/usr/share/gap/lib/tcsemi.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 | #############################################################################
##
##
#W tcsemi.gi GAP library Goetz.Pfeiffer@UCG.IE
##
## Installed in GAP4 by Andrew Solomon for Semigroups instead of Monoids.
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains implementations for Todd-Coxeter procedure for
## fp semigroups. This uses the code written by Götz Pfeiffer
## based on the thesis of T. Walker.
##
#############################################################################
##
#D DeclareInfoClass("SemigroupToddCoxeterInfo");
##
##
DeclareInfoClass("SemigroupToddCoxeterInfo");
#############################################################################
##
#A CosetTableOfFpSemigroup( cong )
##
## A monoid presentation is essentially a list of pairs of words over an
## alphabet. In GAP this can be represented by a record |M| with components
## |generators| (a list of different |AbstractGenerator|s) for the alphabet
## and a component |relations| which is a list of pairs of words in these
## generators meaning |r[1] = r[2]| for each pair |r|. For example, the
## commands
##
## gap> a:= AbstractGenerator("a");; b:= AbstractGenerator("b");;
## gap> monoid:= rec( generators:= [a, b],
## > relations:= [[a^3, a], [b^7, b], [a*b^3*a*b^2, b^2*a]] );;
##
## will represent the monoid with presentation $<a, b | a^3 = a, b^7 = b, a
## b^3 a b^2 = b^2 a>$. The function |CosetTableFpMonoid| enumerates the
## elements of a fp monoid if called with the empty list as its second
## argument.
##
## gap> CosetTableFpMonoid(monoid, []);;
## #I 1005 cosets, 668 active, 337 killed.
## #I 2010 cosets, 1223 active, 787 killed.
## #I 2647 cosets defined, maximum 1240, 273 survive.
##
## The enumerator requires an additional list |cong| of pairs of words,
## which generate a right congruence. The classes of this congruence are
## called *cosets* in this context.
##
## gap> CosetTableFpMonoid(monoid, [[a^2, a], [b^2, b]]);;
## #I 355 cosets defined, maximum 196, 37 survive.
##
## In order to be able to recycle cosets which have been identified with
## other cosets we organize them in two lists: the active list of active
## cosets and the free list of free cosets.
##
## The *active list* is a doubly linked list.
##
## 1 d last next
## | | | |
## V V V V
## |---|---> ... --->|---|---> ... --->|---|-------->|---|---> ...
## | 1 | | | | | | |
## 0 <---|---|<--- ... <---|---|<--- ... <---|---| |---|
##
## The forward references ---> are stored in |forwd|, the backward
## references <--- are stored in |bckwd|. Three pointers point into this
## list, 1 to the initial coset, (this needn't be done explicitely since
## coset 1 is always stored at address 1 in the table), |d| to the current
## coset which is presently traced through the relations, and |last| points
## to the end of the list. The cosets between |d| and |last| are still to
## be traced through the relations. The last coset points to the free list.
##
## The *free list* is a simply linked list.
##
## last next
## | |
## V V
## ... --->|---|-------->|---|--->|---|---> ... --->|---|---> 0
## | | | | | | | |
## ... <---|---| |---| |---| |---|
##
## Again, the references ---> are stored in |forwd|. The pointer |next|
## points to its beginning, the last coset points at 0. The free list might
## be (and initially is) empty. In that case |next| points at 0, too.
##
## The images of the cosets under the generators are compiled in a list
## |table| such that |table[i][s]| contains the image of coset |s| under
## generator |i|. The preimages are stored in a similar way in the list
## |occur|. Here |occur[i][s]| contains the set of all cosets which are
## mapped to |s| under generator |i|. There the empty set is represented by
## 0. The list |occur| is needed for the sole purpose of identifying the
## places in |table| where a coset |t| occurs if this needs to be replaced
## by a coset |s|.
##
InstallMethod(CosetTableOfFpSemigroup,
"for a right congruence on an fp semigroup",
true,
[IsRightMagmaCongruence], 0,
function(cong)
local i, r, d, la, # loop variables,
M, # the semigroup,
gens, rels, # generators |[1..n]| and relations,
semirels, # the rels of the semigroup plus x=x, x\in gens
table, inver, occur, # the coset table and its inverse,
forwd, bckwd, # for- and backward references,
active, # number of active cosets,
next, lust, # the next and the last address,
lanext, # the next lookahead point,
oldkilled,
eqnTrace, # the trace/push,
laTrace, # Lookahead trace
ideNtify, # identification, please,
newCoset, # coset definition,
repLaced, # a translation function,
word_to_list, # aliased to repLaced
defind, i1000, # statistics and info,
pos; # positions.
## When a new coset is defined the following steps are taken. Coset N
## pointed at by |next| is concatenated (doubly linked) to coset L pointed
## at by |last|. Both |last| and |next| move one step forward so that now
## |last| points to coset N.
# how to define a new coset: the image of t under a.
newCoset:= function(t, a)
# increase number of cosets.
active:= active + 1; defind:= defind + 1; i1000:= i1000 + 1;
# if the free list is empty create one of length 1 and link.
if next = 0 then
next:= active; forwd[lust]:= next; forwd[next]:= 0;
fi;
# make new coset active.
bckwd[next]:= lust; lust:= next; next:= forwd[lust];
for i in gens do
table[i][lust]:= 0;
inver[i][lust]:= 0; #C inver[i][lust]:= [];
od;
table[a][t]:= lust;
inver[a][lust]:= t; occur[a][t]:= 0; #C inver[a][lust]:= [t];
# return new coset.
pos[lust]:= defind;
#Error("Break Code\n");
return lust;
end;
# how to trace the coset |d| through an equation |w|.
eqnTrace:= function(w)
local s, t, a, b, u, v, x;
# tracing |d| through left of |w| gives |s|.
s:= d;
for a in [1..Length(w[1]) - 1] do
if 0 < table[w[1][a]][s] then
s:= table[w[1][a]][s];
else
s:= newCoset(s, w[1][a]);
fi;
od;
# tracing |d| through right of |w| gives |t|.
t:= d;
for a in [1..Length(w[2]) - 1] do
if 0 < table[w[2][a]][t] then
t:= table[w[2][a]][t];
else
t:= newCoset(t, w[2][a]);
fi;
od;
# print out statistics.
if 999 < i1000 then
i1000:= 0;
Info(SemigroupToddCoxeterInfo, 2, "#I ", defind, " cosets, ",
active, " active, ", defind - active, " killed.\n");
fi;
a:= w[1][Length(w[1])];
b:= w[2][Length(w[2])];
u:= table[a][s];
v:= table[b][t];
if u = 0 and v = 0 then
x:= newCoset(s, a);
table[b][t]:= x;
if a = b then
occur[a][s]:= t;
occur[a][t]:= 0;
else
inver[b][x]:= t;
occur[b][t]:= 0;
fi;
fi;
if u = 0 and v <> 0 then
table[a][s]:= v;
occur[a][s]:= inver[a][v];
inver[a][v]:= s;
fi;
if u <> 0 and v = 0 then
table[b][t]:= u;
occur[b][t]:= inver[b][u];
inver[b][u]:= t;
fi;
# if |s| differs from |t| start handling coincidences.
if u <> 0 and v <> 0 then
if pos[u] < pos[v] then
ideNtify([v, u]);
elif pos[v] < pos[u] then
ideNtify([u, v]);
fi;
fi;
end;
laTrace:= function(w)
local s, t, a, b, u, v, x;
# tracing |la| through left of |w| gives |s|.
s:= la;
for a in [1..Length(w[1]) - 1] do
if 0 < table[w[1][a]][s] then
s:= table[w[1][a]][s];
else
return;
fi;
od;
# tracing |la| through right of |w| gives |t|.
t:= la;
for a in [1..Length(w[2]) - 1] do
if 0 < table[w[2][a]][t] then
t:= table[w[2][a]][t];
else
return;
fi;
od;
# print out statistics.
if 999 < i1000 then
i1000:= 0;
Info(SemigroupToddCoxeterInfo, 2, "#I ", defind, " cosets, ",
active, " active, ", defind - active, " killed.\n");
fi;
a:= w[1][Length(w[1])];
b:= w[2][Length(w[2])];
u:= table[a][s];
v:= table[b][t];
if u = 0 and v = 0 then
return;
fi;
if u = 0 and v <> 0 then
table[a][s]:= v;
occur[a][s]:= inver[a][v];
inver[a][v]:= s;
fi;
if u <> 0 and v = 0 then
table[b][t]:= u;
occur[b][t]:= inver[b][u];
inver[b][u]:= t;
fi;
# if |v| differs from |u| start handling coincidences.
if u <> 0 and v <> 0 then
if pos[u] < pos[v] then
ideNtify([v, u]);
elif pos[v] < pos[u] then
ideNtify([u, v]);
fi;
fi;
end;
## When two cosets |s| and |t| are to be identified we work on an additional
## *stack* of cosets which holds the list of yet to identify pairs of cosets
## as consecutive entries. After replacing |t| by |s| in the coset table,
## the list of preimages and, if necessary, the current coset, the rows of
## |t| and |s| in the coset table are compared. This produces new entries
## in the table and new coincidences which are written on the stack.
## Afterwards the row of |t| can be discarded in the table. The coset |t|
## is taken out of the active list and linked to the free list. It then
## carries a (negative) backward reference to |s| in order to direct pending
## coincidences to their proper place in the active list.
# how to identify two cosets.
ideNtify:= function(stack)
local i, u, v, s, t, l;
# initialize stack length.
l:= 2;
# loop over the stack.
repeat
# get current addresses of the top pair.
s:= stack[l]; t:= stack[l-1]; l:= l-2;
while bckwd[s] < 0 do
s:= -bckwd[s];
od;
while bckwd[t] < 0 do
t:= -bckwd[t];
od;
# if they still differ do the identification.
if s <> t then
# update counters and pointers.
active:= active - 1;
if t = d then
d:= bckwd[d]; # replace current coset.
fi;
if t = la then
la:= bckwd[la];
fi;
if t = lust then
lust:= bckwd[lust]; # delete top of queue.
else
bckwd[forwd[t]]:= bckwd[t]; # drop |t| from queue.
forwd[bckwd[t]]:= forwd[t];
forwd[t]:= next; # link |t| to free list.
forwd[lust]:= t;
fi;
next:= t;
bckwd[t]:= -s; # leave forwarding address.
# loop over the generators.
for i in gens do
# replace |t| by |s| in coset table ...
#C for v in inver[i][t] do
#C table[i][v]:= s;
#C AddSet(inver[i][s], v);
#C od;
#Error("Break Code");
v:= inver[i][t];
while 0 < v do
u:= occur[i][v];
table[i][v]:= s;
occur[i][v]:= inver[i][s]; inver[i][s]:= v;
v:= u;
od;
# ... and delete |t| from its inverse.
v:= table[i][t];
if 0 < v then
#C RemoveSet(inver[i][v], t);
u:= inver[i][v];
if u = t then
inver[i][v]:= occur[i][t];
else
while occur[i][u] <> t do
u:= occur[i][u];
od;
occur[i][u]:= occur[i][t];
fi;
# draw conclusions.
u:= table[i][s];
if u = 0 then
table[i][s]:= v;
#C AddSet(inver[i][v], s);
occur[i][s]:= inver[i][v]; inver[i][v]:= s;
# stack mismatches such that big is replaced by small.
elif pos[u] < pos[v] then
l:= l+2; stack[l-1]:= v; stack[l]:= u;
elif pos[v] < pos[u] then
l:= l+2; stack[l-1]:= u; stack[l]:= v;
fi;
fi;
od;
fi;
until l = 0;
end;
# how to switch to words over |[1..n]|.
#repLaced:= w-> List(List(w), x-> Position(M.generators, x));
#transforms a word into a list of integers
word_to_list:=function(u)
local i,k,n,l;
n:=Length(ExtRepOfObj(u));
l:=[];
for i in [1..n/2] do
for k in [1..ExtRepOfObj(u)[2*i]] do
Add(l,ExtRepOfObj(u)[2*i-1]);
od;
od;
return l;
end;
repLaced:= w-> word_to_list(w);
## Initially there is only one coset. The coset table and its inverse are
## [[0], [0], ..., [0]] and the linked lists look as follows.
##
## d last next
## | | |
## V V V
## |---|---> 0
## | 1 |
## 0 <---|---|
##
# initialize.
# get the semigroup on which <cong> is a congruence.
M := Source(cong);
# Make sure <M> is an fp semigroup
if not IsFpSemigroup(M) then
Error("right congruence of an fp-semigroup expected");
fi;
gens:= [1..Length(GeneratorsOfSemigroup(M))];
# we add trivial relations to the semigroup relations to
# make sure that if the semigroup has a free generator
# then it does not stop
semirels := Concatenation(RelationsOfFpSemigroup(M),
List(gens,i-> [FreeGeneratorsOfFpSemigroup(M)[i],
FreeGeneratorsOfFpSemigroup(M)[i]]));
rels:= List(semirels, x-> List(x, repLaced));
cong:= List(GeneratingPairsOfRightMagmaCongruence(cong),
x-> List(x, y->repLaced(UnderlyingElement(y))));
table:= []; inver:= []; occur:= [];
for i in gens do
table[i]:= [0];
inver[i]:= [0]; occur[i]:= []; #C inver[i]:= [[]];
od;
active:= 1; defind:= 1; i1000:= 1;
lanext:= Int(SemigroupTCInitialTableSize/(3*Length(gens)));
forwd:= [0]; bckwd:= [0]; pos:= [1];
lust:= 1; next:= 0; la:= 0;
d:= 1;
# first close the congruence tables.
for r in cong do
eqnTrace(r);
od;
# loop over pending def'ns.
repeat
# loop over rel'ns.
for r in rels do
eqnTrace(r);
od;
if active > lanext then
Info(SemigroupToddCoxeterInfo, 1, "Entering Lookahead");
oldkilled:= defind - active;
la:= d;
repeat
for r in rels do
laTrace(r);
od;
la:= forwd[la];
until la = next;
Info(SemigroupToddCoxeterInfo, 1, "Lookahead done, ",
(defind-active) - oldkilled," definitions saved");
Info(SemigroupToddCoxeterInfo, 1, "#I ", defind, " cosets, ",
active, " active, ", defind - active, " killed.");
if active > lanext then
lanext:= lanext * 2;
fi;
la:= 0;
fi;
# proceed to next coset on active list.
d:= forwd[d];
until d = next;
# print statistics.
Info(SemigroupToddCoxeterInfo, 1, "#I ", defind,
" cosets defined, maximum ", Length(forwd), ", ", active, " survive.\n");
# shrink coset table: trace coset 1 through |forwd|.
occur:= 0; pos:= []; inver:= []; i:= 0; d:= 1;
repeat
i:= i+1; pos[i]:= d; inver[d]:= i; d:= forwd[d];
until d = next;
# return final coset table.
for i in gens do
table[i]:= inver{table[i]{pos}};
od;
return table;
end);
############################################################################
##
#O HomomorphismTransformationSemigroup(<S>,<r>)
#A IsomorphismTransformationSemigroup(<S>)
##
## As above the first case should become an attribute of <r>?
##
InstallMethod(IsomorphismTransformationSemigroup,
"<fp-semigroup>", true,
[IsFpSemigroup], 0,
function(S)
return HomomorphismTransformationSemigroup(S,
RightMagmaCongruenceByGeneratingPairs(S,[]));
end);
InstallMethod( HomomorphismTransformationSemigroup,
"for an f.p. semigroup, and a right congruence",
true,
[ IsFpSemigroup, IsRightMagmaCongruence ],
0,
function(S,r)
local
cotab, # the coset table of the semigroup
isofun, # the function describing the isomorphism
ts; # the transformation semigroup
if not S = Source(r) then
TryNextMethod();
fi;
# make a transformation monoid on the congruence classes.
cotab := CosetTableOfFpSemigroup(r);
ts := Semigroup(List(cotab, Transformation));
########################################################
# isofun:
# The function which computes the isomorphism - take
# the ith generator of the fp semigroup to the
# transformation whose image list is the ith row of the
# multiplication table
#
isofun := function(x)
local
i, # counter
prod, # accumulates the value of the image
gensts, # generators of the transformation semigroup
extr; # ext rep of x
extr := ExtRepOfObj(UnderlyingElement(x));
gensts := GeneratorsOfSemigroup(ts);
prod := One(Transformation(cotab[1]));
for i in [1 .. Length(extr)/2] do
prod := prod * gensts[extr[2*i-1]]^extr[2*i];
od;
return prod;
end;
########################################################
# isofun end
return MagmaHomomorphismByFunctionNC(S, ts, isofun);
end);
############################################################################
#E
|