/usr/share/gap/lib/semitran.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 | ############################################################################
##
#W semitran.gi GAP library Isabel Araújo and Robert Arthur
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the implementation of some basics for transformation
## semigroups
##
#############################################################################
##
#M IsTransformationMonoid( <M> )
##
## If an object has IsMonoid, then it necessarily contains the identity
## transformation, and so is a submonoid of the full transformation
## monoid.
##
InstallTrueMethod(IsTransformationMonoid, IsMonoid and
IsTransformationCollection);
#############################################################################
##
#M IsTransformationMonoid( <S> )
##
## A transformation semigroup is a transformation monoid iff at least
## one of the generators is of rank n, where n is the degree of the
## semigroup.
##
InstallMethod(IsTransformationMonoid, "for a transformation semigroup",
true, [IsTransformationSemigroup and HasGeneratorsOfSemigroup], 0,
function( S )
if ForAny(GeneratorsOfSemigroup(S),
x->RankOfTransformation(x)=DegreeOfTransformationSemigroup(S)) then
SetGeneratorsOfMonoid(S, GeneratorsOfSemigroup(S));
return true;
else
return false;
fi;
end);
#############################################################################
##
#M AsMonoid( <S> )
##
## Given a Transformation semigroup with known generators
## for which IsTransformationMonoid is true, return it as a monoid.
##
InstallMethod(AsMonoid, "for transformation semigroup", true,
[IsTransformationSemigroup and HasGeneratorsOfSemigroup], 0,
function(S)
if IsTransformationMonoid(S) then
return Monoid(GeneratorsOfSemigroup(S));
else
return fail;
fi;
end);
##############################################################################
##
#M IsFinite( <M> )
##
## Transformation semigroups (considered in gap) are finite
##
InstallTrueMethod(IsFinite, IsTransformationSemigroup);
#############################################################################
##
#M DegreeOfTransformationSemigroup( <S> )
##
## Since we insist all elements must have the same degree, we may simply
## give the degree of one generator.
##
InstallMethod(DegreeOfTransformationSemigroup, "degree of a trans semigroup",
true, [IsTransformationSemigroup],0,
function(s)
return DegreeOfTransformation(AsList(GeneratorsOfSemigroup(s))[1]);
end);
###############################################################################
##
#M IsomorphismPermGroup( <H> )
##
## for a greens H class of a semigroup
## returns an isomorphism from the H class to an isomorphic Perm group
##
InstallOtherMethod( IsomorphismPermGroup,
"for a Green's group H class of a semigroup", true,
[ IsGreensHClass and IsEquivalenceClass], 0,
function( h )
local enum, # enumerator of h
isgroup, # is h a group
gens, # the generators of the perm group
permgroup, # the perm group
perm, # a permutation
i,j, # loop variables
mapfun; # the function that computes the mapping
if not(IsFinite(h)) then
TryNextMethod();
fi;
if not( IsGroupHClass(h) ) then
Error("can only create isomorphism of group H classes");
fi;
# i := 1;
# isgroup := false;
# while IsBound( enum[ i ] ) and not( isgroup ) do
# if enum[ i ]*enum[ i ] = enum[ i ] then
# isgroup := true;
# fi;
# i := i+1;
# od;
# now we build the Perm group
# For each element of h we build the permutation induced in h by itself
# These permutations are going to be the generators of the perm group
gens:=[]; enum := Enumerator( h );
i := 1;
while IsBound( enum[ i ] ) do
perm := [];
j := 1;
while IsBound( enum[ j ] ) do
Add( perm, Position( enum, enum[i] * enum[ j ] ) );
j := j+1;
od;
Add( gens, PermList(perm) );
i := i+1;
od;
# notice that gens now is a list of permutations, entry i of which
# is the permutation induced in H by the element enum[i]
# now we build the group
permgroup := Group( gens );
mapfun := a -> gens[ Position( enum, a )];
return MappingByFunction( h, permgroup, mapfun );
end);
###############################################################################
##
#M IsomorphismTransformationSemigroup( <S> )
##
## For a generic semigroup <S> with MultiplicativeNeutralElement.
## Returns an isomorphism from <S> to a transformation semigroup
## It is the right regular representation of $S$.
##
## This function could be much more space efficient if we knew how
## to factor elements of a semigroup into words in the generators!
##
InstallMethod( IsomorphismTransformationSemigroup,
"for a generic semigroup with multiplicative neutral element",
true,
[ IsSemigroup and HasMultiplicativeNeutralElement], 0,
function( s )
local
en, #enumerator of the semigroup - this becomes part of the isomorphism
gens, # the generators of the transformation semigroup
mapfun; # the function which describes the mapping
if not(IsFinite(s)) then
Error("error, semigroup is infinite. Transformation semigroups in GAP are finite");
fi;
en := EnumeratorSorted(s);
mapfun := a -> Transformation( List([1..Length(en)], i->Position(en, en[i]*a)));
gens := List(GeneratorsOfSemigroup(s),x->mapfun(x));
return MagmaHomomorphismByFunctionNC( s, Semigroup(gens), mapfun );
end);
##
## As above, but add an extra point for faithfulness
##
InstallMethod( IsomorphismTransformationSemigroup,
"for a generic semigroup",
true, [IsSemigroup], 0,
function( s )
local
en, #enumerator of the semigroup - this becomes part of the isomorphism
gens, # the generators of the transformation semigroup
mapfun; # the function which describes the mapping
if not(IsFinite(s)) then
Error("error, semigroup is infinite. Transformation semigroups in GAP are finite");
fi;
en := EnumeratorSorted(s);
mapfun := a -> Transformation(
Concatenation(List([1..Length(en)], i->Position(en, en[i]*a)),[Position(en,a)]));
gens := List(GeneratorsOfSemigroup(s),x->mapfun(x));
return MagmaHomomorphismByFunctionNC( s, Semigroup(gens), mapfun );
end);
#############################################################################
##
## For semigroups of SingleValued GeneralMappings with a generating set.
## For the moment we resist the temptation to install it for a semigroup
## of general mappings without a generating set - this would be a
## highly suspicious object.
##
InstallMethod( IsomorphismTransformationSemigroup,
"for a semigroup of general mappings",
true,
[IsSemigroup and IsGeneralMappingCollection and HasGeneratorsOfSemigroup],
0,
function( s )
local gens, # the generators of the transformation semigroup
egens, # the generators of the endomorphism semigroup
mapfun; # the function which describes the mapping
egens := GeneratorsOfSemigroup(s);
if not ForAll(egens, g->IsMapping(g)) then
TryNextMethod();
fi;
gens := List(egens, g->TransformationRepresentation(g)!.transformation);
mapfun := a -> TransformationRepresentation(a)!.transformation;
return MagmaHomomorphismByFunctionNC( s, Semigroup(gens), mapfun );
end);
#############################################################################
##
#F FullTransformationSemigroup(<degree>)
##
##
InstallGlobalFunction(FullTransformationSemigroup,
function(d)
local s; ## semigroup
if not IsPosInt(d) then
Error("<d> must be a positive integer");
fi;
if d =1 then
return Monoid(Transformation([1]));
elif d=2 then
return Monoid(Transformation([2,1]),
Transformation([1,1]),
Transformation([2,2]) );
fi;
s := Monoid(Transformation(Concatenation([2..d],[1])),
Transformation(Concatenation([2,1],[3..d])),
Transformation(Concatenation([1..d-1],[1])) );
SetSize(s,d^d);
SetIsTransformationMonoid(s,true);
SetIsFullTransformationSemigroup(s,true);
return s;
end);
#############################################################################
##
#A IsFullTransformationSemigroup
##
## implements simple checks to determine when a transformation semigroup is
## the full transformation semigroup
##
InstallMethod(IsFullTransformationSemigroup, "for semigroups", true,
[IsSemigroup],0,
function(s)
local gens, ## Generators of the semigroup
d, ## degree of the semigroup
a, b, c; ## 3 generators known to generate the full
## transformation semigroup
## Semigroup must be a transformation semigroup
##
if not IsTransformationSemigroup(s) then
return false;
fi;
## Check size (if there is one)
##
if HasSize(s) then
return Size(s)=DegreeOfTransformationSemigroup(s)^
DegreeOfTransformationSemigroup(s);
fi;
## Check small cases
##
if DegreeOfTransformationSemigroup(s) < 5 then
return Size(s)=DegreeOfTransformationSemigroup(s)^
DegreeOfTransformationSemigroup(s);
fi;
## Lastly check to see if a set of generators known to generatate
## the whole semigroup is in the semigroup
## (This is a very crude test at the moment but a start)
##
d := DegreeOfTransformationSemigroup(s);
a := Transformation(Concatenation([2..d],[1]));
b := Transformation(Concatenation([2,1],[3..d]));
c := Transformation(Concatenation([1..d-1],[1]));
return a in s and b in s and c in s;
end);
#############################################################################
##
#M \in for full transformation semigroup
##
## If the transformation and group have the same degree then return true
##
InstallMethod(\in, "for full transformation semigroups", true,
[IsObject,IsFullTransformationSemigroup],0,
function(e,tn)
return DegreeOfTransformation(e)=DegreeOfTransformationSemigroup(tn);
end);
#############################################################################
##
#E
|