter( grp, cen );
else TryNextMethod();
fi;
cox := List( [1..deg-1], i -> (dom[i],dom[i+1]) );
img := [ Product( Reversed( cox{[1..2*Int((deg-1)/2)]} ) ), cox[deg-1]*cox[deg-2] ];
Assert( 1, ForAll( img, i -> i in alt ) );
if AssertionLevel() > 1 then
hom := GroupHomomorphismByImages( grp, alt, gen, img );
Assert( 2, KernelOfMultiplicativeGeneralMapping( hom ) = Center( grp ) );
else
hom := GroupHomomorphismByImagesNC( grp, alt, gen, img );
SetKernelOfMultiplicativeGeneralMapping( hom, Center( grp ) );
fi;
return hom;
end );
#############################################################################
##
#E
|