/usr/share/gap/lib/stbc.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 | #############################################################################
##
#W stbc.gi GAP library Heiko Theißen
#W Ákos Seress
##
##
#Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
#############################################################################
##
#F StabChain( <G>, <options> ) . . . . . . . . . . . . make stabilizer chain
##
InstallGlobalFunction( StabChain, function( arg )
if Length( arg ) = 1 then
return StabChainImmutable( arg[ 1 ] );
else
return Immutable( StabChainOp( arg[ 1 ], arg[ 2 ] ) );
fi;
end );
InstallMethod( StabChainImmutable,"use StabChainMutable",
true, [ IsObject ], 0, StabChainMutable );
InstallMethod( StabChainMutable,"call StabChainOp", true, [ IsGroup ], 0,
G -> StabChainOp( G, rec( ) ) );
InstallOtherMethod( StabChainOp,"with base", true, [ IsPermGroup,
IsList and IsCyclotomicCollection ], 0,
function( G, base )
return StabChainOp( G, rec( base := base ) );
end );
InstallOtherMethod( StabChainOp,"empty base", true,
[ IsPermGroup, IsList and IsEmpty ], 0,
function( G, base )
return StabChainOp( G, rec( base := base ) );
end );
InstallMethod( StabChainOp,"trivial group",
[ IsPermGroup and IsTrivial, IsRecord ],
function( G, options )
local S, T, pnt;
S := EmptyStabChain( [ ], One( G ) );
if IsBound( options.base )
and ( IsBound( options.reduced )
and not options.reduced
or not IsBound( options.reduced )
and not DefaultStabChainOptions.reduced ) then
T := S;
for pnt in options.base do
InsertTrivialStabilizer( T, pnt );
T := T.stabilizer;
od;
fi;
return S;
end );
InstallMethod( StabChainOp,"group and option",
[ IsPermGroup, IsRecord ],
function( G, options )
local S, T, degree, pcgs;
# If a stabilizer chain <S> is already known, modify it.
if HasStabChainMutable( G ) then
S := StructuralCopy( StabChainMutable( G ) );
if IsBound( options.base ) then
if not IsBound( options.reduced ) then
options.reduced := DefaultStabChainOptions.reduced;
fi;
if not ChangeStabChain( S, options.base, options.reduced )
then
return false;
fi;
elif IsBound( options.reduced ) and options.reduced then
ReduceStabChain( S );
fi;
# Otherwise construct a new GAP object <S>.
else
CopyOptionsDefaults( G, options );
# For solvable groups, use the pcgs algorithm.
pcgs := [ ];
if options.tryPcgs and (not IsBound(options.base))
and (# the group is know to be solvable
(HasIsSolvableGroup(G) and IsSolvableGroup(G))
# or the degree is small and the group is not known to be
# insolvable
or (Length(MovedPoints(G))<=100 and not
(HasIsSolvableGroup(G) and not IsSolvableGroup(G))
)) then
S := EmptyStabChain( [ ], One( G ) );
if IsBound( options.base ) then S.base := options.base;
else S.base := [ ]; fi;
if HasPcgs(G) and IsBound(Pcgs(G)!.stabChain) then
# is there already a pcgs with a stabchain?
# the translation to a record is necessary to be able to copy
# the stab chain.
pcgs:=rec(stabChain:=CopyStabChain(Pcgs(G)!.stabChain));
else
pcgs := TryPcgsPermGroup( [ G, GroupStabChain( G, S, true ) ],
# get the series elementary abelian -- its much
# better
false, false, true );
fi;
fi;
if IsPcgs( pcgs ) then
options.random := 1000;
S := pcgs!.stabChain;
if not HasPcgs(G) then
# remember the pcgs
SetPcgs(G,pcgs);
SetPcgsElementaryAbelianSeries(G,pcgs);
S := CopyStabChain(S); # keep the pcgs' pristine stabchain
if IsBound(options.base) then
ChangeStabChain( S, options.base, options.reduced );
fi;
fi;
elif IsRecord(pcgs) then
S:=pcgs.stabChain;
if IsBound(options.base) then
ChangeStabChain( S, options.base, options.reduced );
fi;
else
degree := LargestMovedPoint( G );
if degree > 100 then
# random Schreier-Sims
S := StabChainRandomPermGroup(
ShallowCopy( GeneratorsOfGroup( G ) ), One( G ),
options );
else
# ordinary Schreier Sims
S := EmptyStabChain( [ ], One( G ) );
Unbind( S.generators );
if not IsTrivial( G ) then
if not IsBound( options.base ) then
options.base := [ ];
fi;
S.cycles := [ ];
StabChainStrong( S, GeneratorsOfGroup( G ), options );
T := S;
while IsBound( T.stabilizer ) do
T.generators := T.labels{ T.genlabels };
Unbind( T.cycles );
T := T.stabilizer;
od;
T.generators := T.labels{ T.genlabels };
Unbind( T.cycles );
else
S.generators:=[];
fi;
fi; # random / deterministic
fi;
# Now extend <S>, if desired.
if not options.reduced and IsBound( options.base ) then
ExtendStabChain( S, options.base );
fi;
fi;
# if the parent is random, this group should be also
# at base change or strong gens constr, may be no info about random
if IsBound( options.random ) then
if IsBound( StabChainOptions( Parent( G ) ).random ) then
options.random := Minimum( StabChainOptions( Parent( G ) ).random,
options.random );
fi;
StabChainOptions( G ).random := options.random;
fi;
SetStabChainMutable( G, S );
return S;
end );
#############################################################################
##
#F TrimStabChain( <C>,<n> )
##
##
InstallGlobalFunction(TrimStabChain,function( C,n )
local i;
# typically all permutations in a stabilizer chain are just links to the
# `labels' component. Thus reducing here will make them all small.
for i in C.labels do
if IsInternalRep(i) then
TRIM_PERM(i,n);
fi;
od;
end);
#############################################################################
##
#F CopyStabChain( <C> ) . . . . . . . . . . . . . . . . . . . copy function
##
## This function produces a memory-disjoint copy of a stabilizer chain, with
## `labels' components possibly shared by several levels, but with
## superfluous labels removed. An entry in `labels' is superfluous if it
## does not occur among the `genlabels' or `translabels' on any of the
## levels which share that `labels' component.
##
## This is useful for stabiliser sub-chains that have been obtained as the
## (iterated) `stabilizer' component of a bigger chain.
##
InstallGlobalFunction(CopyStabChain,function( C1 )
local C,Xlabels, S, len, xlab, need, poss, i;
# To begin with, make a deep copy.
C := StructuralCopy( C1 );
# First pass: Collect the necessary genlabels.
Xlabels := [ ];
S := C;
while IsBound( S.stabilizer ) do
len := Length( S.labels );
if len = 0 or IsPerm( S.labels[ len ] ) then
Add( S.labels, [ 1 ] ); len := len + 1;
Add( Xlabels, S.labels );
fi;
UniteSet( S.labels[ len ], S.genlabels );
UniteSet( S.labels[ len ], S.translabels );
S := S.stabilizer;
od;
# Second pass: Find the new positions of the labels.
for xlab in Xlabels do
need := xlab[ Length( xlab ) ];
# If all labels are needed, change nothing.
if Length( need ) = Length( xlab ) - 1 then
Unbind( xlab[ Length( xlab ) ] );
else
poss := [ ];
for i in [ 1 .. Length( need ) ] do
poss[ need[ i ] ] := i;
od;
Add( xlab, poss );
fi;
od;
# Third pass: Update the genlabels and translabels.
S := C;
while IsBound( S.stabilizer ) do
len := Length( S.labels );
if len <> 0 and not IsPerm( S.labels[ len ] ) then
poss := S.labels[ len ];
S.genlabels := poss{ S.genlabels };
S.translabels{ S.orbit } := poss{ S.translabels{ S.orbit } };
fi;
S := S.stabilizer;
od;
# Fourth pass: Update the labels.
for xlab in Xlabels do
len := Length( xlab );
if len <> 0 and not IsPerm( xlab[ len ] ) then
need := xlab[ Length( xlab ) - 1 ];
xlab{ [ 1 .. Length( need ) ] } := xlab{ need };
for i in [ Length( need ) + 1 .. Length( xlab ) ] do
Unbind( xlab[ i ] );
od;
fi;
od;
return C;
end);
#############################################################################
##
#M StabChainOptions( <G> ) . . . . . . . . . . . . . for a permutation group
##
InstallMethod( StabChainOptions, true, [ IsPermGroup ], 0,
G -> rec( ) );
#############################################################################
##
#V DefaultStabChainOptions . . . . . . options record for stabilizer chains
##
InstallValue( DefaultStabChainOptions,rec( reduced := true,
random := 1000,
tryPcgs := true ));
#############################################################################
##
#F CopyOptionsDefaults( <G>, <options> ) . . . . . . . copy options defaults
##
InstallGlobalFunction(CopyOptionsDefaults,function( G, options )
local P, name;
# See whether we know a base for <G>.
if not IsBound( options.knownBase ) then
if HasStabChainMutable(G) then
options.knownBase := BaseStabChain(StabChainMutable(G));
elif HasBaseOfGroup( G ) then
options.knownBase := BaseOfGroup( G );
else
P := Parent( G );
while not HasBaseOfGroup( P )
and not IsIdenticalObj( P, Parent( P ) ) do
P := Parent( P );
od;
if HasStabChainMutable(P) then
options.knownBase := BaseStabChain(StabChainMutable(P));
elif HasBaseOfGroup( P ) then
options.knownBase := BaseOfGroup( P );
fi;
fi;
fi;
# See whether we know the exact size.
if not IsBound( options.size ) then
if HasSize( G ) then
options.size := Size( G );
elif IsBound( StabChainOptions( G ).size ) then
options.size := StabChainOptions( G ).size;
fi;
fi;
# Copy the default values.
for name in RecNames( DefaultStabChainOptions ) do
if not IsBound( options.( name ) ) then
if IsBound( StabChainOptions( G ).( name ) ) then
options.( name ) := StabChainOptions( G ).( name );
else
options.( name ) := DefaultStabChainOptions.( name );
fi;
fi;
od;
# In the case of random construction, see whether we know an upper limit
# for the size.
if IsBound( options.size ) then
options.limit := options.size;
elif not IsBound( options.limit ) then
if IsBound( StabChainOptions( G ).limit ) then
options.limit := StabChainOptions( G ).limit;
else
P := Parent( G );
while not HasSize( P )
and not IsBound( StabChainOptions( P ).limit )
and not IsIdenticalObj( P, Parent( P ) ) do
P := Parent( P );
od;
if HasSize( P ) then
options.limit := Size( P );
elif IsBound( StabChainOptions( P ).limit ) then
options.limit := StabChainOptions( P ).limit;
fi;
fi;
fi;
end);
#############################################################################
##
#F StabChainBaseStrongGenerators( <base>, <sgs>[, <one>] )
##
InstallGlobalFunction(StabChainBaseStrongGenerators,function(arg)
local base,sgs,one,S, T, pnt;
base:=arg[1];
sgs:=arg[2];
if Length(arg)=3 then
one:=arg[3];
else
one:= One(arg[2][1]);
fi;
S := EmptyStabChain( [ ], one );
T := S;
for pnt in base do
InsertTrivialStabilizer( T, pnt );
AddGeneratorsExtendSchreierTree( T, sgs );
sgs := Filtered( sgs, g -> pnt ^ g = pnt );
T := T.stabilizer;
od;
return S;
end);
#############################################################################
##
#F GroupStabChain( <arg> ) . . . . . . make (sub)group from stabilizer chain
##
InstallGlobalFunction(GroupStabChain,function( arg )
local S, G, P,L;
if Length( arg ) = 1 then
S := arg[ 1 ];
if not IsBound(S.generators) then
G := GroupByGenerators( [], S.identity );
else
G := GroupByGenerators( S.generators, S.identity );
fi;
else
P := arg[ 1 ];
S := arg[ 2 ];
if not IsBound(S.generators) then
L := [];
else
L := S.generators;
fi;
if Length( arg ) = 3 and arg[ 3 ] = true then
G := SubgroupNC( P, L );
else
G := Subgroup( P, L );
fi;
fi;
SetStabChainMutable( G, S );
return G;
end);
#############################################################################
##
#F DepthSchreierTrees( <S> ) . . . . . . . . . . . . depth of Schreier trees
##
InstallGlobalFunction( DepthSchreierTrees, function( S )
local depths, gens, dep, pnt, sum, i;
depths := "";
gens := [ ];
while IsBound( S.stabilizer ) do
UniteSet( gens, S.labels{ S.genlabels } );
dep := [ ]; dep[ S.orbit[ 1 ] ] := -1;
for pnt in S.orbit do
dep[ pnt ] := dep[ pnt ^ S.transversal[ pnt ] ] + 1;
od;
sum := 0;
for i in dep do
sum := sum + i;
od;
i := sum / Length( S.orbit );
Append( depths, Concatenation( String( Int( i ) ), "." ) );
i := Int( 100 * ( i - Int( i ) ) );
if i < 10 then
Append( depths, "0" );
fi;
Append( depths, Concatenation( String( i ), "-",
String( Maximum( Compacted( dep ) ) ), " " ) );
S := S.stabilizer;
od;
Append( depths, Concatenation( String( Length( gens ) ), " gens" ) );
return depths;
end );
#############################################################################
##
#F AddGeneratorsExtendSchreierTree( <S>, <new> ) . . . . . . add generators
##
## This function may be called with a generatorless <S>.
##
InstallGlobalFunction( AddGeneratorsExtendSchreierTree, function( S, new )
local gen, pos, # new generator and its position in <S>.labels
old, ald, # genlabels before extension
len, # initial length of the orbit of <S>
img, # image during orbit algorithm
i, j; # loop variable
# Put in the new labels.
old := BlistList( [ 1 .. Length( S.labels ) ], S.genlabels );
old[ 1 ] := true;
ald := StructuralCopy( old );
for gen in new do
pos := Position( S.labels, gen );
if pos = fail then
Add( S.labels, gen );
Add( old, false );
Add( ald, true );
Add( S.genlabels, Length( S.labels ) );
elif not ald[ pos ] then
Add( S.genlabels, pos );
fi;
if IsBound( S.generators )
and pos <> 1 and not gen in S.generators then
Add( S.generators, gen );
fi;
od;
# Extend the orbit and the transversal with the new labels.
len := Length( S.orbit );
i := 1;
if IsBound( S.cycles ) then
while i <= Length( S.orbit ) do
for j in S.genlabels do
# Use new labels for old points, all labels for new points.
if i > len or not old[ j ] then
img := S.orbit[ i ] / S.labels[ j ];
if IsBound( S.translabels[ img ] ) then
S.cycles[ i ] := true;
else
S.translabels[ img ] := j;
S.transversal[ img ] := S.labels[ j ];
Add( S.orbit, img );
Add( S.cycles, false );
fi;
fi;
od;
i := i + 1;
od;
else
while i <= Length( S.orbit ) do
for j in S.genlabels do
# Use new labels for old points, all labels for new points.
if i > len or not old[ j ] then
img := S.orbit[ i ] / S.labels[ j ];
if not IsBound( S.translabels[ img ] ) then
S.translabels[ img ] := j;
S.transversal[ img ] := S.labels[ j ];
Add( S.orbit, img );
fi;
fi;
od;
i := i + 1;
od;
fi;
end );
#############################################################################
##
#F ChooseNextBasePoint( <S>, <base>, <newgens> ) . . . . . . . . . . . local
##
InstallGlobalFunction( ChooseNextBasePoint, function( S, base, newgens )
local i, pnt, bpt, pos;
i := 1;
while i <= Length( base )
and ForAll( newgens, gen -> base[ i ] ^ gen = base[ i ] ) do
i := i + 1;
od;
if i <= Length( base ) then
pnt := base[ i ];
elif IsPermCollection( newgens ) then
pnt := SmallestMovedPoint( newgens );
else
pnt := 1;
fi;
# If <pnt> is before the base point <bpt> of <S>, insert a new level.
# `Before' means (1) <pnt> before <bpt> in <base> or (2) <pnt> in <base>,
# <bpt> not in <base> or (3) <pnt> less than <bpt> both not in <base>.
if IsBound( S.orbit ) then
bpt := S.orbit[ 1 ];
pos := Position( base, bpt );
else
bpt := infinity;
pos := fail;
fi;
if pos <> fail and i < pos # (1)
or pos = fail and i <= Length( base ) # (2)
or pos = fail and pnt < bpt then # (3)
InsertTrivialStabilizer( S, pnt );
if IsBound( S.stabilizer.cycles ) then
S.cycles := [ false ];
elif IsBound( S.stabilizer.relativeOrders ) then
Unbind( S.stabilizer.relativeOrders );
Unbind( S.stabilizer.base );
fi;
fi;
end );
#############################################################################
##
#F StabChainStrong( <S>, <newgens>, <options> ) . . Schreier-Sims algorithm
##
InstallGlobalFunction( StabChainStrong, function( S, newgens, options )
local gen, # one generator from <newgens>
pnt, # next base point to use
len, # length of orbit of <S>
pnts, # points to use for Schreier generators
p, # point in orbit of <S>
rep, r, rr, # representative of <p>
gen1, old, # numbers of labels to be used for Schreier gens
g, # one of these labels
sch, # Schreier generator for '<S>.stabilizer'
img, i, j;# loop variables
# It is possible to prescribe a new operation domain for each level.
if IsPermOnEnumerator( S.identity ) then
newgens := List( newgens, gen -> PermOnEnumerator
( Enumerator( S.identity ), gen ) );
fi;
# Determine the next base point.
if IsBound( options.nextBasePoint ) then
if not IsBound( S.orbit ) then
pnt := options.nextBasePoint( S );
InsertTrivialStabilizer( S, pnt );
fi;
else
ChooseNextBasePoint( S, options.base, newgens );
fi;
# Add the new generators to <S>.
pnt := S.orbit[ 1 ];
len := Length( S.orbit );
old := Length( S.genlabels );
AddGeneratorsExtendSchreierTree( S, newgens );
# If a new generator fixes the base point, put it into the stabilizer.
for gen in newgens do
if gen <> S.identity and pnt ^ gen = pnt then
StabChainStrong( S.stabilizer, [ gen ], options );
fi;
od;
# Compute the Schreier generators (seems to work better backwards).
if IsBound( S.cycles ) then
pnts := ListBlist( [ 1 .. Length( S.orbit ) ], S.cycles );
else
pnts := [ 1 .. Length( S.orbit ) ];
fi;
gen1 := 1;
for i in Reversed( pnts ) do
p := S.orbit[ i ];
if IsBound( options.knownBase ) then
rep := InverseRepresentativeWord( S, p );
else
rep := InverseRepresentative( S, p );
fi;
# Take only new generators for old, all generators for new points.
if i <= len then
gen1 := old + 1;
fi;
for j in [ gen1 .. Length( S.genlabels ) ] do
g := S.labels[ S.genlabels[ j ] ];
# Avoid computing Schreier generators that will be trivial.
if S.translabels[ p / g ] <> S.genlabels[ j ] then
# If a base is known, use it to test the Schreier generator.
if IsBound( options.knownBase ) then
if not MembershipTestKnownBase( S,
options.knownBase, [ rep, [ g ] ] ) then
# If this is the first Schreier generator for this orbit
# point, multiply the representative.
if IsList( rep ) then
r := S.identity;
for rr in rep do
r := LeftQuotient( rr, r );
od;
rep := r;
fi;
sch := rep / g;
img := pnt ^ sch;
while img <> pnt do
sch := sch * S.transversal[ img ];
img := img ^ S.transversal[ img ];
od;
StabChainStrong( S.stabilizer, [ sch ], options );
fi;
# If no base is known, construct the Schreier generator and put
# it in the chain if it is non-trivial.
else
sch := SiftedPermutation( S, ( g * rep ) ^ -1 );
if sch <> S.identity then
StabChainStrong( S.stabilizer, [ sch ], options );
fi;
fi;
fi;
od;
od;
end );
#############################################################################
##
#F StabChainForcePoint( <S>, <pnt> ) . . . . . . . . force <pnt> into orbit
##
InstallGlobalFunction( StabChainForcePoint, function( S, pnt )
# Do nothing if <pnt> is already in the orbit of <S>.
if not IsBound( S.translabels )
or not IsBound( S.translabels[ pnt ] ) then
# If all generators of <S> fix <pnt>, insert a trivial stabilizer.
if IsFixedStabilizer( S, pnt ) then
InsertTrivialStabilizer( S, pnt );
# Get <pnt> in the orbit of the stabilizer and swap the two
# stabilizers. If this is unsuccessful, the stabilizer chain is
# incorrect, return `false' then.
elif not StabChainForcePoint( S.stabilizer, pnt )
or not StabChainSwap( S ) then
return false;
fi;
fi;
return true;
end );
#############################################################################
##
#F StabChainSwap( <S> ) . . . . . . . . . . . . . . . swap two base points
##
InstallGlobalFunction( StabChainSwap, function( S )
local a, b, # basepoints that are to be switched
T, Tstab, # copy of $S$ with $Tstab$ becomes $S_b$
len, # length of $Tstab.orbit$ to be reached
pnt, # one point from $a^S$ not yet in $a^{T_b}$
ind, # index of <pnt> in $S.orbit$
img, # image $b^{Rep(S,pnt)^-}$
gen, # new generator of $T_b$
i; # loop variable
# get the two basepoints $a$ and $b$ that we have to switch
a := S.orbit[ 1 ];
b := S.stabilizer.orbit[ 1 ];
# set $T = S$ and compute $b^T$ and a transversal $T/T_b$
T := EmptyStabChain( S.labels, S.identity, b );
Unbind( T.generators );
AddGeneratorsExtendSchreierTree( T, S.generators );
# initialize $Tstab$, which will become $T_b$
Tstab := EmptyStabChain( [ ], S.identity, a );
Unbind( Tstab.generators );
AddGeneratorsExtendSchreierTree( Tstab,
S.stabilizer.stabilizer.generators );
# in the end $|b^T||a^{T_b}| = [T:T_{ab}] = [S:S_{ab}] = |a^S||b^{S_a}|$
ind := 1;
len := Length( S.orbit ) * Length( S.stabilizer.orbit )
/ Length( T.orbit );
while Length( Tstab.orbit ) < len do
# choose a point $pnt \in a^S \ a^{T_b}$ with representative $s$
repeat
ind := ind + 1;
# If <ind> exceeds the length of <S>.orbit, <S> was an incorrect
# stabilizer chain.
if ind > Length( S.orbit ) then
return false;
fi;
pnt := S.orbit[ ind ];
until not IsBound( Tstab.translabels[ pnt ] );
# find out what $s^-$ does with $b$ (without computing $s$!)
img := b;
i := pnt;
while i <> a do
img := img ^ S.transversal[ i ];
i := i ^ S.transversal[ i ];
od;
# if $b^{s^-}} \in b^{S_a}$ with representative $r \in S_a$
if IsBound( S.stabilizer.translabels[ img ] ) then
# with $gen = s^- r^-$ we have
# $b^gen = {b^{s^-}}^{r^-} = img^{r-} = b$, so $gen \in S_b$
# and $pnt^gen = {pnt^{s^-}}^{r^-} = a^{r-} = a$, so $gen$ is new
gen := S.identity;
while pnt ^ gen <> a do
gen := gen * S.transversal[ pnt ^ gen ];
od;
while b ^ gen <> b do
gen := gen * S.stabilizer.transversal[ b ^ gen ];
od;
AddGeneratorsExtendSchreierTree( Tstab, [ gen ] );
fi;
od;
# copy everything back into the stabchain
S.labels := T.labels;
S.genlabels := T.genlabels;
S.orbit := T.orbit;
S.translabels := T.translabels;
S.transversal := T.transversal;
if Length( Tstab.orbit ) = 1 then
S.stabilizer := S.stabilizer.stabilizer;
else
S.stabilizer.labels := Tstab.labels;
S.stabilizer.genlabels := Tstab.genlabels;
if not IsBound(Tstab.generators) then
Tstab.generators:=Tstab.labels{Tstab.genlabels};
fi;
S.stabilizer.generators := Tstab.generators;
S.stabilizer.orbit := Tstab.orbit;
S.stabilizer.translabels := Tstab.translabels;
S.stabilizer.transversal := Tstab.transversal;
fi;
return true;
end );
#############################################################################
##
#F LabsLims( <lab>, <hom>, <labs>, <lims> ) . . . . help for next function
##
InstallGlobalFunction( LabsLims, function( lab, hom, labs, lims )
local pos;
pos := Position( labs, lab );
if pos = fail then
AddSet( labs, lab );
pos := Position( labs, lab );
if IsFunction( hom ) then
Add(lims, hom(lab), pos);
else
Add(lims, lab ^ hom, pos);
fi;
fi;
return lims[ pos ];
end );
#############################################################################
##
#F ConjugateStabChain( <arg> ) . . . . . . . . . conjugate stabilizer chain
##
InstallGlobalFunction( ConjugateStabChain, function( arg )
local S, T, hom, map, cond, # arguments
newlevs, # new labels lists
len, # number of labels in <S>
labels, labpos, orbit, edges, # conjugated components
labs, lims, # list of all labels/images
img, pnt, # image of label and point
pos, L, l, i; # loop variables
# Get the arguments.
S := arg[ 1 ]; T := arg[ 2 ]; hom := arg[ 3 ]; map := arg[ 4 ];
if Length( arg ) > 4 then cond := arg[ 5 ];
else cond := S -> IsBound( S.stabilizer ); fi;
newlevs := [ ];
# Prepare common lists for the labels and their images at the different
# levels.
labs := [ S.identity ];
lims := [ T.identity ];
# Loop over the stabilizer chain.
while cond( S ) do
len := Length( S.labels );
# If this is a new labels component, map the labels and mark the
# component so that it can be recognized at deeper levels.
if len = 0 or IsPerm( S.labels[ len ] ) then
if IsPerm( hom ) then
labels := OnTuples( S.labels, hom );
labpos := [ 1 .. len ];
else
if IsIdenticalObj( S, T ) then labels := [ T.identity ];
else labels := T.labels; fi;
labpos := ListWithIdenticalEntries( len, 0 );
labpos[ 1 ] := 1;
fi;
Add( S.labels, rec( labels := labels,
labpos := labpos,
genlabels := Set( S.genlabels ) ) );
Add( newlevs, S.labels );
# The current labels component is not new, so take the mapped labels
# from the mark that was inserted when the component was first
# encountered.
else
labels := S.labels[ len ].labels;
labpos := S.labels[ len ].labpos;
UniteSet( S.labels[ len ].genlabels, S.genlabels );
fi;
# Map the orbit and edges.
edges := [ ];
if IsPerm( map ) and IsPerm( hom ) then
orbit := OnTuples( S.orbit, map );
edges{ orbit } := S.translabels{ S.orbit };
else
orbit := [ ];
for pnt in S.orbit do
if IsFunction( map ) then img := map( pnt );
elif IsList ( map ) then img := map[ pnt ];
else img := pnt ^ map; fi;
if not IsBound( edges[ img ] ) then
Add( orbit, img );
pos := labpos[ S.translabels[ pnt ] ];
# We can already map the labels that appear as edges
# because we know that their images will be distinct and
# non-trivial.
if pos = 0 then
Add( labels, LabsLims( S.transversal[ pnt ], hom,
labs, lims ) );
pos := Length( labels );
labpos[ S.translabels[ pnt ] ] := pos;
fi;
edges[ img ] := pos;
fi;
od;
if not IsPerm( hom ) then
T.labpos := labpos;
fi;
fi;
# Build a level of <T> (`genlabels' will be completed when `labpos'
# is complete).
T.labels := labels;
T.genlabels := S.genlabels;
T.orbit := orbit;
T.translabels := edges;
T.transversal := [ ];
T.transversal{ orbit } := labels{ edges{ orbit } };
# Step down to the stabilizer.
S := S.stabilizer;
if not IsBound( T.stabilizer ) then
T.stabilizer := EmptyStabChain( T.labels, T.identity );
fi;
T := T.stabilizer;
od;
# For the distinct labels components of the original chain, map the
# labels that did not appear as edges and remove the auxiliary
# components.
for L in newlevs do
l := L[ Length( L ) ];
i := Position( l.labpos, 0 );
while i <> fail do
if i in l.genlabels then
img := LabsLims( L[ i ], hom, labs, lims );
pos := Position( l.labels, img );
if pos = fail then
Add( l.labels, img );
pos := Length( l.labels );
fi;
l.labpos[ i ] := pos;
fi;
i := Position( l.labpos, 0, i );
od;
Unbind( L[ Length( L ) ] );
od;
# Now that all labels have been mapped, complete the `genlabels' and put
# in `generators'.
if not IsPerm( hom ) then
L := arg[ 2 ];
while IsBound( L.labpos ) do
L.genlabels := Set( L.labpos{ L.genlabels } );
RemoveSet( L.genlabels, 0 );
RemoveSet( L.genlabels, 1 );
Unbind( L.labpos );
L := L.stabilizer;
od;
fi;
L := arg[ 2 ];
while IsBound( L.stabilizer ) do
L.generators := L.labels{ L.genlabels };
L := L.stabilizer;
od;
# Return the mapped stabilizer from the first level where <cond> was not
# satisfied (i.e., the ``end'' of the original chain).
return T;
end );
#############################################################################
##
#F ChangeStabChain(<G>,<base>[,<reduced>]) change/extend a stabilizer chain
##
## reduced = -1 : extend stabilizer chain
## reduced = false : change stabilizer chain, do not reduce it
## reduced = true : change stabilizer chain, reduce it
##
InstallGlobalFunction(ChangeStabChain,function( arg )
local G, base, reduced,
cnj, S, newBase, old, new, i;
# Get the arguments.
G := arg[ 1 ];
base := arg[ 2 ];
if Length( arg ) > 2 then reduced := arg[ 3 ];
else reduced := true; fi;
cnj := G.identity;
S := G;
newBase := [ ];
i := 1;
while IsBound( S.stabilizer ) or i <= Length( base ) do
old := BasePoint( S );
# Cut off unwanted trivial stabilizers at the end.
if Length( S.genlabels ) = 0
and ( reduced = true or i > Length( base ) ) then
RemoveStabChain( S );
i := Length( base ) + 1;
# Determine the new base point for this level.
elif i <= Length( base ) then
new := base[ i ] / cnj;
i := i + 1;
# Stabilizer chain extension.
if reduced = -1 then
AddSet( newBase, new );
if new <> old then
if IsFixedStabilizer( S, new ) then
InsertTrivialStabilizer( S, new );
else
Error("<base> must be an extension of base of <G>");
fi;
fi;
S := S.stabilizer;
# Base change. Return `false' if <S> turns out to be incorrect.
elif reduced = false or not IsFixedStabilizer( S, new ) then
if IsBound( S.stabilizer ) then
if not StabChainForcePoint( S, new ) then
return false;
fi;
cnj := LeftQuotient( InverseRepresentative( S, new ),
cnj );
else
InsertTrivialStabilizer( S, new );
fi;
AddSet( newBase, S.orbit[ 1 ] );
S := S.stabilizer;
fi;
# Delete unwanted trivial stabilizers (e.g., double points in the
# base).
elif old in newBase
or reduced = true and Length( S.orbit ) = 1 then
S.labels := S.stabilizer.labels;
S.genlabels := S.stabilizer.genlabels;
S.generators := S.stabilizer.generators;
if IsBound( S.stabilizer.orbit ) then
S.orbit := S.stabilizer.orbit;
S.translabels := S.stabilizer.translabels;
S.transversal := S.stabilizer.transversal;
else
Unbind( S.orbit );
Unbind( S.translabels );
Unbind( S.transversal );
fi;
if IsBound( S.stabilizer.stabilizer ) then
S.stabilizer := S.stabilizer.stabilizer;
else
Unbind( S.stabilizer );
fi;
# Simply move down the stabilizer chain (to look for double points).
else
AddSet( newBase, old );
S := S.stabilizer;
fi;
od;
# Conjugate to move all the points to the beginning of their orbit.
if cnj <> S.identity then
ConjugateStabChain( G, G, cnj, cnj );
fi;
return true;
end);
#############################################################################
##
#F ExtendStabChain( <S>, <base> ) . . . . . . . . extend a stabilizer chain
##
InstallGlobalFunction(ExtendStabChain,function( S, base )
ChangeStabChain( S, base, -1 );
end);
#############################################################################
##
#F ReduceStabChain( <S> ) . . . . . . . . . . . . reduce a stabilizer chain
##
InstallGlobalFunction(ReduceStabChain,function( S )
ChangeStabChain( S, [ ], true );
end);
#############################################################################
##
#F EmptyStabChain( <labels>,<id>[,<limgs>,<idimg>][,<pnt>] ) . . stab chain
##
InstallGlobalFunction(EmptyStabChain,function( arg )
local S;
S := rec( labels := arg[ 1 ],
genlabels := [ ],
generators := [ ],
identity := arg[ 2 ] );
if Length( S.labels ) = 0 or S.labels[ 1 ] <> S.identity then
Add( S.labels, S.identity, 1);
fi;
if Length( arg ) >= 4 then
S.labelimages := arg[ 3 ];
S.genimages := [ ];
S.idimage := arg[ 4 ];
if Length( S.labelimages ) = 0 then
Add( S.labelimages, S.idimage );
fi;
fi;
if Length( arg ) mod 2 = 1 then
InitializeSchreierTree( S, arg[ Length( arg ) ] );
fi;
return S;
end);
#############################################################################
##
#F InitializeSchreierTree( <S>, <pnt> ) . . . . initialize a Schreier tree
##
InstallGlobalFunction( InitializeSchreierTree, function( S, pnt )
S.orbit := [ pnt ];
S.translabels := [ ]; S.translabels[ pnt ] := 1;
S.transversal := [ ]; S.transversal[ pnt ] := S.identity;
if IsBound( S.idimage ) then
S.transimages := [ ]; S.transimages[ pnt ] := S.idimage;
fi;
end );
#############################################################################
##
#F InsertTrivialStabilizer( <S>, <pnt> ) . . add redundant base point <pnt>
##
InstallGlobalFunction( InsertTrivialStabilizer, function( S, pnt )
S.stabilizer := ShallowCopy( S );
S.genlabels := ShallowCopy( S.stabilizer.genlabels );
if IsBound( S.generators ) then
S.generators := ShallowCopy( S.stabilizer.generators );
if IsBound( S.idimage ) then
S.genimages := ShallowCopy( S.stabilizer.genimages );
fi;
fi;
InitializeSchreierTree( S, pnt );
end );
#############################################################################
##
#F RemoveStabChain( <S> ) . . . . . . . . cut off rest of stabilizer chain
##
InstallGlobalFunction(RemoveStabChain,function( S )
local name;
for name in RecNames( S ) do
if name <> "identity" and name <> "idimage" then
Unbind( S.( name ) );
fi;
od;
S.labels := [ S.identity ];
S.genlabels := [ ];
S.generators := [ ];
end);
#############################################################################
##
#F BasePoint( <S> ) . . . . . . . . . . . . . . . . . . . base point of <S>
##
InstallGlobalFunction( BasePoint, function( S )
if IsBound( S.orbit ) then return S.orbit[ 1 ];
else return false; fi;
end );
#############################################################################
##
#F IsInBasicOrbit( <S>, <pnt> ) . . . . . . . . . is <pnt> in basic orbit?
##
InstallGlobalFunction( IsInBasicOrbit, function( S, pnt )
return IsBound( S.translabels )
and IsBound( S.translabels[ pnt ] );
end );
#############################################################################
##
#F IsFixedStabilizer( <S>, <pnt> ) . . . . . . . . . is <pnt> fixed by <S>?
##
InstallGlobalFunction( IsFixedStabilizer, function( S, pnt )
return ForAll( S.generators, gen -> pnt ^ gen = pnt );
end );
#############################################################################
##
#F InverseRepresentative( <S>, <pnt> ) . . perm mapping <pnt> to base point
##
InstallGlobalFunction( InverseRepresentative, function( S, pnt )
local bpt, rep,te;
bpt := S.orbit[ 1 ];
rep := S.identity;
while pnt <> bpt do
te:=S.transversal[pnt];
pnt:=pnt^te;
rep := rep * te;
od;
return rep;
end );
#############################################################################
##
#F QuickInverseRepresentative( <S>, <pnt> ) . . . . . . . same, but quicker
##
InstallGlobalFunction( QuickInverseRepresentative, function( S, pnt )
local bpt, rep, lab, pow;
bpt := S.orbit[ 1 ];
rep := S.identity;
lab := S.translabels[ pnt ];
pow := 1;
while pnt <> bpt do
pnt := pnt ^ S.transversal[ pnt ];
if S.translabels[ pnt ] = lab then
pow := pow + 1;
else
rep := rep * S.labels[ lab ] ^ pow;
lab := S.translabels[ pnt ];
pow := 1;
fi;
od;
return rep;
end );
#############################################################################
##
#F InverseRepresentativeWord( <S>, <pnt> ) . . . . . . . inverse rep as word
##
InstallGlobalFunction( InverseRepresentativeWord, function( S, pnt )
local word, bpt;
word := [ ];
bpt := S.orbit[ 1 ];
while pnt <> bpt do
Add( word, S.transversal[ pnt ] );
pnt := pnt ^ S.transversal[ pnt ];
od;
return word;
end );
#############################################################################
##
#F SiftedPermutation( <S>, <g> ) . . . . . . . . . . . . sifted permutation
##
## This function may be called with a generatorless <S>.
##
InstallGlobalFunction(SiftedPermutation,function( S, g )
local bpt, img;
# The following condition tests `IsBound(S.stabilizer)', not
# `IsEmpty(S.genlabels)'. This is necessary because the function may be
# called with an inconsistent chain from `NormalClosure'.
while IsBound( S.stabilizer )
and g <> S.identity do
bpt := S.orbit[ 1 ];
img := bpt ^ g;
if IsBound( S.transversal[ img ] ) then
while img <> bpt do
g := g * S.transversal[ img ];
img := bpt ^ g;
od;
S := S.stabilizer;
else
return g;
fi;
od;
return g;
end);
#############################################################################
##
#F MinimalElementCosetStabChain( <S>, <g> ) . . . minimal element of coset
##
## This function may be called with a generatorless <S>.
##
InstallGlobalFunction(MinimalElementCosetStabChain,function( S, g )
local p,i,a,bp,pp;
while not IsEmpty( S.genlabels ) do
if IsPlistRep(S.orbit) and IsPosInt(S.orbit[1])
and IsInternalRep(g) then
p:=SMALLEST_IMG_TUP_PERM(S.orbit,g);
else
p:=infinity;
for i in S.orbit do
a:=i^g;
if a<p then
p:=a;
fi;
od;
fi;
bp:=S.orbit[1];
pp:=p/g;
while bp<>pp do
g:=LeftQuotient(S.transversal[pp],g);
pp:=p/g;
od;
# while S.orbit[ 1 ] ^ g <> p do
# g := LeftQuotient( S.transversal[ p / g ], g );
# od;
S := S.stabilizer;
od;
return g;
end);
#############################################################################
##
#M MembershipTestKnownBase( <S>, <knownBase>, <word> ) . . . with known base
##
## This function may be called with a generatorless <S>.
##
InstallMethod( MembershipTestKnownBase, "stabchain, base, word",true,
[ IsRecord, IsList and IsCyclotomicCollection, IsList ], 0,
function( S, knownBase, word )
local base, g, i, j, bpt;
base := Concatenation( BaseStabChain( S ), knownBase );
for g in word do
if IsPerm( g ) then
base := OnTuples( base, g );
else
for i in Reversed( [ 1 .. Length( g ) ] ) do
for j in [ 1 .. Length( base ) ] do
base[ j ] := base[ j ] / g[ i ];
od;
od;
fi;
od;
while not IsEmpty( S.genlabels )
and IsBound( S.translabels[ base[ 1 ] ] ) do
bpt := S.orbit[ 1 ];
while base[ 1 ] <> bpt do
base := OnTuples( base, S.transversal[ base[ 1 ] ] );
od;
base := base{ [ 2 .. Length( base ) ] };
S := S.stabilizer;
od;
return base = knownBase;
end );
InstallOtherMethod( MembershipTestKnownBase, true, [ IsRecord,
IsGroup, IsPerm ], 0,
function( S, G, t )
return SiftedPermutation( S, t ) = S.identity;
end );
# the base `BaseOfGroup' does not need to confirm to the stabilizer chain
# `S'. therefore the following method is invalid. AH
#InstallOtherMethod( MembershipTestKnownBase, true, [ IsRecord,
# IsGroup and HasBaseOfGroup, IsPerm ], 0,
# function( S, G, t )
# Error("this method may not be used!");
# return MembershipTestKnownBase( S, BaseOfGroup( G ), [ t ] );
#end );
#############################################################################
##
#F BaseStabChain( <S> ) . . . . . . . . . . . . . . . . . . . . . . . base
##
## This function may be called with a generatorless <S>.
##
InstallGlobalFunction(BaseStabChain,function( S )
local base;
base := [ ];
while IsBound( S.stabilizer ) do
Add( base, S.orbit[ 1 ] );
S := S.stabilizer;
od;
return base;
end);
#############################################################################
##
#F SizeStabChain( <S> ) . . . . . . . . . . . . . . . . . . . . . . . size
##
## This function may be called with a generatorless <S>.
##
InstallGlobalFunction(SizeStabChain,function( S )
local size;
size := 1;
while not IsEmpty( S.genlabels ) do
size := size * Length( S.orbit );
S := S.stabilizer;
od;
return size;
end);
#############################################################################
##
#F StrongGeneratorsStabChain( <S> ) . . . . . . . . . . . strong generators
##
InstallGlobalFunction(StrongGeneratorsStabChain,function( S )
local sgs;
sgs := [ ];
while not IsEmpty( S.generators ) do
UniteSet( sgs, S.generators );
S := S.stabilizer;
od;
return sgs;
end);
#############################################################################
##
#F IndicesStabChain( <S> ) . . . . . . . . . . . . . . . . . . . . . indices
##
## This function may be called with a generatorless <S>.
##
InstallGlobalFunction(IndicesStabChain,function( S )
local ind;
ind := [ ];
while IsBound( S.stabilizer ) do
Add( ind, Length( S.orbit ) );
S := S.stabilizer;
od;
return ind;
end);
#############################################################################
##
#F ListStabChain( <S> ) . . . . . . . . . . . . . stabilizer chain as list
##
## This function may be called with a generatorless <S>.
##
InstallGlobalFunction(ListStabChain,function( S )
local list;
list := [ ];
while IsBound( S.stabilizer ) do
Add( list, S );
S := S.stabilizer;
od;
Add( list, S );
return list;
end);
#############################################################################
##
#F OrbitStabChain( <S>, <pnt> ) . . . . . . . . . orbit of stabilizer chain
##
InstallGlobalFunction(OrbitStabChain,function( S, pnt )
if IsBound( S.edges ) and IsBound( S.edges[ pnt ] ) then
return ShallowCopy( S.orbit );
else
return OrbitPerms( S.generators, pnt );
fi;
end);
#############################################################################
##
#M MinimalStabChain( <G> ) . . . . . . . . . . . . minimal stabilizer chain
##
InstallMethod( MinimalStabChain, "Perm", true, [ IsPermGroup] , 0,
function( G )
return StabChainOp( G, rec( base := [ 1 .. LargestMovedPoint( G ) ] ) );
end );
#############################################################################
##
#F SCMinSmaGens(<G>,<S>,<emptyset>,<identity element>,<flag>)
##
## This function computes a stabilizer chain for a minimal base image and
## a smallest generating set wrt. this base for a permutation
## group.
##
## <G> must be a permutation group and <S> a mutable stabilizer chain for
## <G> that defines a base <bas>. Let <mbas> the smallest image (OnTuples)
## of <G>. Then this operation changes <S> to a stabilizer chain wrt.
## <mbas>.
## The arguments <emptyset> and <identity element> are needed
## only for the recursion.
##
## The function returns a record whose component `gens' is a list whose
## first element is the smallest element wrt. <bas>. (i.e. an element which
## maps <bas> to <mbas>. If <flag> is `true', `gens' is the smallest
## generating set wrt. <bas>. (If <flag> is `false' this will not be
## computed.)
InstallGlobalFunction(SCMinSmaGens,function (G,S,bas,pre,flag)
local Sgens, # smallest generating system of <S>, result
gens, # smallest generating system of <S>, result
span, # <gens>
stb, # Stab_span(bas{1..n-1})
min, # minimum in orbit
nbas, # bas+[min]
rep, # representative mapping minimal
gen, # one generator in <gens>
orb, # basic orbit of <S>
pnt, # one point in <orb>
T; # stabilizer in <S>
Sgens:=S.generators;
# handle the anchor case
if Length(Sgens) = 0 then
return rec(gens:=[pre],span:=SubgroupNC(Parent(G),[pre]));
fi;
# the new ``base'' point is the point to which the current level base
# point is mapped under pre.
pnt:=S.orbit[1];
# find a representative that moves the point as small as possible
rep:=S.identity;
min:=Minimum(S.orbit);
nbas:=Concatenation(bas,[min]);
while pnt<>min do
gen:=S.transversal[min];
rep:=LeftQuotient(gen,rep);
min:=min^gen;
od;
# now we want orbit and stabilizer wrt. this point.
ConjugateStabChain(S,S,rep,rep);
# this element will have to be pre-multiplied to all generators
# generated on this or lower level
pre:=pre*rep;
# recursive call to change base below and compute smallest mapping
# generators there
gens:=SCMinSmaGens(G,S.stabilizer,nbas,pre,flag);
# do we want to compute the minimal generating set?
if flag=false then
return rec(gens:=[pre]);
fi;
span:=gens.span;
gens:=gens.gens;
pre:=gens[1]; # the smallest generators is the premul. element
# get the sorted orbit (the basepoint will be the first point)
orb := Set( S.orbit );
# compute the stabilizer in `span' of the first base points (that's the
# group we're extending at this level)
stb:=Stabilizer(span,bas,OnTuples);
# this stabilizer will cover already some points
SubtractSet( orb, Orbit( stb, S.orbit[1]));
# handle the points in the orbit
while Length(orb) > 0 do
# take the smallest remaining point (coset) and get one representative
# for it
pnt := orb[1];
gen := S.identity;
while S.orbit[1] ^ gen <> pnt do
gen := LeftQuotient( S.transversal[ pnt / gen ], gen );
od;
# now change gen by elements in the lower stabilizers to
# find the minimal element in its coset.
T := S.stabilizer;
while Length(T.generators) <> 0 do
pnt := Minimum( OnTuples( T.orbit, gen ) );
while T.orbit[1] ^ gen <> pnt do
gen := LeftQuotient( T.transversal[ pnt / gen ], gen );
od;
T := T.stabilizer;
od;
# pre-multiply with the element mapping the base to the smallest base
gen:=pre*gen;
# add this generator to the generators list
Add( gens, gen );
#NC is safe -- always use parent(G)
span:=ClosureSubgroupNC(span,gen);
stb:=Stabilizer(span,bas,OnTuples);
# test which cosets we can now cover: reduce orbit
SubtractSet( orb, Orbit( stb, S.orbit[1]));
od;
# return the smallest generating system
return rec(gens:=gens,span:=span);
end);
#############################################################################
##
#F LargestElementStabChain(<S>,<id>)
##
InstallGlobalFunction(LargestElementStabChain,function(S,rep)
local min, # minimum in orbit
pnt, # one point in <orb>
i, # loop
val, # point image
gen; # gen. in transversal
# handle the anchor case
if Length(S.generators) = 0 then
return rep;
fi;
# the new ``base'' point is the point to which the current level base
# point is mapped under pre.
pnt:=S.orbit[1];
# find a representative that moves the point as large as possible
min:=0;
val:=0;
for i in S.orbit do
if i^rep>val then
min:=i;
val:=i^rep;
fi;
od;
while pnt<>min do
gen:=S.transversal[min];
rep:=LeftQuotient(gen,rep);
min:=min^gen;
od;
# recursive call to change base below and compute smallest mapping
# generators there
return LargestElementStabChain(S.stabilizer,rep);
end);
#############################################################################
##
#F ElementsStabChain(<S>)
##
InstallGlobalFunction(ElementsStabChain,function ( S )
local elms, # element list, result
stb, # elements of the stabilizer
pnt, # point in the orbit of <S>
rep; # inverse representative for that point
# if <S> is trivial then it is easy
if Length(S.generators) = 0 then
elms := [ S.identity ];
# otherwise
else
# start with the empty list
elms := [];
# compute the elements of the stabilizer
stb := ElementsStabChain( S.stabilizer );
# loop over all points in the orbit
for pnt in S.orbit do
# add the corresponding coset to the set of elements
rep := S.identity;
while S.orbit[1] ^ rep <> pnt do
rep := LeftQuotient( S.transversal[pnt/rep], rep );
od;
UniteSet( elms, stb * rep );
od;
fi;
# return the result
return elms;
end);
InstallMethod( ViewObj,"stabilizer chain records", true,
[ IsRecord ], 0,
function(r)
local sz;
if not (IsBound(r.stabilizer) and IsBound(r.generators) and
IsBound(r.orbit) and IsBound(r.identity) and
IsBound(r.transversal)) then
TryNextMethod();
fi;
sz:= SizeStabChain(r);
Print("<stabilizer chain record, Base ",BaseStabChain(r),
", Orbit length ",Length(r.orbit),", Size: ",sz,">");
end);
#############################################################################
##
#E
|