/usr/share/gap/lib/stbcbckt.gd is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 | #############################################################################
##
#W stbcbckt.gd GAP library Heiko Theißen
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
#############################################################################
##
#V InfoBckt
##
## <#GAPDoc Label="InfoBckt">
## <ManSection>
## <InfoClass Name="InfoBckt"/>
##
## <Description>
## is the info class for the partition backtrack routines.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareInfoClass( "InfoBckt" );
DeclareGlobalFunction( "AsPerm" );
DeclareGlobalFunction( "PreImageWord" );
DeclareGlobalFunction( "ExtendedT" );
DeclareGlobalFunction( "MeetPartitionStrat" );
DeclareGlobalFunction( "MeetPartitionStratCell" );
DeclareGlobalFunction( "StratMeetPartition" );
DeclareGlobalFunction( "Suborbits" );
DeclareGlobalFunction( "OrbitalPartition" );
DeclareGlobalFunction( "EmptyRBase" );
DeclareGlobalFunction( "IsTrivialRBase" );
DeclareGlobalFunction( "AddRefinement" );
DeclareGlobalFunction( "ProcessFixpoint" );
DeclareGlobalFunction( "RegisterRBasePoint" );
DeclareGlobalFunction( "NextRBasePoint" );
DeclareGlobalFunction( "RRefine" );
DeclareGlobalFunction( "PBIsMinimal" );
DeclareGlobalFunction( "SubtractBlistOrbitStabChain" );
DeclareGlobalFunction( "PartitionBacktrack" );
DeclareGlobalFunction("SuboLiBli");
DeclareGlobalFunction("SuboSiBli");
DeclareGlobalFunction("SuboTruePos");
DeclareGlobalFunction("SuboUniteBlist");
DeclareGlobalFunction("ConcatSubos");
DeclareGlobalFunction("Refinements_ProcessFixpoint");
DeclareGlobalFunction("Refinements_Intersection");
DeclareGlobalFunction("Refinements_Centralizer");
DeclareGlobalFunction("Refinements__MakeBlox");
DeclareGlobalFunction("Refinements_SplitOffBlock");
DeclareGlobalFunction("Refinements__RegularOrbit1");
DeclareGlobalFunction("Refinements_RegularOrbit2");
DeclareGlobalFunction("Refinements_RegularOrbit3");
DeclareGlobalFunction("Refinements_Suborbits0");
DeclareGlobalFunction("Refinements_Suborbits1");
DeclareGlobalFunction("Refinements_Suborbits2");
DeclareGlobalFunction("Refinements_Suborbits3");
DeclareGlobalFunction("Refinements_TwoClosure");
DeclareGlobalVariable( "Refinements" );
DeclareGlobalFunction( "NextLevelRegularGroups" );
DeclareGlobalFunction( "RBaseGroupsBloxPermGroup" );
DeclareGlobalFunction( "RepOpSetsPermGroup" );
DeclareGlobalFunction( "RepOpElmTuplesPermGroup" );
DeclareGlobalFunction( "ConjugatorPermGroup" );
DeclareGlobalFunction( "NormalizerPermGroup" );
#############################################################################
##
#F ElementProperty( <G>, <Pr>[, <L>[, <R>]] ) one element with property
##
## <#GAPDoc Label="ElementProperty">
## <ManSection>
## <Func Name="ElementProperty" Arg='G, Pr[, L[, R]]'/>
##
## <Description>
## <Ref Func="ElementProperty"/> returns an element <M>\pi</M> of the
## permutation group <A>G</A> such that the one-argument function <A>Pr</A>
## returns <K>true</K> for <M>\pi</M>.
## It returns <K>fail</K> if no such element exists in <A>G</A>.
## The optional arguments <A>L</A> and <A>R</A> are subgroups of <A>G</A>
## such that the property <A>Pr</A> has the same value for all elements in
## the cosets <A>L</A> <M>g</M> and <M>g</M> <A>R</A>, respectively,
## with <M>g \in <A>G</A></M>.
## <P/>
## A typical example of using the optional subgroups <A>L</A> and <A>R</A>
## is the conjugacy test for elements <M>a</M> and <M>b</M> for which one
## can set <A>L</A><M>:= C_{<A>G</A>}(a)</M> and
## <A>R</A><M>:= C_{<A>G</A>}(b)</M>.
## <P/>
## <Example><![CDATA[
## gap> propfun:= el -> (1,2,3)^el in [ (1,2,3), (1,3,2) ];;
## gap> SubgroupProperty( g, propfun, Subgroup( g, [ (1,2,3) ] ) );
## Group([ (1,2,3), (2,3) ])
## gap> ElementProperty( g, el -> Order( el ) = 2 );
## (2,4)
## ]]></Example>
## <P/>
## Chapter <Ref Chap="Permutations"/> describes special operations to
## construct permutations in the symmetric group without using backtrack
## constructions.
## <P/>
## Backtrack routines are also called by the methods for permutation groups
## that compute centralizers, normalizers, intersections,
## conjugating elements as well as stabilizers for the operations of a
## permutation group via <Ref Func="OnPoints"/>, <Ref Func="OnSets"/>,
## <Ref Func="OnTuples"/> and <Ref Func="OnSetsSets"/>.
## Some of these methods use more specific refinements than
## <Ref Func="SubgroupProperty"/> or <Ref Func="ElementProperty"/>.
## For the definition of refinements, and how one can define refinements,
## see Section <Ref Sect="The General Backtrack Algorithm with Ordered Partitions"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "ElementProperty" );
#############################################################################
##
#F SubgroupProperty( <G>, <Pr>[, <L> ] ) . . . . . . . . fulfilling subgroup
##
## <#GAPDoc Label="SubgroupProperty">
## <ManSection>
## <Func Name="SubgroupProperty" Arg='G, Pr[, L ]'/>
##
## <Description>
## <A>Pr</A> must be a one-argument function that returns <K>true</K> or
## <K>false</K> for elements of the group <A>G</A>,
## and the subset of elements of <A>G</A> that fulfill <A>Pr</A> must
## be a subgroup. (<E>If the latter is not true the result of this operation
## is unpredictable!</E>) This command computes this subgroup.
## The optional argument <A>L</A> must be a subgroup of the set of all
## elements in <A>G</A> fulfilling <A>Pr</A> and can be given if known
## in order to speed up the calculation.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "SubgroupProperty" );
#############################################################################
##
#O PartitionStabilizerPermGroup( <G>, <part> )
##
## <ManSection>
## <Oper Name="PartitionStabilizerPermGroup" Arg='G, part'/>
##
## <Description>
## <A>part</A> must be a list of pairwise disjoint sets of points
## on which the permutation group <A>G</A> acts via <C>OnPoints</C>.
## This function computes the stabilizer in <A>G</A> of <A>part</A>, that is,
## the subgroup of all those elements in <A>G</A> that map each set in <A>part</A>
## onto a set in <A>part</A>, via <C>OnSets</C>.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "PartitionStabilizerPermGroup" );
#############################################################################
##
#A TwoClosure( <G> )
##
## <#GAPDoc Label="TwoClosure">
## <ManSection>
## <Attr Name="TwoClosure" Arg='G'/>
##
## <Description>
## The <E>2-closure</E> of a transitive permutation group <A>G</A> on
## <M>n</M> points is the largest subgroup of the symmetric group <M>S_n</M>
## which has the same orbits on sets of ordered pairs of points as the group
## <A>G</A> has.
## It also can be interpreted as the stabilizer of the orbital graphs of
## <A>G</A>.
## <Example><![CDATA[
## gap> TwoClosure(Group((1,2,3),(2,3,4)));
## Sym( [ 1 .. 4 ] )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "TwoClosure", IsPermGroup );
#############################################################################
##
#E
|