/usr/share/gap/lib/stbc.gd is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 | #############################################################################
##
#W stbc.gd GAP library Heiko Theißen
#W Ákos Seress
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
#############################################################################
##
#F StabChain( <G>[, <options>] )
#F StabChain( <G>, <base> )
#O StabChainOp( <G>, <options> )
#A StabChainMutable( <G> )
#A StabChainMutable( <permhomom> )
#A StabChainImmutable( <G> )
##
## <#GAPDoc Label="StabChain">
## <ManSection>
## <Func Name="StabChain" Arg='G[, options]'
## Label="for a group (and a record)"/>
## <Func Name="StabChain" Arg='G, base'
## Label="for a group and a base"/>
## <Oper Name="StabChainOp" Arg='G, options'/>
## <Attr Name="StabChainMutable" Arg='G'
## Label="for a group"/>
## <Attr Name="StabChainMutable" Arg='permhomom'
## Label="for a homomorphism"/>
## <Attr Name="StabChainImmutable" Arg='G'/>
##
## <Description>
## These commands compute a stabilizer chain for the permutation group
## <A>G</A>;
## additionally, <Ref Attr="StabChainMutable" Label="for a homomorphism"/>
## is also an attribute for the group homomorphism <A>permhomom</A>
## whose source is a permutation group.
## <P/>
## (The mathematical background of stabilizer chains is sketched
## in <Ref Sect="Stabilizer Chains"/>,
## more information about the objects representing stabilizer chains
## in &GAP; can be found in <Ref Sect="Stabilizer Chain Records"/>.)
## <P/>
## <Ref Oper="StabChainOp"/> is an operation with two arguments <A>G</A> and
## <A>options</A>,
## the latter being a record which controls some aspects of the computation
## of a stabilizer chain (see below);
## <Ref Oper="StabChainOp"/> returns a <E>mutable</E> stabilizer chain.
## <Ref Attr="StabChainMutable" Label="for a group"/> is a <E>mutable</E>
## attribute for groups or homomorphisms,
## its default method for groups is to call <Ref Oper="StabChainOp"/> with
## empty options record.
## <Ref Attr="StabChainImmutable"/> is an attribute with <E>immutable</E>
## values;
## its default method dispatches to
## <Ref Attr="StabChainMutable" Label="for a group"/>.
## <P/>
## <Ref Func="StabChain" Label="for a group (and a record)"/> is a function
## with first argument a permutation group <A>G</A>,
## and optionally a record <A>options</A> as second argument.
## If the value of <Ref Attr="StabChainImmutable"/> for <A>G</A>
## is already known and if this stabilizer chain matches the requirements
## of <A>options</A>,
## <Ref Func="StabChain" Label="for a group (and a record)"/> simply returns
## this stored stabilizer chain.
## Otherwise <Ref Func="StabChain" Label="for a group (and a record)"/>
## calls <Ref Oper="StabChainOp"/> and returns an immutable copy of the
## result;
## additionally, this chain is stored as <Ref Attr="StabChainImmutable"/>
## value for <A>G</A>.
## If no <A>options</A> argument is given, its components default
## to the global variable <Ref Var="DefaultStabChainOptions"/>.
## If <A>base</A> is a list of positive integers,
## the version <C>StabChain( <A>G</A>, <A>base</A> )</C> defaults to
## <C>StabChain( <A>G</A>, rec( base:= <A>base</A> ) )</C>.
## <P/>
## If given, <A>options</A> is a record whose components specify properties
## of the desired stabilizer chain or which may help the algorithm.
## Default values for all of them can be given in the global variable
## <Ref Var="DefaultStabChainOptions"/>.
## The following options are supported.
## <List>
## <Mark><C>base</C> (default an empty list)</Mark>
## <Item>
## A list of points, through which the resulting stabilizer chain
## shall run.
## For the base <M>B</M> of the resulting stabilizer chain <A>S</A>
## this means the following.
## If the <C>reduced</C> component of <A>options</A> is <K>true</K> then
## those points of <C>base</C> with nontrivial basic orbits form the
## initial segment of <M>B</M>, if the <C>reduced</C> component is
## <K>false</K> then <C>base</C> itself is the initial segment of
## <M>B</M>.
## Repeated occurrences of points in <C>base</C> are ignored.
## If a stabilizer chain for <A>G</A> is already known then the
## stabilizer chain is computed via a base change.
## </Item>
## <Mark><C>knownBase</C> (no default value)</Mark>
## <Item>
## A list of points which is known to be a base for the group.
## Such a known base makes it easier to test whether a permutation
## given as a word in terms of a set of generators is the identity,
## since it suffices to map the known base with each factor
## consecutively, rather than multiplying the whole permutations
## (which would mean to map every point).
## This speeds up the Schreier-Sims algorithm which is used when a new
## stabilizer chain is constructed;
## it will not affect a base change, however.
## The component <C>knownBase</C> bears no relation to the <C>base</C>
## component, you may specify a known base <C>knownBase</C> and a
## desired base <C>base</C> independently.
## </Item>
## <Mark><C>reduced</C> (default <K>true</K>)</Mark>
## <Item>
## If this is <K>true</K> the resulting stabilizer chain <A>S</A> is
## reduced, i.e., the case <M>G^{(i)} = G^{(i+1)}</M> does not occur.
## Setting <C>reduced</C> to <K>false</K> makes sense only if
## the component <C>base</C> (see above) is also set;
## in this case all points of <C>base</C> will occur in the base
## <M>B</M> of <A>S</A>, even if they have trivial basic orbits.
## Note that if <C>base</C> is just an initial segment of <M>B</M>,
## the basic orbits of the points in <M>B \setminus </M><C>base</C>
## are always nontrivial.
## </Item>
## <Mark><C>tryPcgs</C> (default <K>true</K>)</Mark>
## <Item>
## If this is <K>true</K> and either the degree is at most <M>100</M>
## or the group is known to be solvable, &GAP; will first try to
## construct a pcgs (see Chapter <Ref Chap="Polycyclic Groups"/>)
## for <A>G</A> which will succeed and implicitly construct a
## stabilizer chain if <A>G</A> is solvable.
## If <A>G</A> turns out non-solvable, one of the other methods will be
## used.
## This solvability check is comparatively fast, even if it fails,
## and it can save a lot of time if <A>G</A> is solvable.
## </Item>
## <Mark><C>random</C> (default <C>1000</C>)</Mark>
## <Item>
## If the value is less than <M>1000</M>,
## the resulting chain is correct with probability
## at least <C>random</C><M> / 1000</M>.
## The <C>random</C> option is explained in more detail
## in <Ref Sect="Randomized Methods for Permutation Groups"/>.
## </Item>
## <Mark><C>size</C> (default <C>Size(<A>G</A>)</C> if this is known,
## i.e., if <C>HasSize(<A>G</A>)</C> is <K>true</K>)</Mark>
## <Item>
## If this component is present, its value is assumed to be the order
## of the group <A>G</A>.
## This information can be used to prove that a non-deterministically
## constructed stabilizer chain is correct.
## In this case, &GAP; does a non-deterministic construction until the
## size is correct.
## </Item>
## <Mark><C>limit</C> (default <C>Size(Parent(<A>G</A>))</C> or
## <C>StabChainOptions(Parent(<A>G</A>)).limit</C>
## if it is present)</Mark>
## <Item>
## If this component is present, it must be greater than or equal to
## the order of <A>G</A>.
## The stabilizer chain construction stops if size <C>limit</C> is
## reached.
## </Item>
## </List>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "StabChain" );
DeclareOperation( "StabChainOp", [ IsGroup, IsRecord ] );
DeclareAttribute( "StabChainMutable", IsObject, "mutable" );
DeclareAttribute( "StabChainImmutable", IsObject );
#############################################################################
##
#A StabChainOptions( <G> )
##
## <#GAPDoc Label="StabChainOptions">
## <ManSection>
## <Attr Name="StabChainOptions" Arg='G'/>
##
## <Description>
## is a record that stores the options with which the stabilizer chain
## stored in <Ref Attr="StabChainImmutable"/> has been computed
## (see <Ref Func="StabChain" Label="for a group (and a record)"/>
## for the options that are supported).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "StabChainOptions", IsPermGroup, "mutable" );
#############################################################################
##
#V DefaultStabChainOptions
##
## <#GAPDoc Label="DefaultStabChainOptions">
## <ManSection>
## <Var Name="DefaultStabChainOptions"/>
##
## <Description>
## are the options for
## <Ref Func="StabChain" Label="for a group (and a record)"/> which are set
## as default.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalVariable( "DefaultStabChainOptions",
"default options for stabilizer chain calculations" );
#############################################################################
##
#F StabChainBaseStrongGenerators( <base>, <sgs>, <one> )
##
## <#GAPDoc Label="StabChainBaseStrongGenerators">
## <ManSection>
## <Func Name="StabChainBaseStrongGenerators" Arg='base, sgs, one'/>
##
## <Description>
## Let <A>base</A> be a base for a permutation group <M>G</M>, and let
## <A>sgs</A> be a strong generating set for <M>G</M> with respect to
## <A>base</A>; <A>one</A> must be the appropriate identity element of
## <M>G</M> (see <Ref Oper="One"/>, in most cases this will be <C>()</C>).
## This function constructs a stabilizer chain without the need to find
## Schreier generators;
## so this is much faster than the other algorithms.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "StabChainBaseStrongGenerators" );
#############################################################################
##
#F CopyStabChain( <S> )
##
## <#GAPDoc Label="CopyStabChain">
## <ManSection>
## <Func Name="CopyStabChain" Arg='S'/>
##
## <Description>
## This function returns a copy of the stabilizer chain <A>S</A>
## that has no mutable object (list or record) in common with <A>S</A>.
## The <C>labels</C> components of the result are possibly shared by several
## levels, but superfluous labels are removed.
## (An entry in <C>labels</C> is superfluous if it does not occur among the
## <C>genlabels</C> or <C>translabels</C> on any of the levels which share
## that <C>labels</C> component.)
## <P/>
## This is useful for stabiliser sub-chains that have been obtained as
## the (iterated) <C>stabilizer</C> component of a bigger chain.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "CopyStabChain" );
#############################################################################
##
#F CopyOptionsDefaults( <G>, <options> ) . . . . . . . copy options defaults
##
## <#GAPDoc Label="CopyOptionsDefaults">
## <ManSection>
## <Func Name="CopyOptionsDefaults" Arg='G, options'/>
##
## <Description>
## sets components in a stabilizer chain options record <A>options</A>
## according to what is known about the group <A>G</A>.
## This can be used to obtain a new stabilizer chain for <A>G</A> quickly.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "CopyOptionsDefaults" );
#############################################################################
##
#F BaseStabChain( <S> )
##
## <#GAPDoc Label="BaseStabChain">
## <ManSection>
## <Func Name="BaseStabChain" Arg='S'/>
##
## <Description>
## returns the base belonging to the stabilizer chain <A>S</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "BaseStabChain" );
#############################################################################
##
#A BaseOfGroup( <G> )
##
## <#GAPDoc Label="BaseOfGroup">
## <ManSection>
## <Attr Name="BaseOfGroup" Arg='G'/>
##
## <Description>
## returns a base of the permutation group <A>G</A>.
## There is <E>no</E> guarantee that a stabilizer chain stored in <A>G</A>
## corresponds to this base!
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "BaseOfGroup", IsPermGroup );
#############################################################################
##
#F SizeStabChain( <S> )
##
## <#GAPDoc Label="SizeStabChain">
## <ManSection>
## <Func Name="SizeStabChain" Arg='S'/>
##
## <Description>
## returns the product of the orbit lengths in the stabilizer chain
## <A>S</A>, that is, the order of the group described by <A>S</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "SizeStabChain" );
#############################################################################
##
#F StrongGeneratorsStabChain( <S> )
##
## <#GAPDoc Label="StrongGeneratorsStabChain">
## <ManSection>
## <Func Name="StrongGeneratorsStabChain" Arg='S'/>
##
## <Description>
## returns a strong generating set corresponding to the stabilizer chain
## <A>S</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "StrongGeneratorsStabChain" );
#############################################################################
##
#F GroupStabChain([<G>,] <S> )
##
## <#GAPDoc Label="GroupStabChain">
## <ManSection>
## <Func Name="GroupStabChain" Arg='[G,] S'/>
##
## <Description>
## constructs a permutation group with stabilizer chain <A>S</A>, i.e.,
## a group with generators <C>Generators( <A>S</A> )</C> to which <A>S</A>
## is assigned as component <C>stabChain</C>.
## If the optional argument <A>G</A> is given, the result will have the
## parent <A>G</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "GroupStabChain" );
#############################################################################
##
#F IndicesStabChain( <S> )
##
## <#GAPDoc Label="IndicesStabChain">
## <ManSection>
## <Func Name="IndicesStabChain" Arg='S'/>
##
## <Description>
## returns a list of the indices of the stabilizers in the stabilizer
## chain <A>S</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "IndicesStabChain" );
#############################################################################
##
#F ListStabChain( <S> )
##
## <#GAPDoc Label="ListStabChain">
## <ManSection>
## <Func Name="ListStabChain" Arg='S'/>
##
## <Description>
## returns a list that contains at position <M>i</M> the stabilizer of the
## first <M>i-1</M> base points in the stabilizer chain <A>S</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "ListStabChain" );
#############################################################################
##
#F OrbitStabChain( <S>, <pnt> )
##
## <#GAPDoc Label="OrbitStabChain">
## <ManSection>
## <Func Name="OrbitStabChain" Arg='S, pnt'/>
##
## <Description>
## returns the orbit of <A>pnt</A> under the group described by the
## stabilizer chain <A>S</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "OrbitStabChain" );
#############################################################################
##
#F ElementsStabChain( <S> )
##
## <#GAPDoc Label="ElementsStabChain">
## <ManSection>
## <Func Name="ElementsStabChain" Arg='S'/>
##
## <Description>
## returns a list of all elements of the group described by the stabilizer
## chain <A>S</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "ElementsStabChain" );
#############################################################################
##
#A MinimalStabChain(<G>)
##
## <#GAPDoc Label="MinimalStabChain">
## <ManSection>
## <Attr Name="MinimalStabChain" Arg='G'/>
##
## <Description>
## returns the reduced stabilizer chain corresponding to the base
## <M>[ 1, 2, 3, 4, \ldots ]</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "MinimalStabChain", IsPermGroup );
#############################################################################
##
#F ChangeStabChain( <S>, <base>[, <reduced>] )
##
## <#GAPDoc Label="ChangeStabChain">
## <ManSection>
## <Func Name="ChangeStabChain" Arg='S, base[, reduced]'/>
##
## <Description>
## changes or reduces a stabilizer chain <A>S</A> to be adapted to the base
## <A>base</A>.
## The optional argument <A>reduced</A> is interpreted as follows.
## <List>
## <Mark><C>reduced = </C><K>false</K> : </Mark>
## <Item>
## change the stabilizer chain, do not reduce it,
## </Item>
## <Mark><C>reduced = </C><K>true</K> : </Mark>
## <Item>
## change the stabilizer chain, reduce it.
## </Item>
## </List>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "ChangeStabChain" );
#############################################################################
##
#F ExtendStabChain( <S>, <base> )
##
## <#GAPDoc Label="ExtendStabChain">
## <ManSection>
## <Func Name="ExtendStabChain" Arg='S, base'/>
##
## <Description>
## extends the stabilizer chain <A>S</A> so that it corresponds to base
## <A>base</A>.
## The original base of <A>S</A> must be a subset of <A>base</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "ExtendStabChain" );
#############################################################################
##
#F ReduceStabChain( <S> )
##
## <#GAPDoc Label="ReduceStabChain">
## <ManSection>
## <Func Name="ReduceStabChain" Arg='S'/>
##
## <Description>
## changes the stabilizer chain <A>S</A> to a reduced stabilizer chain by
## eliminating trivial steps.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "ReduceStabChain" );
#############################################################################
##
#F EmptyStabChain( <labels>, <id>[, <pnt>] )
##
## <#GAPDoc Label="EmptyStabChain">
## <ManSection>
## <Func Name="EmptyStabChain" Arg='labels, id[, pnt]'/>
##
## <Description>
## constructs a stabilizer chain for the trivial group with
## <C>identity</C> value equal to<A>id</A> and
## <C>labels = </C><M>\{ <A>id</A> \} \cup</M> <A>labels</A>
## (but of course with <C>genlabels</C> and <C>generators</C> values an
## empty list).
## If the optional third argument <A>pnt</A> is present, the only stabilizer
## of the chain is initialized with the one-point basic orbit
## <C>[ <A>pnt</A> ]</C> and with <C>translabels</C> and <C>transversal</C>
## components.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "EmptyStabChain" );
#############################################################################
##
#F ConjugateStabChain( <S>, <T>, <hom>, <map>[, <cond>] )
##
## <ManSection>
## <Func Name="ConjugateStabChain" Arg='S, T, hom, map[, cond]'/>
##
## <Description>
## conjugates the stabilizer chain <A>S</A>.
## If given, <A>cond</A> is a function that determines for a stabilizer
## record whether the recursion should continue for this record.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "ConjugateStabChain" );
#############################################################################
##
#F RemoveStabChain( <S> )
##
## <#GAPDoc Label="RemoveStabChain">
## <ManSection>
## <Func Name="RemoveStabChain" Arg='S'/>
##
## <Description>
## <A>S</A> must be a stabilizer record in a stabilizer chain.
## This chain then is cut off at <A>S</A> by changing the entries in
## <A>S</A>. This can be used to remove trailing trivial steps.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "RemoveStabChain" );
#############################################################################
##
#F TrimStabChain( <S>, <n> )
##
## <ManSection>
## <Func Name="TrimStabChain" Arg='S, n'/>
##
## <Description>
## This function trims all permutations in the stabilizer chain <A>S</A> to
## degree at most <A>n</A> (to save memory).
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "TrimStabChain" );
DeclareOperation( "MembershipTestKnownBase", [ IsRecord, IsList, IsList ] );
#############################################################################
##
#F SiftedPermutation( <S>, <g> )
##
## <#GAPDoc Label="SiftedPermutation">
## <ManSection>
## <Func Name="SiftedPermutation" Arg='S, g'/>
##
## <Description>
## sifts the permutation <A>g</A> through the stabilizer chain <A>S</A>
## and returns the result after the last step.
## <P/>
## The element <A>g</A> is sifted as follows: <A>g</A> is replaced by
## <C><A>g</A>
## * InverseRepresentative( <A>S</A>, <A>S</A>.orbit[1]^<A>g</A> )</C>,
## then <A>S</A> is replaced by <C><A>S</A>.stabilizer</C> and this process
## is repeated until <A>S</A> is trivial
## or <C><A>S</A>.orbit[1]^<A>g</A></C> is not in the basic orbit
## <C><A>S</A>.orbit</C>.
## The remainder <A>g</A> is returned, it is the identity permutation if and
## only if the original <A>g</A> is in the group <M>G</M> described by
## the original <A>S</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "SiftedPermutation" );
#############################################################################
##
#F MinimalElementCosetStabChain( <S>, <g> )
##
## <#GAPDoc Label="MinimalElementCosetStabChain">
## <ManSection>
## <Func Name="MinimalElementCosetStabChain" Arg='S, g'/>
##
## <Description>
## Let <M>G</M> be the group described by the stabilizer chain <A>S</A>.
## This function returns a permutation <M>h</M> such that
## <M>G <A>g</A> = G h</M>
## (that is, <M><A>g</A> / h \in G</M>) and with the additional property that
## the list of images under <M>h</M> of the base belonging to <A>S</A> is
## minimal w.r.t. lexicographical ordering.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "MinimalElementCosetStabChain" );
#############################################################################
##
#F SCMinSmaGens(<G>,<S>,<emptyset>,<identity element>,<flag>)
##
## <ManSection>
## <Func Name="SCMinSmaGens" Arg='G,S,emptyset,identity element,flag'/>
##
## <Description>
## This function computes a stabilizer chain for a minimal base image and
## a smallest generating set w.r.t. this base for a permutation
## group.
## <P/>
## <A>G</A> must be a permutation group and <A>S</A> a mutable stabilizer
## chain for <A>G</A> that defines a base <A>bas</A>.
## Let <A>mbas</A> the smallest image (OnTuples) of <A>G</A>.
## Then this operation changes <A>S</A> to a stabilizer chain w.r.t.
## <A>mbas</A>.
## The arguments <A>emptyset</A> and <A>identity element</A> are needed
## only for the recursion.
## <P/>
## The function returns a record whose component <C>gens</C> is a list whose
## first element is the smallest element w.r.t. <A>bas</A>
## (i.e. an element which maps <A>bas</A> to <A>mbas</A>).
## If <A>flag</A> is <K>true</K>, <C>gens</C> is the smallest generating set
## w.r.t. <A>bas</A>.
## (If <A>flag</A> is <K>false</K> this will not be computed.)
## </Description>
## </ManSection>
##
DeclareGlobalFunction("SCMinSmaGens");
#############################################################################
##
#F LargestElementStabChain( <S>, <id> )
##
## <#GAPDoc Label="LargestElementStabChain">
## <ManSection>
## <Func Name="LargestElementStabChain" Arg='S, id'/>
##
## <Description>
## Let <M>G</M> be the group described by the stabilizer chain <A>S</A>.
## This function returns the element <M>h \in G</M> with the property that
## the list of images under <M>h</M> of the base belonging to <A>S</A> is
## maximal w.r.t. lexicographical ordering.
## The second argument must be an identity element (used to start the
## recursion).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "LargestElementStabChain" );
DeclareCategory( "IsPermOnEnumerator",
IsMultiplicativeElementWithInverse and IsPerm );
DeclareOperation( "PermOnEnumerator", [ IsList, IsObject ] );
DeclareGlobalFunction( "DepthSchreierTrees" );
#############################################################################
##
#F AddGeneratorsExtendSchreierTree( <S>, <new> )
##
## <#GAPDoc Label="AddGeneratorsExtendSchreierTree">
## <ManSection>
## <Func Name="AddGeneratorsExtendSchreierTree" Arg='S, new'/>
##
## <Description>
## adds the elements in <A>new</A> to the list of generators of <A>S</A>
## and at the same time extends the orbit and transversal.
## This is the only legal way to extend a Schreier tree
## (because this involves careful handling of the tree components).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "AddGeneratorsExtendSchreierTree" );
DeclareGlobalFunction( "ChooseNextBasePoint" );
DeclareGlobalFunction( "StabChainStrong" );
DeclareGlobalFunction( "StabChainForcePoint" );
DeclareGlobalFunction( "StabChainSwap" );
DeclareGlobalFunction( "LabsLims" );
#############################################################################
##
#F InsertTrivialStabilizer( <S>, <pnt> )
##
## <#GAPDoc Label="InsertTrivialStabilizer">
## <ManSection>
## <Func Name="InsertTrivialStabilizer" Arg='S, pnt'/>
##
## <Description>
## <Ref Func="InsertTrivialStabilizer"/> initializes the current stabilizer
## with <A>pnt</A> as <Ref Func="EmptyStabChain"/> did,
## but assigns the original <A>S</A> to the new
## <C><A>S</A>.stabilizer</C> component, such that a new level with trivial
## basic orbit (but identical <C>labels</C> and <C>ShallowCopy</C>ed
## <C>genlabels</C> and <C>generators</C>) is inserted.
## This function should be used only if <A>pnt</A> really is fixed by the
## generators of <A>S</A>, because then new generators can be added and the
## orbit and transversal at the same time extended with
## <Ref Func="AddGeneratorsExtendSchreierTree"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "InsertTrivialStabilizer" );
DeclareGlobalFunction( "InitializeSchreierTree" );
DeclareGlobalFunction( "BasePoint" );
DeclareGlobalFunction( "IsInBasicOrbit" );
#############################################################################
##
#F IsFixedStabilizer( <S>, <pnt> )
##
## <#GAPDoc Label="IsFixedStabilizer">
## <ManSection>
## <Func Name="IsFixedStabilizer" Arg='S, pnt'/>
##
## <Description>
## returns <K>true</K> if <A>pnt</A> is fixed by all generators of <A>S</A>
## and <K>false</K> otherwise.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "IsFixedStabilizer" );
#############################################################################
##
#F InverseRepresentative( <S>, <pnt> )
##
## <#GAPDoc Label="InverseRepresentative">
## <ManSection>
## <Func Name="InverseRepresentative" Arg='S, pnt'/>
##
## <Description>
## calculates the transversal element which maps <A>pnt</A> back to the base
## point of <A>S</A>. It just runs back through the Schreier tree from
## <A>pnt</A> to the root and multiplies the labels along the way.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "InverseRepresentative" );
DeclareGlobalFunction( "QuickInverseRepresentative" );
DeclareGlobalFunction( "InverseRepresentativeWord" );
DeclareGlobalFunction( "StabChainRandomPermGroup" );
DeclareGlobalFunction( "SCRMakeStabStrong" );
DeclareGlobalFunction( "SCRStrongGenTest" );
DeclareGlobalFunction( "SCRSift" );
DeclareGlobalFunction( "SCRStrongGenTest2" );
DeclareGlobalFunction( "SCRNotice" );
DeclareGlobalFunction( "SCRExtend" );
DeclareGlobalFunction( "SCRSchTree" );
DeclareGlobalFunction( "SCRRandomPerm" );
DeclareGlobalFunction( "SCRRandomString" );
DeclareGlobalFunction( "SCRRandomSubproduct" );
DeclareGlobalFunction( "SCRExtendRecord" );
DeclareGlobalFunction( "SCRRestoredRecord" );
DeclareGlobalFunction( "VerifyStabilizer" );
DeclareGlobalFunction( "VerifySGS" );
DeclareGlobalFunction( "ExtensionOnBlocks" );
DeclareGlobalFunction( "ClosureRandomPermGroup" );
#############################################################################
##
#E
|