/usr/share/gap/lib/semigrp.gd is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 | #############################################################################
##
#W semigrp.gd GAP library Thomas Breuer
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declaration of operations for semigroups.
##
#############################################################################
##
#P IsSemigroup( <D> )
##
## <#GAPDoc Label="IsSemigroup">
## <ManSection>
## <Prop Name="IsSemigroup" Arg='D'/>
##
## <Description>
## returns <K>true</K> if the object <A>D</A> is a semigroup.
## <Index>semigroup</Index>
## A <E>semigroup</E> is a magma (see <Ref Chap="Magmas"/>) with
## associative multiplication.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonymAttr( "IsSemigroup", IsMagma and IsAssociative );
#############################################################################
##
#F Semigroup( <gen1>, <gen2> ... ) . . . . semigroup generated by collection
#F Semigroup( <gens> ) . . . . . . . . . . semigroup generated by collection
##
## <#GAPDoc Label="Semigroup">
## <ManSection>
## <Heading>Semigroup</Heading>
## <Func Name="Semigroup" Arg='gen1, gen2 ...'
## Label="for various generators"/>
## <Func Name="Semigroup" Arg='gens' Label="for a list"/>
##
## <Description>
## In the first form, <Ref Func="Semigroup" Label="for various generators"/>
## returns the semigroup generated by the arguments <A>gen1</A>,
## <A>gen2</A>, <M>\ldots</M>,
## that is, the closure of these elements under multiplication.
## In the second form, <Ref Func="Semigroup" Label="for a list"/> returns
## the semigroup generated by the elements in the homogeneous list
## <A>gens</A>;
## a square matrix as only argument is treated as one generator,
## not as a list of generators.
## <P/>
## It is <E>not</E> checked whether the underlying multiplication is
## associative, use <Ref Func="Magma"/> and <Ref Func="IsAssociative"/>
## if you want to check whether a magma is in fact a semigroup.
## <P/>
## <Example><![CDATA[
## gap> a:= Transformation([2, 3, 4, 1]);
## Transformation( [ 2, 3, 4, 1 ] )
## gap> b:= Transformation([2, 2, 3, 4]);
## Transformation( [ 2, 2, 3, 4 ] )
## gap> s:= Semigroup(a, b);
## <semigroup with 2 generators>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "Semigroup" );
#############################################################################
##
#F Subsemigroup( <S>, <gens> ) . . . subsemigroup of <S> generated by <gens>
#F SubsemigroupNC( <S>, <gens> ) . . subsemigroup of <S> generated by <gens>
##
## <#GAPDoc Label="Subsemigroup">
## <ManSection>
## <Func Name="Subsemigroup" Arg='S, gens'/>
## <Func Name="SubsemigroupNC" Arg='S, gens'/>
##
## <Description>
## are just synonyms of <Ref Func="Submagma"/> and <Ref Func="SubmagmaNC"/>,
## respectively.
## <P/>
## <Example><![CDATA[
## gap> a:=GeneratorsOfSemigroup(s)[1];
## Transformation( [ 2, 3, 4, 1 ] )
## gap> t:=Subsemigroup(s,[a]);
## <semigroup with 1 generator>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "Subsemigroup", Submagma );
DeclareSynonym( "SubsemigroupNC", SubmagmaNC );
#############################################################################
##
#O SemigroupByGenerators( <gens> ) . . . . . . semigroup generated by <gens>
##
## <#GAPDoc Label="SemigroupByGenerators">
## <ManSection>
## <Oper Name="SemigroupByGenerators" Arg='gens'/>
##
## <Description>
## is the underlying operation
## of <Ref Func="Semigroup" Label="for various generators"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "SemigroupByGenerators", [ IsCollection ] );
#############################################################################
##
#A AsSemigroup( <C> ) . . . . . . . . collection <C> regarded as semigroup
##
## <#GAPDoc Label="AsSemigroup">
## <ManSection>
## <Attr Name="AsSemigroup" Arg='C'/>
##
## <Description>
## If <A>C</A> is a collection whose elements form a semigroup
## (see <Ref Func="IsSemigroup"/>) then <Ref Func="AsSemigroup"/>
## returns this semigroup.
## Otherwise <K>fail</K> is returned.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "AsSemigroup", IsCollection );
#############################################################################
##
#O AsSubsemigroup( <D>, <C> )
##
## <#GAPDoc Label="AsSubsemigroup">
## <ManSection>
## <Oper Name="AsSubsemigroup" Arg='D, C'/>
##
## <Description>
## Let <A>D</A> be a domain and <A>C</A> a collection.
## If <A>C</A> is a subset of <A>D</A> that forms a semigroup then
## <Ref Func="AsSubsemigroup"/>
## returns this semigroup, with parent <A>D</A>.
## Otherwise <K>fail</K> is returned.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "AsSubsemigroup", [ IsDomain, IsCollection ] );
#############################################################################
##
#A GeneratorsOfSemigroup( <S> ) . . . semigroup generators of semigroup <S>
##
## <#GAPDoc Label="GeneratorsOfSemigroup">
## <ManSection>
## <Attr Name="GeneratorsOfSemigroup" Arg='S'/>
##
## <Description>
## Semigroup generators of a semigroup <A>D</A> are the same as magma
## generators, see <Ref Func="GeneratorsOfMagma"/>.
## <Example><![CDATA[
## gap> GeneratorsOfSemigroup(s);
## [ Transformation( [ 2, 3, 4, 1 ] ), Transformation( [ 2, 2, 3, 4 ] ) ]
## gap> GeneratorsOfSemigroup(t);
## [ Transformation( [ 2, 3, 4, 1 ] ) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonymAttr( "GeneratorsOfSemigroup", GeneratorsOfMagma );
#############################################################################
##
#A CayleyGraphSemigroup( <S> )
#A CayleyGraphDualSemigroup( <S> )
##
## <ManSection>
## <Attr Name="CayleyGraphSemigroup" Arg='S'/>
## <Attr Name="CayleyGraphDualSemigroup" Arg='S'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareAttribute("CayleyGraphSemigroup",IsSemigroup);
DeclareAttribute("CayleyGraphDualSemigroup",IsSemigroup);
#############################################################################
##
#F FreeSemigroup( [<wfilt>,]<rank> )
#F FreeSemigroup( [<wfilt>,]<rank>, <name> )
#F FreeSemigroup( [<wfilt>,]<name1>, <name2>, ... )
#F FreeSemigroup( [<wfilt>,]<names> )
#F FreeSemigroup( [<wfilt>,]infinity, <name>, <init> )
##
## <#GAPDoc Label="FreeSemigroup">
## <ManSection>
## <Heading>FreeSemigroup</Heading>
## <Func Name="FreeSemigroup" Arg='[wfilt, ]rank[, name]'
## Label="for given rank"/>
## <Func Name="FreeSemigroup" Arg='[wfilt, ]name1, name2, ...'
## Label="for various names"/>
## <Func Name="FreeSemigroup" Arg='[wfilt, ]names'
## Label="for a list of names"/>
## <Func Name="FreeSemigroup" Arg='[wfilt, ]infinity, name, init'
## Label="for infinitely many generators"/>
##
## <Description>
## Called with a positive integer <A>rank</A>,
## <Ref Func="FreeSemigroup" Label="for given rank"/> returns
## a free semigroup on <A>rank</A> generators.
## If the optional argument <A>name</A> is given then the generators are
## printed as <A>name</A><C>1</C>, <A>name</A><C>2</C> etc.,
## that is, each name is the concatenation of the string <A>name</A> and an
## integer from <C>1</C> to <A>range</A>.
## The default for <A>name</A> is the string <C>"s"</C>.
## <P/>
## Called in the second form,
## <Ref Func="FreeSemigroup" Label="for various names"/> returns
## a free semigroup on as many generators as arguments, printed as
## <A>name1</A>, <A>name2</A> etc.
## <P/>
## Called in the third form,
## <Ref Func="FreeSemigroup" Label="for a list of names"/> returns
## a free semigroup on as many generators as the length of the list
## <A>names</A>, the <M>i</M>-th generator being printed as
## <A>names</A><M>[i]</M>.
## <P/>
## Called in the fourth form,
## <Ref Func="FreeSemigroup" Label="for infinitely many generators"/>
## returns a free semigroup on infinitely many generators, where the first
## generators are printed by the names in the list <A>init</A>,
## and the other generators by <A>name</A> and an appended number.
## <P/>
## If the extra argument <A>wfilt</A> is given, it must be either
## <Ref Func="IsSyllableWordsFamily"/> or <Ref Func="IsLetterWordsFamily"/>
## or <Ref Func="IsWLetterWordsFamily"/> or
## <Ref Func="IsBLetterWordsFamily"/>.
## This filter then specifies the representation used for the elements of
## the free semigroup
## (see <Ref Sect="Representations for Associative Words"/>).
## If no such filter is given, a letter representation is used.
## <P/>
## <Example><![CDATA[
## gap> f1 := FreeSemigroup( 3 );
## <free semigroup on the generators [ s1, s2, s3 ]>
## gap> f2 := FreeSemigroup( 3 , "generator" );
## <free semigroup on the generators
## [ generator1, generator2, generator3 ]>
## gap> f3 := FreeSemigroup( "gen1" , "gen2" );
## <free semigroup on the generators [ gen1, gen2 ]>
## gap> f4 := FreeSemigroup( ["gen1" , "gen2"] );
## <free semigroup on the generators [ gen1, gen2 ]>
## ]]></Example>
## <P/>
## Also see Chapter <Ref Chap="Semigroups"/>.
## <P/>
## Each free object defines a unique alphabet (and a unique family of words).
## Its generators are the letters of this alphabet,
## thus words of length one.
## <P/>
## <Example><![CDATA[
## gap> FreeGroup( 5 );
## <free group on the generators [ f1, f2, f3, f4, f5 ]>
## gap> FreeGroup( "a", "b" );
## <free group on the generators [ a, b ]>
## gap> FreeGroup( infinity );
## <free group with infinity generators>
## gap> FreeSemigroup( "x", "y" );
## <free semigroup on the generators [ x, y ]>
## gap> FreeMonoid( 7 );
## <free monoid on the generators [ m1, m2, m3, m4, m5, m6, m7 ]>
## ]]></Example>
## <P/>
## Remember that names are just a help for printing and do not necessarily
## distinguish letters.
## It is possible to create arbitrarily weird situations by choosing strange
## names for the letters.
## <P/>
## <Example><![CDATA[
## gap> f:= FreeGroup( "x", "x" ); gens:= GeneratorsOfGroup( f );;
## <free group on the generators [ x, x ]>
## gap> gens[1] = gens[2];
## false
## gap> f:= FreeGroup( "f1*f2", "f2^-1", "Group( [ f1, f2 ] )" );
## <free group on the generators [ f1*f2, f2^-1, Group( [ f1, f2 ] ) ]>
## gap> gens:= GeneratorsOfGroup( f );;
## gap> gens[1]*gens[2];
## f1*f2*f2^-1
## gap> gens[1]/gens[3];
## f1*f2*Group( [ f1, f2 ] )^-1
## gap> gens[3]/gens[1]/gens[2];
## Group( [ f1, f2 ] )*f1*f2^-1*f2^-1^-1
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "FreeSemigroup" );
#############################################################################
##
#P IsZeroGroup( <S> )
##
## <#GAPDoc Label="IsZeroGroup">
## <ManSection>
## <Prop Name="IsZeroGroup" Arg='S'/>
##
## <Description>
## is <K>true</K> if and only if the semigroup <A>S</A> is a group with zero
## adjoined.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsZeroGroup", IsSemigroup );
#############################################################################
##
#P IsSimpleSemigroup( <S> )
##
## <#GAPDoc Label="IsSimpleSemigroup">
## <ManSection>
## <Prop Name="IsSimpleSemigroup" Arg='S'/>
##
## <Description>
## is <K>true</K> if and only if the semigroup <A>S</A> has no proper
## ideals.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsSimpleSemigroup", IsSemigroup );
#############################################################################
##
#P IsZeroSimpleSemigroup( <S> )
##
## <#GAPDoc Label="IsZeroSimpleSemigroup">
## <ManSection>
## <Prop Name="IsZeroSimpleSemigroup" Arg='S'/>
##
## <Description>
## is <K>true</K> if and only if the semigroup has no proper ideals except
## for 0, where <A>S</A> is a semigroup with zero.
## If the semigroup does not find its zero, then a break-loop is entered.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsZeroSimpleSemigroup", IsSemigroup );
############################################################################
##
#A ANonReesCongruenceOfSemigroup( <S> )
##
## <ManSection>
## <Attr Name="ANonReesCongruenceOfSemigroup" Arg='S'/>
##
## <Description>
## for a semigroup <A>S</A>, returns a non-Rees congruence if one exists
## or otherwise returns <K>fail</K>.
## </Description>
## </ManSection>
##
DeclareAttribute("ANonReesCongruenceOfSemigroup",IsSemigroup);
############################################################################
##
#P IsReesCongruenceSemigroup( <S> )
##
## <#GAPDoc Label="IsReesCongruenceSemigroup">
## <ManSection>
## <Prop Name="IsReesCongruenceSemigroup" Arg='S'/>
##
## <Description>
## returns <K>true</K> if <A>S</A> is a Rees Congruence semigroup, that is,
## if all congruences of <A>S</A> are Rees Congruences.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsReesCongruenceSemigroup", IsSemigroup );
#############################################################################
##
#O HomomorphismFactorSemigroup( <S>, <C> )
#O HomomorphismFactorSemigroupByClosure( <S>, <L> )
#O FactorSemigroup( <S>, <C> )
#O FactorSemigroupByClosure( <S>, <L> )
##
## <ManSection>
## <Oper Name="HomomorphismFactorSemigroup" Arg='S, C'/>
## <Oper Name="HomomorphismFactorSemigroupByClosure" Arg='S, L'/>
## <Oper Name="FactorSemigroup" Arg='S, C'/>
## <Oper Name="FactorSemigroupByClosure" Arg='S, L'/>
##
## <Description>
## each find the quotient of <A>S</A> by a congruence.
## <P/>
## In the first form <A>C</A> is a congruence and
## <Ref Func="HomomorphismFactorSemigroup"/>
## returns a homomorphism <M><A>S</A> \rightarrow <A>S</A>/<A>C</A></M>.
## <P/>
## In the second form, <A>L</A> is a list of pairs of elements of <A>S</A>.
## Returns a homomorphism <M><A>S</A> \rightarrow <A>S</A>/<A>C</A></M>,
## where <A>C</A> is the congruence generated by <A>L</A>.
## <P/>
## <C>FactorSemigroup(<A>S</A>, <A>C</A>)</C> returns
## <C>Range( HomomorphismFactorSemigroup(<A>S</A>, <A>C</A>) )</C>.
## <P/>
## <C>FactorSemigroupByClosure(<A>S</A>, <A>L</A>)</C> returns
## <C>Range( HomomorphismFactorSemigroupByClosure(<A>S</A>, <A>L</A>) )</C>.
## </Description>
## </ManSection>
##
DeclareOperation( "HomomorphismFactorSemigroup",
[ IsSemigroup, IsSemigroupCongruence ] );
DeclareOperation( "HomomorphismFactorSemigroupByClosure",
[ IsSemigroup, IsList ] );
DeclareOperation( "FactorSemigroup",
[ IsSemigroup, IsSemigroupCongruence ] );
DeclareOperation( "FactorSemigroupByClosure",
[ IsSemigroup, IsList ] );
#############################################################################
##
#O IsRegularSemigroupElement( <S>, <x> )
##
## <#GAPDoc Label="IsRegularSemigroupElement">
## <ManSection>
## <Oper Name="IsRegularSemigroupElement" Arg='S, x'/>
##
## <Description>
## returns <K>true</K> if <A>x</A> has a general inverse in <A>S</A>, i.e.,
## there is an element <M>y \in <A>S</A></M>
## such that <M><A>x</A> y <A>x</A> = <A>x</A></M> and
## <M>y <A>x</A> y = y</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("IsRegularSemigroupElement", [IsSemigroup,
IsAssociativeElement]);
#############################################################################
##
#P IsRegularSemigroup( <S> )
##
## <#GAPDoc Label="IsRegularSemigroup">
## <ManSection>
## <Prop Name="IsRegularSemigroup" Arg='S'/>
##
## <Description>
## returns <K>true</K> if <A>S</A> is regular, i.e.,
## if every D class of <A>S</A> is regular.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty("IsRegularSemigroup", IsSemigroup);
#############################################################################
##
#P IsInverseSemigroup( <S> )
##
## <ManSection>
## <Prop Name="IsInverseSemigroup" Arg='S'/>
##
## <Description>
## returns <K>true</K> if <A>S</A> is an inverse semigroup, i.e.,
## if every element of <A>S</A> has a unique (semigroup) inverse.
## </Description>
## </ManSection>
##
DeclareProperty("IsInverseSemigroup", IsSemigroup);
#############################################################################
##
#O DisplaySemigroup( <S> )
##
## <ManSection>
## <Oper Name="DisplaySemigroup" Arg='S'/>
##
## <Description>
## Produces a convenient display of a semigroup's DClass
## structure. Let <A>S</A> have degree <M>n</M>. Then for each <M>r\leq n</M>, we
## show all D classes of rank <M>n</M>.
## <P/>
## A regular D class with a single H class of size 120 appears as
## <Example><![CDATA[
## *[H size = 120, 1 L classes, 1 R classes]
## ]]></Example>
## (the <C>*</C> denoting regularity).
## </Description>
## </ManSection>
##
DeclareOperation("DisplaySemigroup",
[IsSemigroup]);
#############################################################################
##
#E
|