/usr/share/gap/lib/smgideal.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 | #############################################################################
##
#W smgideal.gi GAP library Robert Arthur
##
##
#Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains generic methods for semigroup ideals.
##
#############################################################################
##
## Immediate methods for
##
## IsLeftSemigroupIdeal
## IsRightSemigroupIdeal
## IsSemigroupIdeal
##
#############################################################################
InstallImmediateMethod( IsLeftSemigroupIdeal,
IsLeftMagmaIdeal and HasLeftActingDomain and IsAttributeStoringRep, 0,
I -> HasIsSemigroup(LeftActingDomain(I)) and
IsSemigroup(LeftActingDomain(I)) );
InstallImmediateMethod( IsRightSemigroupIdeal,
IsRightMagmaIdeal and HasRightActingDomain and IsAttributeStoringRep, 0,
I -> HasIsSemigroup(RightActingDomain(I)) and
IsSemigroup(RightActingDomain(I)) );
InstallImmediateMethod(IsSemigroupIdeal,
IsMagmaIdeal and HasActingDomain and IsAttributeStoringRep, 0,
I -> HasIsSemigroup(ActingDomain(I)) and IsSemigroup(ActingDomain(I)) );
#############################################################################
#############################################################################
## ##
## ENUMERATORS ##
## ##
#############################################################################
#############################################################################
#############################################################################
##
#F RightSemigroupIdealEnumeratorDataGetElement( <enum>, <n> )
##
## Returns a pair [T/F, elm], such that if <n> is less than or equal to
## the size of the right ideal the first of the pair will be
## true, and elm will be the element at the <n>th place. Otherwise, the
## first of the pair will be false.
##
BindGlobal( "RightSemigroupIdealEnumeratorDataGetElement",
function( enum, n )
local i, ideal, new;
ideal:= UnderlyingCollection(enum);
if n <= Length(enum!.currentlist) then
return [true, enum!.currentlist[n]];
fi;
# Starting at the first non-expanded element of the list, multiply
# every element of the list by generators, until it is large enough
# to give the nth element.
while IsBound(enum!.currentlist[enum!.nextelm]) do
for i in enum!.gens do
new:= enum!.currentlist[enum!.nextelm] * i;
if not new in enum!.orderedlist then
Add(enum!.currentlist, new);
AddSet(enum!.orderedlist, new);
fi;
od;
enum!.nextelm:= enum!.nextelm+1;
# If we have now evaluated the element in the nth place
if n <= Length(enum!.currentlist) then
return [true, enum!.currentlist[n]];
fi;
od;
# By now we have closed the list, and found it not to contain n
# elements.
if not HasAsSSortedList(ideal) then
SetAsSSortedList(ideal, enum!.orderedlist);
fi;
return [false, 0];
end );
#############################################################################
##
#F LeftSemigroupIdealEnumeratorDataGetElement( <Enum>, <n> )
##
## Returns a pair [T/F, elm], such that if <n> is less than or equal to
## the size of the underlying left ideal the first of the pair will be
## true, and elm will be the element at the <n>th place. Otherwise, the
## first of the pair will be false.
##
BindGlobal("LeftSemigroupIdealEnumeratorDataGetElement",
function (enum, n)
local i, ideal, new;
ideal:= UnderlyingCollection(enum);
if n <= Length(enum!.currentlist) then
return [true, enum!.currentlist[n]];
fi;
# Starting at the first non-expanded element of the list, multiply
# every element of the list by generators, until it is large enough
# to give the nth element.
while IsBound(enum!.currentlist[enum!.nextelm]) do
for i in enum!.gens do
new:= i * enum!.currentlist[enum!.nextelm];
if not new in enum!.orderedlist then
Add(enum!.currentlist, new);
AddSet(enum!.orderedlist, new);
fi;
od;
enum!.nextelm:= enum!.nextelm+1;
# If we have now evaluated the element in the nth place
if n <= Length(enum!.currentlist) then
return [true, enum!.currentlist[n]];
fi;
od;
# By now we have closed the list, and found it not to contain n
# elements.
if not HasAsSSortedList(ideal) then
SetAsSSortedList(ideal, enum!.orderedlist);
fi;
return [false, 0];
end);
#############################################################################
##
#F SemigroupIdealEnumeratorDataGetElement( <Enum>, <n> )
##
## Returns a pair [T/F, elm], such that if <n> is less than or equal to
## the size of the underlying ideal the first of the pair will be
## true, and elm will be the element at the <n>th place. Otherwise, the
## first of the pair will be false.
##
BindGlobal("SemigroupIdealEnumeratorDataGetElement",
function (enum, n)
local i, j, new, onleft, ideal;
ideal:= UnderlyingCollection(enum);
if n <= Length(enum!.currentlist) then
return [true, enum!.currentlist[n]];
fi;
# Starting at the first non-expanded element of the list, multiply
# every element of the list by generators, until it is large enough
# to give the nth element.
onleft:= false;
while IsBound(enum!.currentlist[enum!.nextelm]) do
for i in enum!.gens do
for j in [1,2] do
if onleft then
new:= i * enum!.currentlist[enum!.nextelm];
else
new:= enum!.currentlist[enum!.nextelm] * i;
fi;
if not new in enum!.orderedlist then
Add(enum!.currentlist, new);
AddSet(enum!.orderedlist, new);
fi;
onleft:= not onleft;
od;
od;
enum!.nextelm:= enum!.nextelm+1;
# If we have now evaluated the element in the nth place
if n <= Length(enum!.currentlist) then
return [true, enum!.currentlist[n]];
fi;
od;
# By now we have closed the list, and found it not to contain n
# elements.
if not HasAsSSortedList(ideal) then
SetAsSSortedList(ideal, enum!.orderedlist);
fi;
return [false, 0];
end);
#############################################################################
##
#M \[\]( <E>, <n> )
##
## Returns the <n>th element of a right semigroup ideal enumerator. Sets
## AsSSorted list for the underlying ideal when all elements have been
## found.
##
BindGlobal( "ElementNumber_SemigroupIdealEnumerator", function( enum, n )
if IsBound( enum[n] ) then
return( enum!.currentlist[n] ); # we know it to be bound, so
# must have computed it!
else
Error("Position out of range");
fi;
end );
#############################################################################
##
#M Position( <E>, <elm>, 0 )
##
## There was no special `Position' method for these enumerators,
## so we install a simpleminded approach.
##
BindGlobal( "NumberElement_SemigroupIdealEnumerator", function( enum, elm )
local pos;
if not IsCollsElms( FamilyObj( enum ), FamilyObj( elm ) ) then
return fail;
fi;
pos:= 1;
while IsBound( enum[ pos ] ) do
if enum[ pos ] = elm then
return pos;
fi;
pos:= pos + 1;
od;
return fail;
end );
#############################################################################
##
#M IsBound\[\]( <E>, <n> )
##
## Returns true if the enumerator has size at least <n>. This is the meat
## of the enumerators calculation, with \[\] relying on it to set the
## required data.
##
InstallGlobalFunction( IsBound_RightSemigroupIdealEnumerator,
function( enum, n )
return RightSemigroupIdealEnumeratorDataGetElement( enum, n )[1];
end );
InstallGlobalFunction( IsBound_LeftSemigroupIdealEnumerator,
function( enum, n )
return LeftSemigroupIdealEnumeratorDataGetElement( enum, n )[1];
end );
BindGlobal( "IsBound_SemigroupIdealEnumerator", function( enum, n )
return SemigroupIdealEnumeratorDataGetElement( enum, n )[1];
end );
#############################################################################
##
## The following Length and \in methods are needed because of an
## infinite recursion which is caused by the method
## Size "for a collection" calling
## Length "for domain enumerator with underlying collection"
## which in turn calls Size "for a collection" for the underlying collection.
## This sets up the recursion.
##
## The methods below insure we never get into this infinite recursion
## with Semigroup enumerators.
##
## Example:
##
## f:=FreeSemigroup("a","b","c");
## x:=GeneratorsOfSemigroup(f);
## a:=x[1];;b:=x[2];;c:=x[3];;
## r:= [ [a*b,b*a],[a*c,c*a],[b*c,c*b],[a*a,a],[b*b,b],[c*c,c] ];
## s := f/r;
## Size(s);
##
## recursion depth trap (5000)
## at
## return Size( UnderlyingCollection( enum ) );
## Length( Enumerator( C ) ) called from
## Size( UnderlyingCollection( enum ) ) called from
## Length( Enumerator( C ) ) called from
## Size( UnderlyingCollection( enum ) ) called from
## Length( Enumerator( C ) ) called from
##
#############################################################################
##
#M Length(<semigroupenum>)
##
## Find the length of the enumerator of a semigroup ideal enumerator.
##
BindGlobal( "Length_SemigroupIdealEnumerator", function( e )
local n;
n:=1;
while IsBound(e[n]) do
n := n+1;
od;
return n-1;
end );
#############################################################################
##
#M \in (obj, semigroupenum)
##
## Needed only for infinite semigroups which do not have their own \in
## method e.g. finitely presented semigroups.
## For example a semigroup of matrices over a infinite domain.
##
## m := [[2,3],[4,5]];
## s := Semigroup(m);
## [[2,3],[4,5]] in s;
##
## Without the \in method below we would use the default case which
## implicitly requires the Length of the semigroup to be computed never
## terminating.
##
BindGlobal( "Membership_SemigroupIdealEnumerator", function( obj, enum )
local i;
i := 1;
while IsBound( enum[i] ) do
if obj = enum[i] then
return true;
fi;
i := i +1;
od;
return false;
end );
#############################################################################
##
#M Enumerator( <I> ) . . . . . . . . . . . . . . for a right semigroup ideal
#M Enumerator( <I> ) . . . . . . . . . . . . . . for a left semigroup ideal
#M Enumerator( <I> ) . . . . . . . . . . . for a (two sided) semigroup ideal
##
InstallGlobalFunction( EnumeratorOfSemigroupIdeal,
function( I, actdom, isbound, gens )
if not HasGeneratorsOfSemigroup( actdom ) then
TryNextMethod();
fi;
return EnumeratorByFunctions( I, rec(
ElementNumber := ElementNumber_SemigroupIdealEnumerator,
NumberElement := NumberElement_SemigroupIdealEnumerator,
IsBound\[\] := isbound,
Length := Length_SemigroupIdealEnumerator,
Membership := Membership_SemigroupIdealEnumerator,
currentlist := ShallowCopy( AsSet( gens ) ),
gens := AsSet( GeneratorsOfSemigroup( actdom ) ),
nextelm := 1,
orderedlist := ShallowCopy( AsSet( gens ) ) ) );
end );
InstallMethod( Enumerator,
"for a right semigroup ideal",
[ IsRightSemigroupIdeal and HasGeneratorsOfRightMagmaIdeal ],
I -> EnumeratorOfSemigroupIdeal( I, RightActingDomain( I ),
IsBound_RightSemigroupIdealEnumerator,
GeneratorsOfRightMagmaIdeal( I ) ) );
InstallMethod( Enumerator,
"for a left semigroup ideal",
[ IsLeftSemigroupIdeal and HasGeneratorsOfLeftMagmaIdeal ],
I -> EnumeratorOfSemigroupIdeal( I, LeftActingDomain( I ),
IsBound_LeftSemigroupIdealEnumerator,
GeneratorsOfLeftMagmaIdeal( I ) ) );
InstallMethod( Enumerator,
"for a semigroup ideal",
[ IsSemigroupIdeal and HasGeneratorsOfMagmaIdeal ],
I -> EnumeratorOfSemigroupIdeal( I, ActingDomain( I ),
IsBound_SemigroupIdealEnumerator,
GeneratorsOfMagmaIdeal( I ) ) );
#############################################################################
##
#M ReesCongruenceOfSemigroupIdeal( <I> )
##
## A two sided ideal <I> of a semigroup <S> defines a congruence on
## <S> given by $\Delta \cup I \times I$.
##
InstallMethod(ReesCongruenceOfSemigroupIdeal,
"for a two sided semigroup congruence",
[ IsMagmaIdeal and IsSemigroupIdeal ],
function(i)
local mc;
mc := LR2MagmaCongruenceByPartitionNCCAT(Parent(i),
[Enumerator(i)], IsMagmaCongruence);
SetIsSemigroupCongruence(mc, true);
return mc;
end );
#############################################################################
##
#M PrintObj( <S> ) . . . . . . . . . . . . . . . . . . for a SemigroupIdeal
##
InstallMethod( PrintObj,
"for a semigroup ideal",
[ IsMagmaIdeal and IsSemigroupIdeal ],
function( S )
Print( "SemigroupIdeal( ... )" );
end );
InstallMethod( PrintObj,
"for a semigroup ideal with known generators",
[ IsMagmaIdeal and IsSemigroupIdeal and HasGeneratorsOfMagmaIdeal ],
function( S )
Print( "SemigroupIdeal( ", GeneratorsOfMagmaIdeal( S ), " )" );
end );
#############################################################################
##
#M ViewObj( <S> ) . . . . . . . . . . . . . . . . . . for a SemigroupIdeal
##
InstallMethod( ViewObj,
"for a semigroup ideal",
[ IsMagmaIdeal and IsSemigroupIdeal ],
function( S )
Print( "<SemigroupIdeal>" );
end );
InstallMethod( ViewObj,
"for a semigroup ideal with known generators",
[ IsMagmaIdeal and IsSemigroupIdeal and HasGeneratorsOfMagmaIdeal ],
function( S )
Print( "<SemigroupIdeal with ", Length(GeneratorsOfMagmaIdeal( S )),
" generators>" );
end );
#############################################################################
##
#E
|