/usr/share/gap/lib/solmxgrp.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 | #############################################################################
##
#W solmxgrp.gi GAP Library Gene Cooperman
#W and Scott Murray
##
##
#Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1999 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## REFERENCE:
## E.M. Luks, ``Computing in solvable matrix groups'',
## Proc. 33^{rd}$ IEEE Foundations of Computer Science (FOCS-33), 1992,
## pp.~111-120.
## (group membership and related algorithms (Size, Random, Enumerator, etc.)
## currently implemented through abelian, and nilpotent,
## will be extended to solvable in next release)
##
## Cleaning up of code:
## Testing for Cyclic and QuotientToAdditiveGroup should be
## combined in routine: if IsBaseCaseGroup(G) then ...
## The method, InvariantSubspaceOrCyclicGroup, "for abelian non-char.
## p-group" is too long and hence should be rewritten.
##
# InfoChain already declared.
#DeclareInfoClass("InfoChain");
# default info level is 0
#SetInfoLevel(InfoChain, 1);
#############################################################################
##
#F SetIsCyclicWithSize( <G>, <gen>, <size> )
##
InstallGlobalFunction( SetIsCyclicWithSize,
function(G, gen, size)
if size = 1 then SetIsTrivial(G,true); return; fi;
if IsOne(gen) then Error("internal error"); fi;
SetIsCyclic(G,true);
SetGeneratorOfCyclicGroup(G,gen);
SetSize(G,size);
IsPGroup(G); # It's cheap to test it now.
end );
#############################################################################
##
#F ConjugateMatrixActionToLinearAction( <g> )
##
InstallGlobalFunction( ConjugateMatrixActionToLinearAction, function(g)
local i, j, d, ginv, zero, one, basisMatrix, newLinearMatrix;
if not IsMatrix(g) then Error("Invalid input"); fi;
d := Length(g);
basisMatrix := List( [1..d], x->List([1..d],x->Zero(g[1][1])) );
zero := Zero(g[1][1]);
one := One(DefaultFieldOfMatrix(g));
newLinearMatrix := [];
ginv := g^(-1);
for i in [1..d] do
for j in [1..d] do
basisMatrix[i][j] := one;
Add( newLinearMatrix, Flat(ginv * basisMatrix * g) );
basisMatrix[i][j] := zero;
od;
od;
# return transpose for action, matrix * vec
return TransposedMat( newLinearMatrix );
end );
#############################################################################
##
#F ConjugateMatrixGroupToLinearGroup( <G> )
##
ConjugateMatrixGroupToLinearGroup := function( G )
return List( GeneratorsOfGroup( G ), g->[g, ConjugateMatrixActionToLinearAction(g) ] );
end;
#############################################################################
#############################################################################
##
## Abelian matrix groups
##
#############################################################################
#############################################################################
#############################################################################
##
#M MakeHomChain( <G> )
##
##
##
InstallMethod( MakeHomChain, "for arbitrary group", true,
[ IsGroup ], 0,
function( G )
# Test abelian first. It's cheaper.
if IsFFEMatrixGroup(G) and IsAbelian(G) then
return MakeHomChain(G);
elif IsFFEMatrixGroup(G) and IsNilpotentGroup(G) then
return MakeHomChain(G);
fi;
Error("MakeHomChain currently implemented only for nilpotent groups");
end );
InstallMethod( MakeHomChain, "for nilpotent group with chain", true,
[ IsGroup and IsNilpotentGroup and HasChainSubgroup ], 0,
G -> ChainSubgroup(G) );
InstallMethod( MakeHomChain, "for abelian group", true,
[ IsGroup and IsAbelian ], 0,
function( G )
local PowerFnc, SetPGroup, pGroups, pgroupGens, otherPGens, first, pow, H;
PowerFnc := power -> (g->g^power);
SetPGroup := function( H, p, exponent)
SetIsPGroup(H, true );
SetPrimePGroup( H, p );
SetExponent( H, exponent );
if Length(GeneratorsOfGroup(H)) = 1 then
SetIsCyclicWithSize( H, GeneratorsOfGroup(H)[1], exponent );
fi;
# UseSubsetRelation( G, H );
return H;
end;
#Returns list of triples, [p,pgroupGens,exponentOfPGroup]
pgroupGens := PGroupGeneratorsOfAbelianGroup( G );
if Length(pgroupGens) = 0 then
if not IsTrivial(G) then Error("internal error: not triv"); fi;
SetIsTrivial( G, true );
Info(InfoChain, 1, "Abelian group is trivial");
return G;
fi;
if Length(pgroupGens) = 1 then
SetPGroup( G, pgroupGens[1][1], pgroupGens[1][3] );
Info(InfoChain, 1, "Abelian group is a p-group");
return MakeHomChain( G );
fi;
Info(InfoChain, 1, "Making abelian chain as direct product of ",
Length(pgroupGens), " p-groups: ",
List(pgroupGens,x->x[1]));
pGroups := List( pgroupGens,
x -> SetPGroup(SubgroupNC(G,x[2]), x[1], x[3]) );
# Be nice and tell GAP what we discovered, but don't pay cost
# of creating all the homomorphisms for embeddings and projections
# If GAP knows about p-groups, it can do the homomorphisms on demand.
first := [1];
ForAll( pgroupGens,
function( x ) Add( first, first[Length(first)]+Length(x[2]) );
return true;
end );
# MODIFYING ORIGINAL GENERATORS OF G; MAKE SURE THIS IS SHALLOW COPY
# MySetGeneratorsOfGroup( G, Concatenation( List(pgroupGens, x->x[2]) ) );
G!.PGroupGenerators := Concatenation( List(pgroupGens, x->x[2]) );
while Length(pgroupGens) > 1 do
SetDirectProductInfo( G,
rec( groups := pGroups, first := first,
embeddings := [], projections := [] ) );
otherPGens := pgroupGens{[2..Length(pgroupGens)]};
if Length(pgroupGens) > 2 then
H := SubgroupNC(G, Concatenation(List(otherPGens, x->x[2])));
else H := pGroups[Length(pGroups)];
fi;
UseSubsetRelation( G, H );
pow := ChineseRem( List(pgroupGens,x->x[3]),
Concatenation([1], List(otherPGens,x->0)) );
if pow = 1 then Error("pow = 1, identity projection"); fi;
ChainSubgroupByProjectionFunction( G, H, pGroups[1],
PowerFnc(pow) );
# This should be inside ChainSubgroupByProjectionFunction()
MakeHomChain( QuotientGroup( Transversal( H ) ) );
G := H;
pgroupGens := otherPGens;
pGroups := pGroups{[2..Length(pGroups)]};
first := first{Flat([1,[3..Length(first)]])} + 1 - first[2];
first[1] := 1;
od;
return MakeHomChain(H);
end );
#############################################################################
##
#M BasisOfHomCosetAddMatrixGroup( <> )
##
## GAP has V := VectorSpace(FieldOfMatrixGroup(quo), GeneratorsOfGroup(quo));
## but how does one bootstrap up to get Dimension(V) and Basis(V)?
## This may go away when there's a clearer way to do it in GAP.
## This should work for IsAdditiveQuotientGroup, IsAdditiveGroup,
## and IsFFEMatrixGroup
## LeftModuleByGenerators() also works, but again, GAP refuses to find
## a basis for it.
## SemiEchelonBasis(V) fails with UseSubsetRelation(arg[1], S);
##
InstallGlobalFunction( BasisOfHomCosetAddMatrixGroupFnc,
function( G )
local gens, oneOfGroup, g, v, c, basis, residue, firsts, tmp,
b, i, fld, one, zero, fldSize, MyIntFFE, MyAdditiveOrder;
# A better way (valid for additive groups, too) is:
# field := Field( GeneratorsOfNearAdditiveGroup(G));
# one := One(field);
# why does FieldOfMatrixGroup work? IsFFEMatrixGroup(G)?
if IsFFEMatrixGroup(G) then
gens := GeneratorsOfGroup(G);
oneOfGroup := One(G);
fld := FieldOfMatrixGroup(G);
elif IsAdditiveGroup(G) and HasGeneratorsOfNearAdditiveGroup(G) then
gens := GeneratorsOfNearAdditiveGroup(G);
oneOfGroup := Zero(G);
if not IsEmpty(gens) then fld := Field(Flat(gens));
else fld := Field(Flat(One(G)));
fi;
else Error("can't handle this case");
fi;
one := One(fld);
zero := Zero(fld);
fldSize := Size(fld);
# HACK: until GAP fixes IntFFE(); returns fail if impossible (not error)
MyIntFFE := f -> First([0..fldSize], i -> f=i*one);
basis := [];
residue := [];
firsts := [];
for g in gens do
v := Flat(g);
for i in [1..Length(basis)] do
c := PositionNot( v, zero );
if c > Length(v) then break; fi; # g is now zero vector
b := Flat(basis[i]); # for finding b[c]; Faster without Flat()
c := PositionNot( b, zero );
c := MyIntFFE( v[c] / b[c] );
if c = fail then # then switch gen with current basis vector
tmp := g; g := basis[i]; basis[i] := tmp;
tmp := v; v := b; b[i] := tmp;
c := MyIntFFE( v[c] / b[c] );
if c = fail then Error("internal error"); fi;
fi;
g := g - c * basis[i];
v := Flat(g);
od;
if g = oneOfGroup then Add(residue,g); # One(G) is 0 matrix here
else Add(basis,g);
fi;
od;
Sort(basis); # GAP Sort works by side effect, only.
basis := Reversed(basis);
if IsFFEMatrixGroup(G) or IsQuotientToAdditiveGroup(G) then
SetSize( G, Product( basis, Order ) );
elif IsAdditiveGroup(G) then # What's GAP for Order() of elt in add. grp?
#GAP should have Size() method for IsAdditiveGroup as below:
# SizeOfChainOfGroup() calls this for now.
MyAdditiveOrder := function(g)
if IsZero(g) then return 1;
else return Size(DefaultFieldOfMatrix(g));
fi;
end;
SetSize( G, Product( basis, MyAdditiveOrder ) );
fi;
firsts := List(basis, v->PositionNot(v,zero));
return rec(basis := basis, firsts := firsts, residue := residue);
end );
# This should eventually generalize to something like:
# BasisOfAdditiveMatrixGroup, for which both of these are example.
InstallMethod( BasisOfHomCosetAddMatrixGroup, "by linear algebra", true,
[ IsGroup and IsQuotientToAdditiveGroup ], 0,
BasisOfHomCosetAddMatrixGroupFnc );
InstallMethod( BasisOfHomCosetAddMatrixGroup, "by linear algebra", true,
[ IsAdditiveGroup ], 0, BasisOfHomCosetAddMatrixGroupFnc );
#############################################################################
##
#F SiftVector( <basisVecList>, <vec> )
#F SiftVector( <basisVecList> )
##
InstallGlobalFunction( SiftVector, function(arg)
local basisVecs, b, firsts, zero, one, fldSize, MyIntFFE, fnc;
# HACK: until GAP fixes IntFFE(); returns fail if impossible (not error)
MyIntFFE := f -> First([0..fldSize], i -> f=i*one);
basisVecs := arg[1];
b := List(basisVecs, Flat);
zero := Zero(b[1][1]);
one := One(b[1][1]);
fldSize := Size(Field(Flat(b)));
firsts := List( b, i->PositionNot(i,zero) );
if 0 in firsts then Error("internal error"); fi;
fnc := function(vec)
local i, c, v;
for i in [1..Length(b)] do
v := Flat(vec); # time for Flat dominated by arithmetic below
c := MyIntFFE( v[firsts[i]] / b[i][firsts[i]] );
if c = fail then return fail;
else vec := vec - c * basisVecs[i];
fi;
od;
return vec;
end;
if Length(arg)=2 then return fnc(arg[2]); else return fnc; fi;
end );
#############################################################################
##
#M SiftFunction( <> )
##
##
##
InstallMethod( SiftFunction,
"for abelian quotient to additive group (by lin. algebra)", true,
[ IsGroup and IsFFEMatrixGroup and IsQuotientToAdditiveGroup ], 0,
G -> SiftVector( BasisOfHomCosetAddMatrixGroup(G).basis ) );
#############################################################################
##
#M MakeHomChain( <> )
##
##
##
InstallMethod( MakeHomChain, "by linear algebra", true,
[ IsGroup and IsFFEMatrixGroup and IsQuotientToAdditiveGroup ], 0,
function( G )
local SiftFnc;
SiftFnc := SiftFunction(G);
Info(InfoChain, 2, "Extending chain by kernel of abelian image.");
# This is different from homomorphism transversal.
# In hom transv, we induce a quotient group
# Here we want a simple sift, in fact from quotient group to ord. grp.
ChainSubgroupBySiftFunction( Source(G),
KernelOfMultiplicativeGeneralMapping(G),
g->SourceElt(SiftFnc(HomCoset(Homomorphism(G),g))) );
if HasSize(G) then SetSize(TransversalOfChainSubgroup(Source(G)), Size(G)); fi;
if IsTrivial(KernelOfMultiplicativeGeneralMapping(G)) then return
KernelOfMultiplicativeGeneralMapping(G); fi;
return MakeHomChain(KernelOfMultiplicativeGeneralMapping(G));
end );
## Currently, Cyclic and QuotientToAdditiveGroup are manageable.
## If the argument, G, is already a manageable group, it returns G, itself.
ManageableQuotientOfAbelianPGroup :=
function( G )
local subspace, hom, V, fnc, kernel, quo, quo2, grp;
Info(InfoChain, 2, "Making abelian ", PrimePGroup(G), "-group chain");
if IsQuotientToAdditiveGroup(G) then # base case
Error("internal error: base case");
fi;
if ForAny(GeneratorsOfGroup(G), IsZero) then
Error("internal error: zero matrix");
fi;
if not IsPGroup(G) or not IsAbelian(G) then Error("wrong arg"); fi;
subspace := InvariantSubspaceOrCyclicGroup( G );
if IsVectorSpace( subspace ) then
Info(InfoChain, 2, "Invariant subspace of rank ",
Dimension(subspace), " in dimension ",
Length(GeneratorsOfVectorSpace(subspace)[1]), " found.");
Info(InfoChain, 2, "Trying action on invariant subspace");
hom := NaturalHomomorphismByInvariantSubspace
( G, subspace );
if ForAll( GeneratorsOfGroup(G), g -> IsOne(ImageElm(hom,g)) ) then
Info(InfoChain, 2, "Trying action on quotient of invar. subspace");
hom := NaturalHomomorphismByFixedPointSubspace
( G, subspace );
fi;
if ForAll( GeneratorsOfGroup(G), g -> IsOne(ImageElm(hom,g)) ) then
Info(InfoChain, 2, "Trying homomorphism to Hom(V,W)");
hom := NaturalHomomorphismByHomVW( G, subspace );
Info(InfoChain, 2, "Creating QuotientToAdditiveGroup");
fi;
ChainSubgroupByHomomorphism( hom );
quo := QuotientGroup(TransversalOfChainSubgroup(G));
# After calling this, we might discover quo is cyclic.
IsAbelian(quo); # Tell GAP quo is abelian in case not propagated.
# MakeHomChain(quo); # this need only be ChainSubgroup(quo);
if IsQuotientToAdditiveGroup(quo) then return quo; fi;
quo2 := ManageableQuotientOfAbelianPGroup(quo);
if HasIsCyclic(quo) and IsCyclic(quo) then
# MakeHomChain(quo);
return quo;
fi;
return QuotientGroupByChainHomomorphicImage(quo, quo2);
else
Info(InfoChain, 2, PrimePGroup(G), "-group is cyclic.");
if not HasGeneratorOfCyclicGroup(subspace) then
Error("internal error: cyclic group missing single generator");
fi;
SetIsCyclicWithSize( G, GeneratorOfCyclicGroup(subspace),
Size(subspace) );
return G;
fi;
end;
#############################################################################
##
#M MakeHomChain( <> )
##
##GDC - Problem: Really, this should apply only if it's not
## HomCosetAddRep. However, ordinary groups are okay.
## I'd really like a property: IsFFEMatrixGroup and IsNotHomCosetAddGroup
##
InstallMethod( MakeHomChain, "for abelian p-group", true,
[ IsGroup and IsFFEMatrixGroup and IsAbelian and IsPGroup ], 0,
function( G )
local quo, kernel;
quo := ManageableQuotientOfAbelianPGroup(G);
if IsIdenticalObj(quo,G) then # then HasGeneratorOfCyclicGroup(G)
MakeHomChain(G);
return quo; # then not a quotient grp
else
IsAbelian(quo); # Special Kernel method for abelian grp
Info(InfoChain, 2, "Finding kernel of quotient group acting on",
" subspace of dimension ",
DimensionOfMatrixGroup(quo) );
# sets KernelOfMultiplicativeGeneralMapping(Homomorphism(quo))
kernel := KernelOfHomQuotientGroup(quo);
# Now that we have the full kernel, make new ChainSubgroup(grp)
ChainSubgroupByHomomorphism( Homomorphism(quo) );
if IsTrivial(kernel) then return kernel;
else return MakeHomChain( kernel );
fi;
fi;
end );
#############################################################################
##
#M MakeHomChain( <> )
##
## We need IsFFEMatrixGroup, or we lose to IsFFEMatrixGroup and IsAbelian
##
InstallMethod( MakeHomChain, "for cyclic p-groups", true,
[ IsGroup and IsFFEMatrixGroup and IsCyclic and IsPGroup ], 0,
function( G )
if IsUniformMatrixGroup( G ) or HasGeneratorOfCyclicGroup( G ) then
return ChainSubgroupBySiftFunction( G, TrivialSubgroup(G),
SiftFunction( G ) );
else TryNextMethod(); return;
fi;
end );
#############################################################################
#############################################################################
##
## Abelian matrix p-groups:
##
#############################################################################
#############################################################################
#############################################################################
##
#M InvariantSubspaceOrCyclicGroup( <H> )
##
## Lemma 4.4 of Luks reference: returns proper invariant subspace
## or return isomorphic cyclic group with GeneratorOfCyclicGroup
## attribute and Size attribute set
##
InstallMethod( InvariantSubspaceOrCyclicGroup, "for abelian group", true,
[ IsFFEMatrixGroup and IsAbelian ], 0,
function( H )
if Length( GeneratorsOfGroup(H) ) = 1 then
SetIsCyclicWithSize( H, H.1, Order(H.1) );
return InvariantSubspaceOrCyclicGroup( H );
else TryNextMethod(); return;
fi;
end );
InstallMethod( InvariantSubspaceOrCyclicGroup, "for abelian p-group", true,
[ IsFFEMatrixGroup and IsAbelian and IsPGroup ], 0,
function( H )
IsCharacteristicMatrixPGroup( H ); # Have GAP decide true or false
return InvariantSubspaceOrCyclicGroup( H );
end );
InstallMethod( InvariantSubspaceOrCyclicGroup, "for trivial group", true,
[ IsTrivial ], 0, H -> H );
InstallMethod( InvariantSubspaceOrCyclicGroup, "for abelian char. p-group",true,
[ IsFFEMatrixGroup and IsAbelian and IsPGroup and IsCharacteristicMatrixPGroup ], 0,
function( H )
local gen, gens, space;
space := UnderlyingVectorSpace(H);
for gen in GeneratorsOfGroup( H ) do
# Must first test IsTrivial(space) due to bug in GAP-4r1
if not IsTrivial(space) then
space := Intersection2( space, FixedPointSpace( gen ) );
fi;
od;
# This is because char(H) = p
if space = TrivialSubspace( space ) then
Error("This shouldn't occur in characteristic case.");
SetIsCyclic(H,true);
return H;
fi;
return space;
end );
##
## This method is too long. It should now be a short routine that
## calls InvariantSubspaceOrUniformCyclicPGroup()
## followed by SiftFunction() for cyclic matrix p-Group. - Gene
##
InstallMethod( InvariantSubspaceOrCyclicGroup, "for abelian non-char. p-group",
true,
[ IsFFEMatrixGroup and IsAbelian and IsPGroup and IsNoncharacteristicMatrixPGroup ],
0,
function( H )
local Horig, p, gens, tmp, h, k, h1, k1, ordH, ordK, h1inv,
space, trivSpace, r, CopyGroup, MySetGeneratorsOfGroup;
## NOTE: ShallowCopy(G) silently refuses to make a copy of G.
CopyGroup := function( G )
local H;
H := Group( GeneratorsOfGroup(G) );
# This should SetPrimePGroup() for H
UseIsomorphismRelation( G, H );
return H;
end;
# We should not be doing this -- Scott.
# Agreed. The usage here is to pass in the "shell of a group", and
# recursively add generators to the shell, to avoid the overhead of
# destructively modifying a generator list, and constantly making
# temporary groups based on it. When this function is rewritten,
# we can remove this. -- Gene.
MySetGeneratorsOfGroup :=
function(G,gens) G!.GeneratorsOfMagmaWithInverses := gens; end;
Horig := H;
p := PrimePGroup( Horig );
H := CopyGroup(Horig);
# SET UP PROBLEM
gens := GeneratorsOfGroup( H );
tmp := Filtered( gens, g -> not IsOne(g) );
if Length(tmp) < Length(gens) then
gens := tmp;
MySetGeneratorsOfGroup( H, gens );
fi;
if Length(gens) < 2 then
if Length(gens) = 0 then SetIsTrivial( H, true );
else SetIsCyclicWithSize( Horig, gens[1], Order(gens[1]) );
fi;
return InvariantSubspaceOrUniformCyclicPGroup( Horig );
fi;
h := gens[1];
k := gens[2];
ordH := Order(h);
ordK := Order(k);
if ordH < ordK then
tmp := h;
h := k;
k := tmp;
tmp := ordH;
ordH := ordK;
ordK := tmp;
fi;
# ALGORITHM
h1 := h^(ordH/p);
k1 := k^(ordK/p);
space := FixedPointSpace( h1 );
trivSpace := TrivialSubspace(space);
if trivSpace <> space then return space; fi;
h1inv := h1^(-1);
for r in [0..p-1] do
space := FixedPointSpace( h1inv^r*k1 );
if space <> trivSpace then
if space <> UnderlyingVectorSpace(H) then
return space;
else break;
fi;
fi;
od;
if space = trivSpace then Error("internal error: no FixedPointSpace"); fi;
if k1 <> h1^r then Error("internal error: k1 <> h1^r"); fi;
tmp := h^((-r)*ordH/ordK) * k;
if IsOne( tmp ) then
gens := Concatenation( [h], gens{[3..Length(gens)]} );
else gens := Concatenation( [h, tmp], gens{[3..Length(gens)]} );
fi;
# Change generating set of this group:
MySetGeneratorsOfGroup( H, gens );
space := InvariantSubspaceOrCyclicGroup( H );
return space;
if IsVectorSpace(space) then return space;
else # else space is really a cyclic group.
SetIsCyclicWithSize( Horig, GeneratorOfCyclicGroup(space), Size(space) );
return Horig;
fi;
# return InvariantSubspaceOrCyclicGroup( AsSubgroup( H, Group(gens) ) );
end );
#############################################################################
##
#M InvariantSubspaceOrUniformCyclicPGroup( <G> )
##
## Matrix group is uniform if fixed point space of every element
## is either the trivial space or the entire space.
##
InstallMethod(InvariantSubspaceOrUniformCyclicPGroup, "for matrix group", true,
[IsFFEMatrixGroup], 0,
function( G )
local p, gens, g, space;
if not (IsFFEMatrixGroup and IsCyclic and IsPGroup) then
Error("implemented only for cyclic matrix p-groups");
fi;
p := PrimePGroup(G);
if p=fail then
# the group is trivial
SetIsUniformMatrixGroup( G, true );
return G;
fi;
if HasGeneratorOfCyclicGroup(G) then gens := [ GeneratorOfCyclicGroup(G) ];
else gens := GeneratorsOfGroup(G);
fi;
for g in gens do
if not IsOne(g) then
space := FixedPointSpace( g^(Order(g)/p) );
if space <> UnderlyingVectorSpace(g)
and Dimension(space) <> 0 then
return FixedPointSpace( g^(Order(g)/p) );
fi;
fi;
od;
SetIsUniformMatrixGroup( G, true );
return G;
end);
#############################################################################
##
#M SiftFunction( <> )
##
## For group of size $p^r$, performs in $r p$ multiplies and
## uses O(1) space. Alternative is $r\log p$ multiplies
## storing $r\log p$ matrices via Schreier tree.
## Comment below shows how to turn it into $r \log p$ multiplies
## while storing $\log p$ vectors.
##
InstallMethod( SiftFunction, "for cyclic matrix p-groups", true,
[ IsGroup and IsFFEMatrixGroup and IsCyclic and IsPGroup ], 0,
function( H )
local gens, cyclicGen, ordCyclicGen, p,
cyclicGen1, cyclicGen1inv, space,
underlyingVectorSpace, trivSpace, SiftFnc;
gens := Filtered( GeneratorsOfGroup(H), g -> not IsOne(g) );
if Length(gens) = 0 then return k -> k; fi;
cyclicGen := GeneratorOfCyclicGroup( H );
ordCyclicGen := Order( cyclicGen );
p := PrimePGroup( H );
underlyingVectorSpace := UnderlyingVectorSpace( H );
trivSpace := TrivialSubspace( underlyingVectorSpace );
#if not IsUniformMatrixGroup( H ) then Error("not uniform matrix grp"); fi;
cyclicGen1 := cyclicGen^(ordCyclicGen/p);
# space := FixedPointSpace( cyclicGen1 );
# if space = trivSpace then
# Error("cyclicGen is identity");
# elif space <> underlyingVectorSpace then
# Error("matrix group is not uniform");
# fi;
cyclicGen1inv := cyclicGen1^(-1);
# PRODUCE SIFT FUNCTION
SiftFnc := function( k )
local ordK, space, k1, tmp, r;
ordK := Order(k);
if ordK = 1 then return k; fi; # k is identity
if ordCyclicGen mod ordK <> 0 then return k; fi; # k not in group
k1 := k^(ordK/p);
tmp := k1;
# Saving image of base vector of < cyclicGen > would
# allow one to quickly find r. So, this part could
# use our Random Schreier Sims code.
for r in [0..p-1] do
if IsOne(tmp) then break; fi;
# NOW: tmp = cyclicGen1inv^r * k1
# space := FixedPointSpace( tmp );
# if space <> trivSpace then
# if space = underlyingVectorSpace then break;
# else return k; # H uniform. So tmp not in H
# fi;
# fi;
tmp := tmp * cyclicGen1inv;
od;
# if space = trivSpace then Error("cyclicGen1 is identity"); fi;
if not IsOne(tmp) then return k; fi;
# NOW: cyclicGen1^r = k1
tmp := cyclicGen^((-r)*ordCyclicGen/ordK) * k;
# NOW: Order(k)/Order(tmp) >= p
if IsOne(tmp) then return tmp;
else return SiftFnc(tmp);
fi;
end;
return SiftFnc;
end );
#############################################################################
#############################################################################
##
## Normal closure and Kernel of quotient group:
##
#############################################################################
#############################################################################
## Create normal closure with a chain.
NormalClosureByChain := function(grp, subgp)
local gens, h, g, count, tmp, x;
if IsTrivial(subgp) then return subgp; fi;
if IsAbelian(grp) then return subgp; fi;
# Take randomized generators of normal closure
subgp := SubgroupNC( grp,
List([1..5], i->RandomNormalSubproduct(grp,subgp)) );
#Test if subgp is cyclic:
# Routines about should be used to add more effic. method for IsCyclic(G)
# for GAP matrix groups.
# This part can be slow, because GAP may use NiceObject() to compute Size()
if HasSize(subgp) then
g := First( GeneratorsOfGroup(subgp), h->Order(h)=Size(subgp) );
else
#This part can be simplified when NiceObject() isn't default.
g := fail;
for x in GeneratorsOfGroup(subgp) do
tmp := Group([x]);
MakeHomChain(tmp);
if First(GeneratorsOfGroup(subgp), h->not IsOne(Sift(tmp,h)))
= fail then
g := x;
break;
fi;
od;
fi;
if g <> fail then SetGeneratorOfCyclicGroup( subgp, g ); fi;
# Form subgroup chain
MakeHomChain(subgp);
# Deterministically test it and extend it
gens := List(GeneratorsOfGroup(subgp));
for h in gens do
for g in GeneratorsOfGroup(grp) do
#Current GAP default for IN can call NiceObject()
if not IsOne(Sift(subgp,h^g)) then
# if not h^g in subgp then
Add( gens, h^g );
subgp := Group(gens);
MakeHomChain(subgp);
fi;
od;
od;
return subgp;
end;
#############################################################################
##
#M KernelOfHomQuotientGroup( <> )
##
##This should be generally useful in GAP. It finds the kernel of
## any homomorphism to an abelian group.
##
##This would be more efficient if we picked out a non-redundant
## (independent) generating set for the abelian group, and then
## used commutator relations on only those. GAP has function
## IndependentGeneratorsOfAbelianGroup() of unknown efficiency.
## Or, we could program it ourselves.
##
InstallMethod( KernelOfHomQuotientGroup,
"for abelian quotient group via presentation", true,
[ IsHomQuotientGroup and IsAbelian ], 0,
function( quo )
local indGenSet, gens, gens2, SiftFnc, hom, rels, srcGrp, kerGrp ;
# if IsQuotientToAdditiveGroup(quo) then
# indGenSet := BasisOfHomCosetAddMatrixGroup(quo);
# gens2 := indGenSet.basis;
# SiftFnc := SiftVector(indGenSet.basis);
# rels := indGenSet.residue;
# else Error("KernelOfMultiplicativeGeneralMapping() not implemented for this case.");
# fi;
# Append( rels, List( gens2, SiftFnc ) );
# If all source groups of quo are abelian, this is unnec.
# Append(rels, ListX( gens2, gens2,
# function(g1,g2) return Comm(g1,g2); end ) );
# if not ForAll(rels, IsOne) then
# Error("internal error: invalid relation of presentation");
# fi;
#gens := GeneratorsOfGroup(quo);
#rels := List( gens, g -> Sift(quo,g) );
#if not ForAll(rels, IsOne) then
# Error("internal error: invalid relation of presentation");
#fi;
#rels := List( rels, g -> SourceElt(quo,g) );
#gens2 := List( gens2, g->SourceElt(g) );
#Append(rels, ListX(gens2,gens2,function(g1,g2) return Comm(g1,g2);end));
IsPGroup( quo ); # Have GAP check this.
srcGrp := Source(Homomorphism(quo));
# TrivialQuotientSubgroup is where the presentations are formed.
kerGrp := TrivialQuotientSubgroup( quo );
# gdc - can't use Source(kerGrp) here. Note bug in quotientgp.gi
kerGrp := Group(List(GeneratorsOfGroup(kerGrp), g->SourceElt(g)));
kerGrp := NormalClosureByChain( srcGrp, kerGrp );
if not IsTrivial(kerGrp) then
kerGrp := Group( Filtered( GeneratorsOfGroup(kerGrp),
g -> not IsTrivialHomCoset(g) ) );
fi;
UseSubsetRelationNC(srcGrp,kerGrp);
hom := Homomorphism(quo);
SetKernelOfMultiplicativeGeneralMapping( hom, kerGrp );
if IsTrivial(kerGrp) then Info(InfoChain, 2,
" (kernel is trivial)\n");
fi;
if HasSize(kerGrp) and HasSize(srcGrp) and
Size(kerGrp) = Size(srcGrp) then
Error("internal error: kernel not smaller");
fi;
return kerGrp;
end );
## InstallMethod( KernelOfMultiplicativeGeneralMapping, "Monte Carlo algorithm for quotient group", true,
## [ IsTransvByHomomorphism ], 0,
## function( transv )
## local hom, G, i, gens;
## hom := Homomorphism(transv);
## G := Source( hom );
## gens := [];
## for i in [1..15] do # HACK
## Add(gens, SiftOneLevel( transv, PseudoRandom(G) ) );
## od;
## # ChainSubgroup(G) is already kernel of hom; Can set relations now.
## if not HasKernelOfMultiplicativeGeneralMapping(hom) then
## Error("internal error: missing kernel to hom");
## fi;
## MySetGeneratorsOfGroup( KernelOfMultiplicativeGeneralMapping(hom), gens );
## UseSubsetRelation( Source(hom), KernelOfMultiplicativeGeneralMapping(hom) );
## UseFactorRelation( Source(hom), KernelOfMultiplicativeGeneralMapping(hom), Image(hom) );
## UseIsomorphismRelation( Image(hom), QuotientGroup(transv) );
## return KernelOfMultiplicativeGeneralMapping(hom);
## end);
#############################################################################
#############################################################################
##
## Cyclic matrix p-groups:
## Exports: Size, IN, Random, Enumerator, Sift
## Internal: GeneratorOfCyclicGroup, TrivialQuotientSubgroup (presentation)
##
#############################################################################
#############################################################################
#GeneratorOfCyclicGroup() only implemented currently for cases
# needed by solmxgrp.gi; solmxgrp.gi purposely doesn't compute
# it in the general case --- because it is sometimes more efficient
# to find an invariant subspace and recurse.
CanFindGeneratorOfCyclicGroup := function(G)
if HasGeneratorOfCyclicGroup(G) then return true;
elif Length(GeneratorsOfGroup(G)) = 1 then return true;
elif IsFFEMatrixGroup(G) and HasIsCyclic(G) and IsCyclic(G) and
HasIsPGroup(G) and IsPGroup(G) and
IsUniformMatrixGroup(G) and IsNoncharacteristicMatrixPGroup(G) then
return true;
else return false;
fi;
end;
#############################################################################
##
#M Size( <G> )
##
InstallMethod( Size, "for cyclic matrix p-group", true,
[ IsFFEMatrixGroup and IsCyclic and IsPGroup ], NICE_FLAGS+10,
function (G)
if CanFindGeneratorOfCyclicGroup(G) then
return Order( GeneratorOfCyclicGroup( G ) );
else TryNextMethod(); return;
fi;
end );
InstallMethod( Size, "for cyclic 1-gen. group", true,
[ IsGroup and IsCyclic and HasGeneratorOfCyclicGroup ], NICE_FLAGS+10,
G -> Order( GeneratorOfCyclicGroup( G ) ) );
#############################################################################
##
#M Random( <G> )
##
InstallMethod( Random, "for cyclic matrix p-group", true,
[ IsFFEMatrixGroup and IsCyclic and IsPGroup ], 0,
function (G)
if CanFindGeneratorOfCyclicGroup(G) then
return GeneratorOfCyclicGroup( G )^Random([1..Size(G)]);
else return; TryNextMethod();
fi;
end );
#############################################################################
##
#M TrivialQuotientSubgroup( <G> )
##
## Works on any group, but IsOne(gen) for all generators, gen
## Useful for SourceElt(gen) if group is a quotient group.
##
InstallMethod( TrivialQuotientSubgroup,
"for cyclic matrix p-group via presentation (assuming sift fnc)", true,
[ IsFFEMatrixGroup and IsCyclic and IsPGroup ], 0,
G -> SubgroupNC( G,
# NOTE: Sift(G,g) = Sift(G)(g). Should pre-compute Sift(G).
Concatenation( List( GeneratorsOfGroup( G ), g->Sift(G,g) ),
# presentation for independent generators
[GeneratorOfCyclicGroup( G )^Size(G)] )));
#############################################################################
##
#M Enumerator( <G> )
##
InstallMethod( Enumerator, "for cyclic matrix p-group", true,
[ IsFFEMatrixGroup and IsCyclic and IsPGroup ], NICE_FLAGS,
function (G)
if CanFindGeneratorOfCyclicGroup(G) then
return List( [0..Size(G)-1], i->GeneratorOfCyclicGroup(G)^i );
else TryNextMethod(); return;
fi;
end );
#############################################################################
##
#M IN( <G> )
##
InstallMethod( IN, "for cyclic matrix p-group", true,
[ IsMultiplicativeElementWithInverse,
IsFFEMatrixGroup and IsCyclic and IsPGroup ], NICE_FLAGS,
function(g, G) return Sift(G, g) = One(G); end );
##
## These next two do all the real work:
##
#############################################################################
##
#M Sift( <G> )
##
InstallMethod( Sift, "for cyclic matrix p-group", true,
[ IsFFEMatrixGroup and IsCyclic and IsPGroup and HasGeneratorOfCyclicGroup,
IsMultiplicativeElementWithInverse ], 0,
function(G, g) return SiftFunction(G)(g); end );
#############################################################################
#############################################################################
##
## General abelian matrix group: (certain operations only)
##
#############################################################################
#############################################################################
## gens must be IndependentAbelianGenerators
EnumerateIndependentAbelianProducts := function( G, gens )
local first, rest;
if Length(gens) = 0 then return One(G); fi;
first := List( [0..Order(gens[1])-1], i->(gens[1])^i );
if Length(gens) = 1 then return first;
else
rest := EnumerateIndependentAbelianProducts
( G, gens{[2..Length(gens)]} );
return ListX( first, rest, function(h,g) return h*g; end );
fi;
end;
#############################################################################
##
#M Enumerator( <G> )
##
InstallMethod( Enumerator, "for quotient to additive group", true,
[ IsGroup and IsFFEMatrixGroup and IsQuotientToAdditiveGroup ],
2*SUM_FLAGS+46, # need to beat "system getter"
G -> EnumerateIndependentAbelianProducts
(G, BasisOfHomCosetAddMatrixGroup(G).basis) );
#############################################################################
##
#M Sift( <G>, <g> )
##
InstallMethod( Sift, "for quotient to additive group", true,
[ IsGroup and IsFFEMatrixGroup and IsQuotientToAdditiveGroup,
IsHomCosetToAdditiveElt ], 0,
function(G, g) return SiftFunction(G)(g); end );
#############################################################################
##
#M TrivialQuotientSubgroup( <G> )
##
## Works on any group, but primarily useful for quotient groups
## IsOne(gen) for all generators, gen,
## but SourceElt(gen) is non-trivial for a general quotient group.
##
InstallMethod( TrivialQuotientSubgroup,
"for abelian matrix group via presentation (assuming Sift fnc)", true,
[ IsFFEMatrixGroup and IsAbelian ], 0,
function(G)
local gens;
gens := IndependentGeneratorsOfAbelianMatrixGroup(G);
return SubgroupNC( G,
Concatenation( List( GeneratorsOfGroup(G), g->Sift(G,g) ),
# presentation for independent generators
List( gens, g->g^Order(g) ),
ListX( gens, gens,
function(g1,g2) return Comm(g1,g2); end )
));
end );
#############################################################################
#############################################################################
##
## Additive abelian group:
##
#############################################################################
#############################################################################
#############################################################################
##
#M TrivialQuotientSubgroup( <quo> )
##
InstallMethod( TrivialQuotientSubgroup,
"for additive quotient group via presentation", true,
[ IsQuotientToAdditiveGroup ], 0,
function( quo )
local indGenSet, gens, gens2, SiftFnc, hom, rels, srcGrp, kerGrp ;
if not ForAll(GeneratorsOfGroup(quo), g->ImageElm(Homomorphism(g),SourceElt(g))
= ImageElt(g)) then
Error("bad gens of grp");
fi;
indGenSet := BasisOfHomCosetAddMatrixGroup(quo);
gens2 := indGenSet.basis;
if not ForAll(gens2, g->ImageElm(Homomorphism(g),SourceElt(g))
= ImageElt(g)) then
Error("bad gens2");
fi;
SiftFnc := SiftVector(indGenSet.basis);
rels := indGenSet.residue;
if not IsMutable(rels) then rels := List(rels); fi;
if not ForAll(rels, g->ImageElm(Homomorphism(g),SourceElt(g))
= ImageElt(g)) then
Error("bad residue");
fi;
Append( rels, List( gens2, g -> g^Order(g) ) );
if not ForAll(rels, g->ImageElm(Homomorphism(g),SourceElt(g))
= ImageElt(g)) then
Error("bad order");
fi;
Append( rels, List( gens2, SiftFnc ) );
# If all source groups of quo are abelian, this is unnec.
Append(rels, ListX( gens2, gens2,
function(g1,g2) return Comm(g1,g2); end ) );
if not ForAll(rels, IsOne) then
Error("internal error: invalid relation of presentation");
fi;
return SubgroupNC(quo, rels);
end );
#############################################################################
#############################################################################
##
## Nilpotent matrix groups:
##
#############################################################################
#############################################################################
## Always try SizeUpperBound first.
#############################################################################
##
#M CanFindNilpotentClassTwoElement( <G> )
##
InstallMethod( CanFindNilpotentClassTwoElement, "compute elt or fail", true,
[ IsGroup ], 0,
function(G)
local gens, g, count, i;
gens := GeneratorsOfGroup( G );
g := First(gens, h -> not IsInCenter(G,h));
SetIsAbelian(G, g = fail);
if IsAbelian(G) then return false; fi;
# gdc -
# Want max. length derived series for _nilpotent_ group of a given size.
# There should be much better bound than LogInt(SizeUpperBound(G),2).
# I can look it up some other time.
for count in [1..LogInt(SizeUpperBound(G),2)] do
i := PositionProperty(gens, h -> not IsInCenter(G,Comm(g,h)));
if i = fail then
SetNilpotentClassTwoElement(G,g);
return true;
else g := Comm(g,gens[i]);
fi;
od;
return false;
end );
#############################################################################
##
#M NilpotentClassTwoElement( <G> )
##
InstallMethod( NilpotentClassTwoElement,
"by calling CanFindNilpotentClassTwoElement()", true, [ IsGroup ], 0,
function(G)
if CanFindNilpotentClassTwoElement(G) then
return NilpotentClassTwoElement(G);
else TryNextMethod(); return;
fi;
end );
#############################################################################
##
#F NaturalHomomorphismByNilpotentClassTwoElement( <G> )
##
InstallGlobalFunction( NaturalHomomorphismByNilpotentClassTwoElement,
function(G)
local elt;
elt := NilpotentClassTwoElement(G);
if elt = fail then return Error("abelian or not nilpotent"); fi;
return GroupHomomorphismByFunction
( G, Group( List( GeneratorsOfGroup(G), h->Comm(h,elt) ) ),
h->Comm(h,elt) );
end );
#############################################################################
##
#F ManageableQuotientOfNilpotentGroup( <G> )
##
ManageableQuotientOfNilpotentGroup := function( G )
local hom, quo;
hom := NaturalHomomorphismByNilpotentClassTwoElement(G);
ChainSubgroupByHomomorphism( hom );
quo := QuotientGroup(TransversalOfChainSubgroup(G));
IsAbelian(quo); # Tell GAP quo is abelian in case not propagated.
return quo;
end;
#############################################################################
##
#M MakeHomChain( <G> )
##
InstallMethod( MakeHomChain, "for nilpotent group", true,
[ IsGroup and IsNilpotentGroup ], 0,
function( G )
local quo, kernel;
if IsAbelian(G) then return MakeHomChain(G); fi;
quo := ManageableQuotientOfNilpotentGroup(G);
Info(InfoChain, 2, "Finding kernel of homomorphism by",
"nilpotent class 2 elt");
IsAbelian(quo); # Special Kernel method for abelian grp
MakeHomChain(quo);
# sets Kernel(Homomorphism(quo))
kernel := KernelOfHomQuotientGroup(quo);
# Now that we have the full kernel, make new ChainSubgroup(grp)
ChainSubgroupByHomomorphism( Homomorphism(quo) );
if IsTrivial(kernel) then return kernel;
else return MakeHomChain( kernel );
fi;
end );
#E
|