This file is indexed.

/usr/share/gap/lib/semirel.gd is in gap-libs 4r6p5-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
#############################################################################
##
#W  semirel.gd                  GAP library                   James D Mitchell
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the declarations for equivalence relations on
##  semigroups. Of particular interest are Green's relations,
##  congruences, and Rees congruences.
##

#############################################################################
##
##  GREEN'S RELATIONS
##
##  <#GAPDoc Label="[1]{semirel}">
##  Green's equivalence relations play a very important role in semigroup
##  theory. In this section we describe how they can be used in &GAP;.
##  <P/>
##  The five Green's relations are <M>R</M>, <M>L</M>, <M>J</M>, <M>H</M>,
##  <M>D</M>:
##  two elements <M>x</M>, <M>y</M> from a semigroup <M>S</M> are
##  <M>R</M>-related if and only if <M>xS^1 = yS^1</M>,
##  <M>L</M>-related if and only if <M>S^1 x = S^1 y</M>
##  and <M>J</M>-related if and only if <M>S^1 xS^1 = S^1 yS^1</M>;
##  finally, <M>H = R \wedge L</M>, and <M>D = R \circ L</M>.
##  <P/>
##  Recall that relations <M>R</M>, <M>L</M> and <M>J</M> induce a partial
##  order among the elements of the semigroup <M>S</M>:
##  for two elements <M>x</M>, <M>y</M> from <M>S</M>,
##  we say that <M>x</M> is less than or equal to <M>y</M> in the order on
##  <M>R</M> if <M>xS^1 \subseteq yS^1</M>;
##  similarly, <M>x</M> is less than or equal to <M>y</M> under <M>L</M> if
##  <M>S^1x \subseteq S^1y</M>;
##  finally <M>x</M> is less than or equal to <M>y</M> under <M>J</M> if
##  <M>S^1 xS^1 \subseteq S^1 tS^1</M>.
##  We extend this preorder to a partial order on equivalence classes in
##  the natural way.
##  <#/GAPDoc>
##


#############################################################################
##
#P  IsGreensRelation(<bin-relation>)
#P  IsGreensRRelation(<equiv-relation>)
#P  IsGreensLRelation(<equiv-relation>)
#P  IsGreensJRelation(<equiv-relation>)
#P  IsGreensHRelation(<equiv-relation>)
#P  IsGreensDRelation(<equiv-relation>)
##
##  <#GAPDoc Label="IsGreensRelation">
##  <ManSection>
##  <Prop Name="IsGreensRelation" Arg='bin-relation'/>
##  <Prop Name="IsGreensRRelation" Arg='equiv-relation'/>
##  <Prop Name="IsGreensLRelation" Arg='equiv-relation'/>
##  <Prop Name="IsGreensJRelation" Arg='equiv-relation'/>
##  <Prop Name="IsGreensHRelation" Arg='equiv-relation'/>
##  <Prop Name="IsGreensDRelation" Arg='equiv-relation'/>
##
##  <Description>
##  Categories for the Green's relations.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory("IsGreensRelation", IsBinaryRelation);
DeclareCategory("IsGreensRRelation", IsGreensRelation);
DeclareCategory("IsGreensLRelation", IsGreensRelation);
DeclareCategory("IsGreensJRelation", IsGreensRelation);
DeclareCategory( "IsGreensHRelation", IsGreensRelation);
DeclareCategory( "IsGreensDRelation", IsGreensRelation);

DeclareProperty("IsFiniteSemigroupGreensRelation", IsGreensRelation);

#############################################################################
##
#A  GreensRRelation(<semigroup>)
#A  GreensLRelation(<semigroup>)
#A  GreensJRelation(<semigroup>)
#A  GreensDRelation(<semigroup>)
#A  GreensHRelation(<semigroup>)
##
##  <#GAPDoc Label="GreensRRelation">
##  <ManSection>
##  <Attr Name="GreensRRelation" Arg='semigroup'/>
##  <Attr Name="GreensLRelation" Arg='semigroup'/>
##  <Attr Name="GreensJRelation" Arg='semigroup'/>
##  <Attr Name="GreensDRelation" Arg='semigroup'/>
##  <Attr Name="GreensHRelation" Arg='semigroup'/>
##
##  <Description>
##  The Green's relations (which are equivalence relations)
##  are attributes of the semigroup <A>semigroup</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##

DeclareAttribute("GreensRRelation", IsSemigroup);
DeclareAttribute("GreensLRelation", IsSemigroup);
DeclareAttribute("GreensJRelation", IsSemigroup);
DeclareAttribute("GreensDRelation", IsSemigroup);
DeclareAttribute("GreensHRelation", IsSemigroup);

#############################################################################
##
#O  GreensRClassOfElement(<S>, <a>)
#O  GreensLClassOfElement(<S>, <a>)
#O  GreensDClassOfElement(<S>, <a>)
#O  GreensJClassOfElement(<S>, <a>)
#O  GreensHClassOfElement(<S>, <a>)
##
##  <#GAPDoc Label="GreensRClassOfElement">
##  <ManSection>
##  <Oper Name="GreensRClassOfElement" Arg='S, a'/>
##  <Oper Name="GreensLClassOfElement" Arg='S, a'/>
##  <Oper Name="GreensDClassOfElement" Arg='S, a'/>
##  <Oper Name="GreensJClassOfElement" Arg='S, a'/>
##  <Oper Name="GreensHClassOfElement" Arg='S, a'/>
##
##  <Description>
##  Creates the <M>X</M> class of the element <A>a</A>
##  in the semigroup <A>S</A> where <M>X</M> is one of
##  <M>L</M>, <M>R</M>, <M>D</M>, <M>J</M>, or <M>H</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##

DeclareOperation("GreensRClassOfElement", [IsSemigroup, IsObject]);
DeclareOperation("GreensLClassOfElement", [IsSemigroup, IsObject]);
DeclareOperation("GreensDClassOfElement", [IsSemigroup, IsObject]);
DeclareOperation("GreensJClassOfElement", [IsSemigroup, IsObject]);
DeclareOperation("GreensHClassOfElement", [IsSemigroup, IsObject]);

#######################
#######################

DeclareOperation("FroidurePinSimpleAlg", [IsMonoid and HasIsFinite and IsFinite]);
DeclareOperation("FroidurePinExtendedAlg", [IsSemigroup and HasIsFinite and IsFinite]);

DeclareAttribute("AssociatedConcreteSemigroup", IsFpSemigroup);
DeclareAttribute("AssociatedFpSemigroup", IsSemigroup);

DeclareSynonymAttr("LeftCayleyGraphSemigroup", CayleyGraphDualSemigroup);
DeclareSynonymAttr("RightCayleyGraphSemigroup", CayleyGraphSemigroup);

#############################################################################
##
#P  IsGreensClass(<equiv-class>)
#P  IsGreensRClass(<equiv-class>)
#P  IsGreensLClass(<equiv-class>)
#P  IsGreensJClass(<equiv-class>)
#P  IsGreensHClass(<equiv-class>)
#P  IsGreensDClass(<equiv-class>)
##
##  <#GAPDoc Label="IsGreensClass">
##  <ManSection>
##  <Prop Name="IsGreensClass" Arg='equiv-class'/>
##  <Prop Name="IsGreensRClass" Arg='equiv-class'/>
##  <Prop Name="IsGreensLClass" Arg='equiv-class'/>
##  <Prop Name="IsGreensJClass" Arg='equiv-class'/>
##  <Prop Name="IsGreensHClass" Arg='equiv-class'/>
##  <Prop Name="IsGreensDClass" Arg='equiv-class'/>
##
##  <Description>
##  return <K>true</K> if the equivalence class <A>equiv-class</A> is
##  a Green's class of any type, or of <M>R</M>, <M>L</M>, <M>J</M>,
##  <M>H</M>, <M>D</M> type, respectively, or <K>false</K> otherwise.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##

DeclareProperty("IsGreensClass", IsEquivalenceClass);
DeclareProperty("IsGreensRClass", IsEquivalenceClass);
DeclareProperty("IsGreensLClass", IsEquivalenceClass);
DeclareProperty("IsGreensJClass", IsEquivalenceClass);
DeclareProperty("IsGreensHClass", IsEquivalenceClass);
DeclareProperty("IsGreensDClass", IsEquivalenceClass);

InstallTrueMethod(IsGreensClass, IsGreensRClass);
InstallTrueMethod(IsGreensClass, IsGreensLClass);
InstallTrueMethod(IsGreensClass, IsGreensJClass);
InstallTrueMethod(IsGreensClass, IsGreensHClass);
InstallTrueMethod(IsGreensClass, IsGreensDClass);


#############################################################################
##
#A  AssociatedSemigroup(<greens-class>) . . . . . . . . .   for Green's class
##
##  <ManSection>
##  <Attr Name="AssociatedSemigroup" Arg='greens-class'/>
##
##  <Description>
##  A Greens class needs what semigroup it is associated with
##  </Description>
##  </ManSection>
##

DeclareSynonymAttr("AssociatedSemigroup", ParentAttr);

#############################################################################
##
#A  GreensRClasses(<semigroup>)
#A  GreensLClasses(<semigroup>)
#A  GreensJClasses(<semigroup>)
#A  GreensDClasses(<semigroup>)
#A  GreensHClasses(<semigroup>)
##
##  <#GAPDoc Label="GreensRClasses">
##  <ManSection>
##  <Attr Name="GreensRClasses" Arg='semigroup'/>
##  <Attr Name="GreensLClasses" Arg='semigroup'/>
##  <Attr Name="GreensJClasses" Arg='semigroup'/>
##  <Attr Name="GreensDClasses" Arg='semigroup'/>
##  <Attr Name="GreensHClasses" Arg='semigroup'/>
##
##  <Description>
##  return the <M>R</M>, <M>L</M>, <M>J</M>, <M>H</M>, or <M>D</M>
##  Green's classes, respectively for semigroup <A>semigroup</A>.
##  <Ref Func="EquivalenceClasses" Label="attribute"/> for a Green's relation
##  lead to one of these functions.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##

DeclareAttribute("GreensRClasses", IsSemigroup);
DeclareAttribute("GreensLClasses", IsSemigroup);
DeclareAttribute("GreensJClasses", IsSemigroup);
DeclareAttribute("GreensDClasses", IsSemigroup);
DeclareAttribute("GreensHClasses", IsSemigroup);

DeclareAttribute("GreensHClasses", IsGreensClass);
DeclareAttribute("GreensRClasses", IsGreensDClass);
DeclareAttribute("GreensLClasses", IsGreensDClass);

#############################################################################
##
#O  IsGreensLessThanOrEqual( <C1>, <C2> )
##
##  <#GAPDoc Label="IsGreensLessThanOrEqual">
##  <ManSection>
##  <Oper Name="IsGreensLessThanOrEqual" Arg='C1, C2'/>
##
##  <Description>
##  returns <K>true</K> if the Green's class <A>C1</A> is less than or equal
##  to <A>C2</A>  under the respective ordering (as defined above),
##  and <K>false</K> otherwise.
##  <P/>
##  Only defined for <M>R</M>, <M>L</M> and <M>J</M> classes.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("IsGreensLessThanOrEqual", [IsGreensClass, IsGreensClass]);

#############################################################################
##
#A  RClassOfHClass( <H> )
#A  LClassOfHClass( <H> )
##
##  <#GAPDoc Label="RClassOfHClass">
##  <ManSection>
##  <Attr Name="RClassOfHClass" Arg='H'/>
##  <Attr Name="LClassOfHClass" Arg='H'/>
##
##  <Description>
##  are attributes reflecting the natural ordering over the various Green's
##  classes. <Ref Func="RClassOfHClass"/> and <Ref Func="LClassOfHClass"/>
##  return the <M>R</M> and <M>L</M> classes, respectively,
##  in which an <M>H</M> class is contained.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##

DeclareAttribute("RClassOfHClass", IsGreensHClass);
DeclareAttribute("LClassOfHClass", IsGreensHClass);
DeclareAttribute("DClassOfHClass", IsGreensHClass);
DeclareAttribute("DClassOfLClass", IsGreensLClass);
DeclareAttribute("DClassOfRClass", IsGreensRClass);

############################################################################
##
#A  GroupHClassOfGreensDClass( <Dclass> )
##
##  <#GAPDoc Label="GroupHClassOfGreensDClass">
##  <ManSection>
##  <Attr Name="GroupHClassOfGreensDClass" Arg='Dclass'/>
##
##  <Description>
##  for a <M>D</M> class <A>Dclass</A> of a semigroup,
##  returns a group <M>H</M> class of the <M>D</M> class,
##  or <K>fail</K> if there is no group <M>H</M> class.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("GroupHClassOfGreensDClass",IsGreensDClass);


#############################################################################
##
#P  IsRegularDClass( <Dclass> )
##
##  <#GAPDoc Label="IsRegularDClass">
##  <ManSection>
##  <Prop Name="IsRegularDClass" Arg='Dclass'/>
##
##  <Description>
##  returns <K>true</K> if the Greens <M>D</M> class <A>Dclass</A> is
##  regular.
##  A <M>D</M> class is regular if and only if each of its elements is
##  regular, which in turn is true if and only if any one element of
##  <A>Dclass</A> is regular.
##  Idempotents are regular since <M>eee = e</M> so it follows that a Green's
##  <M>D</M> class containing an idempotent is regular.
##  Conversely, it is true that a regular <M>D</M> class must contain
##  at least one idempotent.
##  (See&nbsp;<Cite Key="Howie76" Where="Prop. 3.2"/>.)
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty("IsRegularDClass", IsGreensDClass);


#############################################################################
##
#P  IsGroupHClass( <Hclass> )
##
##  <#GAPDoc Label="IsGroupHClass">
##  <ManSection>
##  <Prop Name="IsGroupHClass" Arg='Hclass'/>
##
##  <Description>
##  returns <K>true</K> if the Green's <M>H</M> class <A>Hclass</A> is a
##  group, which in turn is true if and only if <A>Hclass</A><M>^2</M>
##  intersects <A>Hclass</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty("IsGroupHClass", IsGreensHClass);


#############################################################################
##
#A  EggBoxOfDClass( <Dclass> )
##
##  <#GAPDoc Label="EggBoxOfDClass">
##  <ManSection>
##  <Attr Name="EggBoxOfDClass" Arg='Dclass'/>
##
##  <Description>
##  returns for a Green's <M>D</M> class <A>Dclass</A> a matrix whose rows
##  represent <M>R</M> classes and columns represent <M>L</M> classes.
##  The entries are the <M>H</M> classes.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("EggBoxOfDClass", IsGreensDClass);


#############################################################################
##
#F  DisplayEggBoxOfDClass( <Dclass> )
##
##  <#GAPDoc Label="DisplayEggBoxOfDClass">
##  <ManSection>
##  <Func Name="DisplayEggBoxOfDClass" Arg='Dclass'/>
##
##  <Description>
##  displays a <Q>picture</Q> of the <M>D</M> class <A>Dclass</A>,
##  as an array of 1s and 0s.
##  A 1 represents a group <M>H</M> class.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("DisplayEggBoxOfDClass");


#######################
#######################

DeclareAttribute("InternalRepGreensRelation", IsGreensRelation);
DeclareAttribute("CanonicalGreensClass", IsGreensClass);
#JDM Should be IsTransformationSemigroup
DeclareOperation("DisplayEggBoxesOfSemigroup", [IsSemigroup]);


#############################################################################
##
#P  IsSemigroupGeneralMapping( <mapp> )
#P  IsSemigroupHomomorphism( <mapp> )
##
##  <ManSection>
##  <Prop Name="IsSemigroupGeneralMapping" Arg='mapp'/>
##  <Prop Name="IsSemigroupHomomorphism" Arg='mapp'/>
##
##  <Description>
##  A <E>semigroup general mapping</E> is a mapping which respects
##  multiplication.
##  If it is total and single valued it is called a
##  <E>semigroup homomorphism</E>.
##  </Description>
##  </ManSection>
##
DeclareSynonymAttr( "IsSemigroupGeneralMapping",
    IsSPGeneralMapping and IsGeneralMapping and RespectsMultiplication);

DeclareSynonymAttr( "IsSemigroupHomomorphism",
    IsSemigroupGeneralMapping and IsMapping);

DeclareRepresentation( "IsSemigroupGeneralMappingRep",
      IsSemigroupGeneralMapping and IsSPGeneralMapping and IsAttributeStoringRep, [] );

#DeclareSynonymAttr( "IsSemigroupGeneralMapping", IsGeneralMapping);
#DeclareSynonymAttr("IsSemigroupHomomorphism", IsSemigroupGeneralMapping and #RespectsMultiplication and IsTotal and IsSingleValued and #IsEndoGeneralMapping);


#############################################################################
##
#F  IsSemigroupHomomorphismByImagesRep( <mapp> )
##
##  <ManSection>
##  <Func Name="IsSemigroupHomomorphismByImagesRep" Arg='mapp'/>
##
##  <Description>
##  a <C>SemigroupHomomorphism</C> represented by a list of images of <E>all</E>
##  elements.
##  </Description>
##  </ManSection>
##

#JDM include IsSemigroupGeneralMappingRep?

DeclareRepresentation( "IsSemigroupHomomorphismByImagesRep", IsAttributeStoringRep, ["imgslist"] );

#############################################################################
##
#O  SemigroupHomomorphismByImagesNC( <mapp> )
##
##  <ManSection>
##  <Oper Name="SemigroupHomomorphismByImagesNC" Arg='mapp'/>
##
##  <Description>
##  returns a <C>SemigroupHomomorphism</C> represented by
##  <C>IsSemigroupHomomorphismByImagesRep</C>.
##  </Description>
##  </ManSection>
##
DeclareOperation("SemigroupHomomorphismByImagesNC", [IsSemigroup, IsSemigroup, IsList]);

#HACKS

DeclareProperty("IsFpSemigpReducedElt", IsElementOfFpSemigroup);
DeclareProperty("IsFpMonoidReducedElt", IsElementOfFpMonoid);