This file is indexed.

/usr/share/gap/lib/tom.gd is in gap-libs 4r6p5-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
#############################################################################
##
#W  tom.gd                   GAP library                        Götz Pfeiffer
#W                                                          & Thomas Merkwitz
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the declarations of the category and family of tables
##  of marks, and their properties, attributes, operations and functions.
##
##  1. Tables of Marks
##  2. More about Tables of Marks
##  3. Table of Marks Objects in ⪆
##  4. Constructing Tables of Marks
##  5. Printing Tables of Marks
##  6. Sorting Tables of Marks
##  7. Technical Details about Tables of Marks
##  8. Attributes of Tables of Marks
##  9. Properties of Tables of Marks
##  10. Other Operations for Tables of Marks
##  11. Accessing Subgroups via Tables of Marks
##  12. The Interface between Tables of Marks and Character Tables
##  13. Generic Construction of Tables of Marks
##


#############################################################################
##
##  1. Tables of Marks
##
##  <#GAPDoc Label="[1]{tom}">
##  The concept of a <E>table of marks</E> was introduced by W.&nbsp;Burnside
##  in his book <Q>Theory of Groups of Finite Order</Q>,
##  see&nbsp;<Cite Key="Bur55"/>.
##  Therefore a table of marks is sometimes called a <E>Burnside matrix</E>.
##  <P/>
##  The table of marks of a finite group <M>G</M> is a matrix whose rows and
##  columns are labelled by the conjugacy classes of subgroups of <M>G</M>
##  and where for two subgroups <M>A</M> and <M>B</M> the <M>(A, B)</M>-entry
##  is the number of fixed points of <M>B</M> in the transitive action of
##  <M>G</M> on the cosets of <M>A</M> in <M>G</M>.
##  So the table of marks characterizes the set of all permutation
##  representations of <M>G</M>.
##  <P/>
##  Moreover, the table of marks gives a compact description of the subgroup
##  lattice of <M>G</M>, since from the numbers of fixed points the numbers
##  of conjugates of a subgroup <M>B</M> contained in a subgroup <M>A</M>
##  can be derived.
##  <P/>
##  A table of marks of a given group <M>G</M> can be constructed from the
##  subgroup lattice of <M>G</M>
##  (see&nbsp;<Ref Sect="Constructing Tables of Marks"/>).
##  For several groups, the table of marks can be restored from the &GAP;
##  library of tables of marks
##  (see&nbsp;<Ref Sect="The Library of Tables of Marks"/>).
##  <P/>
##  Given the table of marks of <M>G</M>, one can display it
##  (see&nbsp;<Ref Sect="Printing Tables of Marks"/>)
##  and derive information about <M>G</M> and its Burnside ring from it
##  (see&nbsp;<Ref Sect="Attributes of Tables of Marks"/>,
##  <Ref Sect="Properties of Tables of Marks"/>,
##  <Ref Sect="Other Operations for Tables of Marks"/>).
##  Moreover, tables of marks in &GAP; provide an easy access to the classes
##  of subgroups of their underlying groups
##  (see&nbsp;<Ref Sect="Accessing Subgroups via Tables of Marks"/>).
##  <#/GAPDoc>
##


#############################################################################
##
##  2. More about Tables of Marks
##
##  <#GAPDoc Label="[2]{tom}">
##  Let <M>G</M> be a finite group with <M>n</M> conjugacy classes of
##  subgroups <M>C_1, C_2, \ldots, C_n</M> and representatives
##  <M>H_i \in C_i</M>, <M>1 \leq i \leq n</M>.
##  The <E>table of marks</E> of <M>G</M> is defined to be the
##  <M>n \times n</M> matrix <M>M = (m_{ij})</M> where the
##  <E>mark</E> <M>m_{ij}</M> is the number of fixed points of the subgroup
##  <M>H_j</M> in the action of <M>G</M> on the right cosets of <M>H_i</M>
##  in <M>G</M>.
##  <P/>
##  Since <M>H_j</M> can only have fixed points if it is contained in a point
##  stabilizer the matrix <M>M</M> is lower triangular if the classes
##  <M>C_i</M> are sorted according to the condition that if <M>H_i</M>
##  is contained in a conjugate of <M>H_j</M> then <M>i \leq j</M>.
##  <P/>
##  Moreover, the diagonal entries <M>m_{ii}</M> are nonzero
##  since <M>m_{ii}</M> equals the index of <M>H_i</M> in its normalizer
##  in <M>G</M>.  Hence <M>M</M> is invertible.
##  Since any transitive action of <M>G</M> is equivalent to an action on the
##  cosets of a subgroup of <M>G</M>, one sees that the table of marks
##  completely characterizes the set of all permutation representations of
##  <M>G</M>.
##  <P/>
##  The marks <M>m_{ij}</M> have further meanings.
##  If <M>H_1</M> is the trivial subgroup of <M>G</M> then each mark
##  <M>m_{i1}</M> in the first column of <M>M</M> is equal to the index of
##  <M>H_i</M> in <M>G</M> since the trivial subgroup fixes all cosets of
##  <M>H_i</M>.
##  If <M>H_n = G</M> then each <M>m_{nj}</M> in the last row of <M>M</M> is
##  equal to <M>1</M> since there is only one coset of <M>G</M> in <M>G</M>.
##  In general, <M>m_{ij}</M> equals the number of conjugates of <M>H_i</M>
##  containing <M>H_j</M>, multiplied by the index of <M>H_i</M> in its
##  normalizer in <M>G</M>.
##  Moreover, the number <M>c_{ij}</M> of conjugates of <M>H_j</M> which are
##  contained in <M>H_i</M> can be derived from the marks <M>m_{ij}</M> via
##  the formula
##  <Display Mode="M">
##  c_{ij} = ( m_{ij} m_{j1} ) / ( m_{i1} m_{jj} )
##  </Display>.
##  <P/>
##  Both the marks <M>m_{ij}</M>  and the numbers of subgroups <M>c_{ij}</M>
##  are needed for the functions described in this chapter.
##  <P/>
##  A brief survey of properties of tables of marks and a description of
##  algorithms for the interactive construction of tables of marks using
##  &GAP; can be found in&nbsp;<Cite Key="Pfe97"/>.
##  <#/GAPDoc>
##


#############################################################################
##
##  3. Table of Marks Objects in &GAP;
##
##  <#GAPDoc Label="[3]{tom}">
##  A table of marks of a group <M>G</M> in &GAP; is represented by an
##  immutable (see&nbsp;<Ref Sect="Mutability and Copyability"/>) object
##  <A>tom</A> in the category <Ref Func="IsTableOfMarks"/>,
##  with defining attributes <Ref Func="SubsTom"/> and
##  <Ref Func="MarksTom"/>.
##  These two attributes encode the matrix of marks in a compressed form.
##  The <Ref Func="SubsTom"/> value of <A>tom</A> is a list where for each
##  conjugacy class of subgroups the class numbers of its subgroups are
##  stored.
##  These are exactly the positions in the corresponding row of the matrix of
##  marks which have nonzero entries.
##  The marks themselves are stored via the <Ref Func="MarksTom"/> value of
##  <A>tom</A>, which is a list that contains for each entry in
##  <C>SubsTom( <A>tom</A> )</C> the corresponding nonzero value of the
##  table of marks.
##  <P/>
##  It is possible to create table of marks objects that do not store a
##  group, moreover one can create a table of marks object from a matrix of
##  marks (see&nbsp;<Ref Func="TableOfMarks" Label="for a matrix"/>).
##  So it may happen that a table of marks object in &GAP; is in fact
##  <E>not</E> the table of marks of a group.
##  To some extent, the consistency of a table of marks object can be checked
##  (see&nbsp;<Ref Sect="Other Operations for Tables of Marks"/>),
##  but &GAP; knows no general way to prove or disprove that a given matrix
##  of nonnegative integers is the matrix of marks for a group.
##  Many functions for tables of marks work well without access to the group
##  &ndash;this is one of the arguments why tables of marks are so
##  useful&ndash;,
##  but for example normalizers (see&nbsp;<Ref Func="NormalizerTom"/>)
##  and derived subgroups (see&nbsp;<Ref Func="DerivedSubgroupTom"/>) of
##  subgroups are in general not uniquely determined by the matrix of marks.
##  <P/>
##  &GAP; tables of marks are assumed to be in lower triangular form,
##  that is, if a subgroup from the conjugacy class corresponding to the
##  <M>i</M>-th row is contained in a subgroup from the class corresponding
##  to the <M>j</M>-th row j then <M>i \leq j</M>.
##  <P/>
##  The <Ref Func="MarksTom"/> information can be computed from the values of
##  the attributes <Ref Func="NrSubsTom"/>, <Ref Func="LengthsTom"/>,
##  <Ref Func="OrdersTom"/>, and <Ref Func="SubsTom"/>.
##  <Ref Func="NrSubsTom"/> stores a list containing for each entry in the
##  <Ref Func="SubsTom"/> value the corresponding number of conjugates that
##  are contained in a subgroup,
##  <Ref Func="LengthsTom"/> a list containing for each conjugacy class
##  of subgroups its length,
##  and <Ref Func="OrdersTom"/> a list containing for each class of subgroups
##  their order.
##  So the <Ref Func="MarksTom"/> value of <A>tom</A> may be missing
##  provided that the values of <Ref Func="NrSubsTom"/>,
##  <Ref Func="LengthsTom"/>, and <Ref Func="OrdersTom"/> are stored in
##  <A>tom</A>.
##  <P/>
##  Additional information about a table of marks is needed by some
##  functions.
##  The class numbers of normalizers in <M>G</M> and the number of the
##  derived subgroup of <M>G</M> can be stored via appropriate attributes
##  (see&nbsp;<Ref Func="NormalizersTom"/>,
##  <Ref Func="DerivedSubgroupTom"/>).
##  <P/>
##  If <A>tom</A> stores its group <M>G</M> and a bijection from the rows and
##  columns of the matrix of marks of <A>tom</A> to the classes of subgroups
##  of <M>G</M> then clearly normalizers, derived subgroup etc.&nbsp;can be
##  computed from this information.
##  But in general a table of marks need not have access to <M>G</M>,
##  for example <A>tom</A> might have been constructed from a generic table
##  of marks
##  (see&nbsp;<Ref Sect="Generic Construction of Tables of Marks"/>),
##  or as table of marks of a factor group from a given table of marks
##  (see&nbsp;<Ref Func="FactorGroupTom"/>).
##  Access to the group <M>G</M> is provided by the attribute
##  <Ref Attr="UnderlyingGroup" Label="for tables of marks"/>
##  if this value is set.
##  Access to the relevant information about conjugacy classes of subgroups
##  of <M>G</M>
##  &ndash;compatible with the ordering of rows and columns of the marks in
##  <A>tom</A>&ndash; is signalled by the filter
##  <Ref Func="IsTableOfMarksWithGens"/>.
##  <#/GAPDoc>
##


#############################################################################
##
##  4. Constructing Tables of Marks
##


#############################################################################
##
#A  TableOfMarks( <G> )
#A  TableOfMarks( <string> )
#A  TableOfMarks( <matrix> )
##
##  <#GAPDoc Label="TableOfMarks">
##  <ManSection>
##  <Attr Name="TableOfMarks" Arg='G' Label="for a group"/>
##  <Attr Name="TableOfMarks" Arg='string' Label="for a string"/>
##  <Attr Name="TableOfMarks" Arg='matrix' Label="for a matrix"/>
##
##  <Description>
##  In the first form, <A>G</A> must be a finite group,
##  and <Ref Func="TableOfMarks" Label="for a group"/>
##  constructs the table of marks of <A>G</A>.
##  This computation requires the knowledge of the complete subgroup lattice
##  of <A>G</A> (see&nbsp;<Ref Func="LatticeSubgroups"/>).
##  If the lattice is not yet stored then it will be constructed.
##  This may take a while if <A>G</A> is large.
##  The result has the <Ref Func="IsTableOfMarksWithGens"/> value
##  <K>true</K>.
##  <P/>
##  In the second form, <A>string</A> must be a string,
##  and <Ref Func="TableOfMarks" Label="for a string"/> gets
##  the table of marks with name <A>string</A> from the &GAP; library
##  (see <Ref Sect="The Library of Tables of Marks"/>).
##  If no table of marks with this name is contained in the library then
##  <K>fail</K> is returned.
##  <P/>
##  In the third form, <A>matrix</A> must be a matrix or a list of rows
##  describing a lower triangular matrix where the part above the diagonal is
##  omitted.
##  For such an argument <A>matrix</A>,
##  <Ref Func="TableOfMarks" Label="for a matrix"/> returns
##  a table of marks object
##  (see&nbsp;<Ref Sect="Table of Marks Objects in GAP"/>)
##  for which <A>matrix</A> is the matrix of marks.
##  Note that not every matrix
##  (containing only nonnegative integers and having lower triangular shape)
##  describes a table of marks of a group.
##  Necessary conditions are checked with
##  <Ref Func="IsInternallyConsistent" Label="for tables of marks"/>
##  (see&nbsp;<Ref Sect="Other Operations for Tables of Marks"/>),
##  and <K>fail</K> is returned if <A>matrix</A> is proved not to describe a
##  matrix of marks;
##  but if <Ref Func="TableOfMarks" Label="for a matrix"/> returns a table of
##  marks object created from a matrix then it may still happen that this
##  object does not describe the table of marks of a group.
##  <P/>
##  For an overview of operations for table of marks objects,
##  see the introduction to Chapter&nbsp;<Ref Chap="Tables of Marks"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> tom:= TableOfMarks( AlternatingGroup( 5 ) );
##  TableOfMarks( Alt( [ 1 .. 5 ] ) )
##  gap> TableOfMarks( "J5" );
##  fail
##  gap> a5:= TableOfMarks( "A5" );
##  TableOfMarks( "A5" )
##  gap> mat:=
##  > [ [ 60, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 30, 2, 0, 0, 0, 0, 0, 0, 0 ], 
##  >   [ 20, 0, 2, 0, 0, 0, 0, 0, 0 ], [ 15, 3, 0, 3, 0, 0, 0, 0, 0 ], 
##  >   [ 12, 0, 0, 0, 2, 0, 0, 0, 0 ], [ 10, 2, 1, 0, 0, 1, 0, 0, 0 ], 
##  >   [ 6, 2, 0, 0, 1, 0, 1, 0, 0 ], [ 5, 1, 2, 1, 0, 0, 0, 1, 0 ], 
##  >   [ 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ];;
##  gap> TableOfMarks( mat );
##  TableOfMarks( <9 classes> )
##  ]]></Example>
##  <P/>
##  The following <Ref Func="TableOfMarks" Label="for a group"/> methods
##  for a group are installed.
##  <List>
##  <Item>
##    If the group is known to be cyclic then
##    <Ref Func="TableOfMarks" Label="for a group"/> constructs the
##    table of marks essentially without the group, instead the knowledge
##    about the structure of cyclic groups is used.
##  </Item>
##  <Item>
##    If the lattice of subgroups is already stored in the group then
##    <Ref Func="TableOfMarks" Label="for a group"/> computes the
##    table of marks from the lattice
##    (see&nbsp;<Ref Func="TableOfMarksByLattice"/>).
##  </Item>
##  <Item>
##    If the group is known to be solvable then
##    <Ref Func="TableOfMarks" Label="for a group"/> takes the
##    lattice of subgroups (see&nbsp;<Ref Func="LatticeSubgroups"/>) of the
##    group &ndash;which means that the lattice is computed if it is not yet
##    stored&ndash;
##    and then computes the table of marks from it.
##    This method is also accessible via the global function
##    <Ref Func="TableOfMarksByLattice"/>.
##  </Item>
##  <Item>
##    If the group doesn't know its lattice of subgroups or its conjugacy
##    classes of subgroups then the table of marks and the conjugacy
##    classes of subgroups are computed at the same time by the cyclic
##    extension method.
##    Only the table of marks is stored because the conjugacy classes of
##    subgroups or the lattice of subgroups can be easily read off
##    (see&nbsp;<Ref Func="LatticeSubgroupsByTom"/>).
##  </Item>
##  </List>
##  <P/>
##  Conversely, the lattice of subgroups of a group with known table of marks
##  can be computed using the table of marks, via the function
##  <Ref Func="LatticeSubgroupsByTom"/>.
##  This is also installed as a method for <Ref Func="LatticeSubgroups"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "TableOfMarks", IsGroup );
DeclareAttribute( "TableOfMarks", IsString );
DeclareAttribute( "TableOfMarks", IsTable );


#############################################################################
##
#F  TableOfMarksByLattice( <G> )
##
##  <#GAPDoc Label="TableOfMarksByLattice">
##  <ManSection>
##  <Func Name="TableOfMarksByLattice" Arg='G'/>
##
##  <Description>
##  <Ref Func="TableOfMarksByLattice"/> computes the table of marks of the
##  group <A>G</A> from the lattice of subgroups of <A>G</A>.
##  This lattice is computed via <Ref Func="LatticeSubgroups"/>
##  if it is not yet stored in <A>G</A>.
##  The function <Ref Func="TableOfMarksByLattice"/> is installed as a method
##  for <Ref Func="TableOfMarks" Label="for a group"/> for solvable groups
##  and groups with stored subgroup lattice,
##  and is available as a global variable only in order to provide
##  explicit access to this method.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "TableOfMarksByLattice" );


#############################################################################
##
#F  LatticeSubgroupsByTom( <G> )
##
##  <#GAPDoc Label="LatticeSubgroupsByTom">
##  <ManSection>
##  <Func Name="LatticeSubgroupsByTom" Arg='G'/>
##
##  <Description>
##  <Ref Func="LatticeSubgroupsByTom"/> computes the lattice of subgroups of
##  <A>G</A> from the table of marks of <A>G</A>,
##  using <Ref Func="RepresentativeTom"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "LatticeSubgroupsByTom" );


#############################################################################
##
##  5. Printing Tables of Marks
##
##  <#GAPDoc Label="[5]{tom}">
##  <ManSection>
##  <Meth Name="ViewObj" Arg='tom' Label="for a table of marks"/>
##
##  <Description>
##  The default <Ref Func="ViewObj"/> method for tables of marks prints
##  the string <C>"TableOfMarks"</C>,
##  followed by &ndash;if known&ndash; the identifier
##  (see&nbsp;<Ref Attr="Identifier" Label="for tables of marks"/>)
##  or the group of the table of marks enclosed in brackets;
##  if neither group nor identifier are known then just
##  the number of conjugacy classes of subgroups is printed instead.
##  </Description>
##  </ManSection>
##
##  <ManSection>
##  <Meth Name="PrintObj" Arg='tom' Label="for a table of marks"/>
##
##  <Description>
##  The default <Ref Func="PrintObj"/> method for tables of marks
##  does the same as <Ref Func="ViewObj"/>,
##  except that <Ref Func="PrintObj"/> is used for the group instead of
##  <Ref Func="ViewObj"/>.
##  </Description>
##  </ManSection>
##
##  <ManSection>
##  <Meth Name="Display" Arg='tom[, arec]' Label="for a table of marks"/>
##
##  <Description>
##  The default <Ref Func="Display"/> method for a table of marks <A>tom</A>
##  produces a formatted output of the marks in <A>tom</A>.
##  Each line of output begins with the number of the corresponding class of
##  subgroups.
##  This number is repeated if the output spreads over several pages.
##  The number of columns printed at one time depends on the actual
##  line length, which can be accessed and changed by the function
##  <Ref Func="SizeScreen"/>.
##  <P/>
##  An interactive variant of <Ref Oper="Display"/> is the
##  <Ref Oper="Browse" BookName="browse"/> method for tables of marks
##  that is provided by the &GAP; package <Package>Browse</Package>,
##  see <Ref Meth="Browse" Label="for tables of marks"
##  BookName="browse"/>.
##  <P/>
##  The optional second argument <A>arec</A> of <Ref Func="Display"/> can be
##  used to change the default style for displaying a table of marks.
##  <A>arec</A> must be a record, its relevant components are the following.
##  <P/>
##  <List>
##  <Mark><C>classes</C></Mark>
##  <Item>
##    a list of class numbers to select only the rows and columns of the
##    matrix that correspond to this list for printing,
##  </Item>
##  <Mark><C>form</C></Mark>
##  <Item>
##    one of the strings <C>"subgroups"</C>, <C>"supergroups"</C>;
##    in the former case, at position <M>(i,j)</M> of the matrix the number
##    of conjugates of <M>H_j</M> contained in <M>H_i</M> is printed,
##    and in the latter case, at position <M>(i,j)</M> the number of
##    conjugates of <M>H_i</M> which contain <M>H_j</M> is printed.
##  </Item>
##  </List>
##  <P/>
##  <Example><![CDATA[
##  gap> tom:= TableOfMarks( "A5" );;
##  gap> Display( tom );
##  1:  60
##  2:  30 2
##  3:  20 . 2
##  4:  15 3 . 3
##  5:  12 . . . 2
##  6:  10 2 1 . . 1
##  7:   6 2 . . 1 . 1
##  8:   5 1 2 1 . . . 1
##  9:   1 1 1 1 1 1 1 1 1
##  
##  gap> Display( tom, rec( classes:= [ 1, 2, 3, 4, 8 ] ) );
##  1:  60
##  2:  30 2
##  3:  20 . 2
##  4:  15 3 . 3
##  8:   5 1 2 1 1
##  
##  gap> Display( tom, rec( form:= "subgroups" ) );
##  1:  1
##  2:  1  1
##  3:  1  .  1
##  4:  1  3  . 1
##  5:  1  .  . . 1
##  6:  1  3  1 . .  1
##  7:  1  5  . . 1  . 1
##  8:  1  3  4 1 .  . . 1
##  9:  1 15 10 5 6 10 6 5 1
##  
##  gap> Display( tom, rec( form:= "supergroups" ) );
##  1:   1
##  2:  15 1
##  3:  10 . 1
##  4:   5 1 . 1
##  5:   6 . . . 1
##  6:  10 2 1 . . 1
##  7:   6 2 . . 1 . 1
##  8:   5 1 2 1 . . . 1
##  9:   1 1 1 1 1 1 1 1 1
##  
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##


#############################################################################
##
##  6. Sorting Tables of Marks
##


#############################################################################
##
#C  IsTableOfMarks( <obj> )
##
##  <#GAPDoc Label="IsTableOfMarks">
##  <ManSection>
##  <Filt Name="IsTableOfMarks" Arg='obj' Type='Category'/>
##
##  <Description>
##  Each table of marks belongs to this category.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsTableOfMarks", IsObject );


#############################################################################
##
#O  SortedTom( <tom>, <perm> )
##
##  <#GAPDoc Label="SortedTom">
##  <ManSection>
##  <Oper Name="SortedTom" Arg='tom, perm'/>
##
##  <Description>
##  <Ref Func="SortedTom"/> returns a table of marks where the rows and
##  columns of the table of marks <A>tom</A> are reordered according to the
##  permutation <A>perm</A>.
##  <P/>
##  <E>Note</E> that in each table of marks in &GAP;,
##  the matrix of marks is assumed to have lower triangular shape
##  (see&nbsp;<Ref Sect="Table of Marks Objects in GAP"/>).
##  If the permutation <A>perm</A> does <E>not</E> have this property then
##  the functions for tables of marks might return wrong results when applied
##  to the output of <Ref Func="SortedTom"/>.
##  <P/>
##  The returned table of marks has only those attribute values stored that
##  are known for <A>tom</A> and listed in
##  <Ref Var="TableOfMarksComponents"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> tom:= TableOfMarksCyclic( 6 );;  Display( tom );
##  1:  6
##  2:  3 3
##  3:  2 . 2
##  4:  1 1 1 1
##  
##  gap> sorted:= SortedTom( tom, (2,3) );;  Display( sorted );
##  1:  6
##  2:  2 2
##  3:  3 . 3
##  4:  1 1 1 1
##  
##  gap> wrong:= SortedTom( tom, (1,2) );;  Display( wrong );
##  1:  3
##  2:  . 6
##  3:  . 2 2
##  4:  1 1 1 1
##  
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "SortedTom", [ IsTableOfMarks, IsPerm ] );


#############################################################################
##
#A  PermutationTom( <tom> )
##
##  <#GAPDoc Label="PermutationTom">
##  <ManSection>
##  <Attr Name="PermutationTom" Arg='tom'/>
##
##  <Description>
##  For the table of marks <A>tom</A> of the group <M>G</M> stored as
##  <Ref Attr="UnderlyingGroup" Label="for tables of marks"/>
##  value of <A>tom</A>,
##  <Ref Func="PermutationTom"/> is a permutation <M>\pi</M> such that the
##  <M>i</M>-th conjugacy class of subgroups of <M>G</M> belongs to the
##  <M>i^\pi</M>-th column and row of marks in <A>tom</A>.
##  <P/>
##  This attribute value is bound only if <A>tom</A> was obtained from
##  another table of marks by permuting with <Ref Func="SortedTom"/>,
##  and there is no default method to compute its value.
##  <P/>
##  The attribute is necessary because the original and the sorted table of
##  marks have the same identifier and the same group,
##  and information computed from the group may depend on the ordering of
##  marks, for example the fusion from the ordinary character table of
##  <M>G</M> into <A>tom</A>.
##  <P/>
##  <Example><![CDATA[
##  gap> MarksTom( tom )[2];
##  [ 3, 3 ]
##  gap> MarksTom( sorted )[2];
##  [ 2, 2 ]
##  gap> HasPermutationTom( sorted );
##  true
##  gap> PermutationTom( sorted );
##  (2,3)
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "PermutationTom", IsTableOfMarks );


#############################################################################
##
##  7. Technical Details about Tables of Marks
##


#############################################################################
##
#V  InfoTom
##
##  <#GAPDoc Label="InfoTom">
##  <ManSection>
##  <InfoClass Name="InfoTom"/>
##
##  <Description>
##  is the info class for computations concerning tables of marks.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareInfoClass( "InfoTom" );


#############################################################################
##
#V  TableOfMarksFamily
##
##  <#GAPDoc Label="TableOfMarksFamily">
##  <ManSection>
##  <Var Name="TableOfMarksFamily"/>
##
##  <Description>
##  Each table of marks belongs to this family.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BindGlobal( "TableOfMarksFamily",
    NewFamily( "TableOfMarksFamily", IsTableOfMarks ) );


#############################################################################
##
#F  ConvertToTableOfMarks( <record> )
##
##  <#GAPDoc Label="ConvertToTableOfMarks">
##  <ManSection>
##  <Func Name="ConvertToTableOfMarks" Arg='record'/>
##
##  <Description>
##  <Ref Func="ConvertToTableOfMarks"/> converts a record with components
##  from <Ref Var="TableOfMarksComponents"/> into a table of marks object
##  with the corresponding attributes.
##  <P/>
##  <Example><![CDATA[
##  gap> record:= rec( MarksTom:= [ [ 4 ], [ 2, 2 ], [ 1, 1, 1 ] ],
##  >  SubsTom:= [ [ 1 ], [ 1, 2 ], [ 1, 2, 3 ] ] );;
##  gap> ConvertToTableOfMarks( record );;
##  gap> record;
##  TableOfMarks( <3 classes> )
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "ConvertToTableOfMarks" );


#############################################################################
##
##  8. Attributes of Tables of Marks
##


#############################################################################
##
#A  MarksTom( <tom> ) . . . . . . . . . . . . . . . . . .  defining attribute
#A  SubsTom( <tom> )  . . . . . . . . . . . . . . . . . .  defining attribute
##
##  <#GAPDoc Label="MarksTom">
##  <ManSection>
##  <Attr Name="MarksTom" Arg='tom'/>
##  <Attr Name="SubsTom" Arg='tom'/>
##
##  <Description>
##  The matrix of marks (see&nbsp;<Ref Sect="More about Tables of Marks"/>)
##  of the table of marks <A>tom</A> is stored in a compressed form
##  where zeros are omitted,
##  using the attributes <Ref Func="MarksTom"/> and <Ref Func="SubsTom"/>.
##  If <M>M</M> is the square matrix of marks of <A>tom</A>
##  (see&nbsp;<Ref Func="MatTom"/>) then the <Ref Func="SubsTom"/> value of
##  <A>tom</A> is a list that contains at position <M>i</M> the list
##  of all positions of nonzero entries of the <M>i</M>-th row of <M>M</M>,
##  and the <Ref Func="MarksTom"/> value of <A>tom</A> is a list
##  that contains at position <M>i</M> the list of the corresponding marks.
##  <P/>
##  <Ref Func="MarksTom"/> and <Ref Func="SubsTom"/> are defining attributes
##  of tables of marks (see&nbsp;<Ref Sect="Table of Marks Objects in GAP"/>).
##  There is no default method for computing the <Ref Func="SubsTom"/> value,
##  and the default <Ref Func="MarksTom"/> method needs the values of
##  <Ref Func="NrSubsTom"/> and <Ref Func="OrdersTom"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> a5:= TableOfMarks( "A5" );
##  TableOfMarks( "A5" )
##  gap> MarksTom( a5 );
##  [ [ 60 ], [ 30, 2 ], [ 20, 2 ], [ 15, 3, 3 ], [ 12, 2 ], 
##    [ 10, 2, 1, 1 ], [ 6, 2, 1, 1 ], [ 5, 1, 2, 1, 1 ], 
##    [ 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ]
##  gap> SubsTom( a5 );
##  [ [ 1 ], [ 1, 2 ], [ 1, 3 ], [ 1, 2, 4 ], [ 1, 5 ], [ 1, 2, 3, 6 ], 
##    [ 1, 2, 5, 7 ], [ 1, 2, 3, 4, 8 ], [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "MarksTom", IsTableOfMarks );
DeclareAttribute( "SubsTom", IsTableOfMarks );


#############################################################################
##
#A  NrSubsTom( <tom> )
#A  OrdersTom( <tom> )
##
##  <#GAPDoc Label="NrSubsTom">
##  <ManSection>
##  <Attr Name="NrSubsTom" Arg='tom'/>
##  <Attr Name="OrdersTom" Arg='tom'/>
##
##  <Description>
##  Instead of storing the marks (see&nbsp;<Ref Func="MarksTom"/>) of the
##  table of marks <A>tom</A> one can use a matrix which contains at position
##  <M>(i,j)</M> the number of subgroups of conjugacy class <M>j</M>
##  that are contained in one member of the conjugacy class <M>i</M>.
##  These values are stored in the <Ref Func="NrSubsTom"/> value in the same
##  way as the marks in the <Ref Func="MarksTom"/> value.
##  <P/>
##  <Ref Func="OrdersTom"/> returns a list that contains at position <M>i</M>
##  the order of a representative of the <M>i</M>-th conjugacy class of
##  subgroups of <A>tom</A>.
##  <P/>
##  One can compute the <Ref Func="NrSubsTom"/> and <Ref Func="OrdersTom"/>
##  values from the <Ref Func="MarksTom"/> value of <A>tom</A>
##  and vice versa.
##  <P/>
##  <Example><![CDATA[
##  gap> NrSubsTom( a5 );
##  [ [ 1 ], [ 1, 1 ], [ 1, 1 ], [ 1, 3, 1 ], [ 1, 1 ], [ 1, 3, 1, 1 ], 
##    [ 1, 5, 1, 1 ], [ 1, 3, 4, 1, 1 ], [ 1, 15, 10, 5, 6, 10, 6, 5, 1 ] 
##   ]
##  gap> OrdersTom( a5 );
##  [ 1, 2, 3, 4, 5, 6, 10, 12, 60 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "NrSubsTom", IsTableOfMarks );
DeclareAttribute( "OrdersTom", IsTableOfMarks );


#############################################################################
##
#A  LengthsTom( <tom> )
##
##  <#GAPDoc Label="LengthsTom">
##  <ManSection>
##  <Attr Name="LengthsTom" Arg='tom'/>
##
##  <Description>
##  For a table of marks <A>tom</A>,
##  <Ref Func="LengthsTom"/> returns a list of the lengths of
##  the conjugacy classes of subgroups.
##  <P/>
##  <Example><![CDATA[
##  gap> LengthsTom( a5 );
##  [ 1, 15, 10, 5, 6, 10, 6, 5, 1 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "LengthsTom", IsTableOfMarks );


#############################################################################
##
#A  ClassTypesTom( <tom> )
##
##  <#GAPDoc Label="ClassTypesTom">
##  <ManSection>
##  <Attr Name="ClassTypesTom" Arg='tom'/>
##
##  <Description>
##  <Ref Attr="ClassTypesTom"/> distinguishes isomorphism types of the
##  classes of subgroups of the table of marks <A>tom</A>
##  as far as this is possible from the <Ref Func="SubsTom"/> and
##  <Ref Func="MarksTom"/> values of <A>tom</A>.
##  <P/>
##  Two subgroups are clearly not isomorphic if they have different orders.
##  Moreover, isomorphic subgroups must contain the same number of subgroups
##  of each type.
##  <P/>
##  Each type is represented by a positive integer.
##  <Ref Attr="ClassTypesTom"/> returns the list which contains for each
##  class of subgroups its corresponding type.
##  <P/>
##  <Example><![CDATA[
##  gap> a6:= TableOfMarks( "A6" );;
##  gap> ClassTypesTom( a6 );
##  [ 1, 2, 3, 3, 4, 5, 6, 6, 7, 7, 8, 9, 10, 11, 11, 12, 13, 13, 14, 15, 
##    15, 16 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "ClassTypesTom", IsTableOfMarks );


#############################################################################
##
#A  ClassNamesTom( <tom> )
##
##  <#GAPDoc Label="ClassNamesTom">
##  <ManSection>
##  <Attr Name="ClassNamesTom" Arg='tom'/>
##
##  <Description>
##  <Ref Func="ClassNamesTom"/> constructs generic names for the conjugacy
##  classes of subgroups of the table of marks <A>tom</A>.
##  In general, the generic name of a class of non-cyclic subgroups consists
##  of three parts and has the form
##  <C>"(</C><A>o</A><C>)_{</C><A>t</A><C>}</C><A>l</A><C>"</C>,
##  where <A>o</A> indicates the order of the subgroup,
##  <A>t</A> is a number that distinguishes different types of subgroups of
##  the same order, and <A>l</A> is a letter that distinguishes classes of
##  subgroups of the same type and order.
##  The type of a subgroup is determined by the numbers of its subgroups of
##  other types (see&nbsp;<Ref Func="ClassTypesTom"/>).
##  This is slightly weaker than isomorphism.
##  <P/>
##  The letter is omitted if there is only one class of subgroups of that
##  order and type,
##  and the type is omitted if there is only one class of that order.
##  Moreover, the braces <C>{}</C>  around the type are omitted
##  if the type number has only one digit.
##  <P/>
##  For classes of cyclic subgroups, the parentheses round the order and the
##  type are omitted.
##  Hence the most general form of their generic names is
##  <C>"<A>o</A>,<A>l</A>"</C>.
##  Again, the letter is omitted if there is only one class of cyclic
##  subgroups of that order.
##  <P/>
##  <Example><![CDATA[
##  gap> ClassNamesTom( a6 );
##  [ "1", "2", "3a", "3b", "5", "4", "(4)_2a", "(4)_2b", "(6)a", "(6)b", 
##    "(8)", "(9)", "(10)", "(12)a", "(12)b", "(18)", "(24)a", "(24)b", 
##    "(36)", "(60)a", "(60)b", "(360)" ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "ClassNamesTom", IsTableOfMarks );


#############################################################################
##
#A  FusionsTom( <tom> )
##
##  <#GAPDoc Label="FusionsTom">
##  <ManSection>
##  <Attr Name="FusionsTom" Arg='tom'/>
##
##  <Description>
##  For a table of marks <A>tom</A>,
##  <Ref Func="FusionsTom"/> is a list of fusions into other tables of marks.
##  Each fusion is a list of length  two, the  first  entry being the
##  <Ref Attr="Identifier" Label="for tables of marks"/>) value
##  of the image table, the second entry being the list of images of
##  the class positions of <A>tom</A> in the image table.
##  <P/>
##  This attribute is mainly used for tables of marks in the &GAP; library
##  (see&nbsp;<Ref Sect="The Library of Tables of Marks"/>).
##  <P/>
##  <Example><![CDATA[
##  gap> fus:= FusionsTom( a6 );;
##  gap> fus[1];
##  [ "L3(4)", 
##    [ 1, 2, 3, 3, 14, 5, 9, 7, 15, 15, 24, 26, 27, 32, 33, 50, 57, 55, 
##        63, 73, 77, 90 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "FusionsTom", IsTableOfMarks, "mutable" );


#############################################################################
##
#A  UnderlyingGroup( <tom> )
##
##  <#GAPDoc Label="UnderlyingGroup:tom">
##  <ManSection>
##  <Attr Name="UnderlyingGroup" Arg='tom' Label="for tables of marks"/>
##
##  <Description>
##  <Ref Func="UnderlyingGroup" Label="for tables of marks"/> is used
##  to access an underlying group that is stored on the table of marks
##  <A>tom</A>.
##  There is no default method to compute an underlying group if it is not
##  stored.
##  <P/>
##  <Example><![CDATA[
##  gap> UnderlyingGroup( a6 );
##  Group([ (1,2)(3,4), (1,2,4,5)(3,6) ])
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "UnderlyingGroup", IsTableOfMarks );


#############################################################################
##
#A  IdempotentsTom( <tom> )
#A  IdempotentsTomInfo( <tom> )
##
##  <#GAPDoc Label="IdempotentsTom">
##  <ManSection>
##  <Attr Name="IdempotentsTom" Arg='tom'/>
##  <Attr Name="IdempotentsTomInfo" Arg='tom'/>
##
##  <Description>
##  <Ref Func="IdempotentsTom"/> encodes the idempotents of the integral
##  Burnside ring described by the table of marks <A>tom</A>.
##  The return value is a list <M>l</M> of positive integers such that each
##  row vector describing a primitive idempotent has value <M>1</M> at all
##  positions with the same entry in <M>l</M>, and <M>0</M> at all other
##  positions.
##  <P/>
##  According to A.&nbsp;Dress&nbsp;<Cite Key="Dre69"/>
##  (see also&nbsp;<Cite Key="Pfe97"/>),
##  these idempotents correspond to the classes of perfect subgroups,
##  and each such idempotent is the characteristic function of all those
##  subgroups that arise by cyclic extension from the corresponding perfect
##  subgroup
##  (see&nbsp;<Ref Func="CyclicExtensionsTom" Label="for a prime"/>).
##  <P/>
##  <Ref Func="IdempotentsTomInfo"/> returns a record with components
##  <C>fixpointvectors</C> and <C>primidems</C>, both bound to lists.
##  The <M>i</M>-th entry of the <C>fixpointvectors</C> list is the
##  <M>0-1</M>-vector describing the <M>i</M>-th primitive idempotent,
##  and the <M>i</M>-th entry of <C>primidems</C> is the decomposition of this
##  idempotent in the rows of <A>tom</A>.
##  <P/>
##  <Example><![CDATA[
##  gap> IdempotentsTom( a5 );
##  [ 1, 1, 1, 1, 1, 1, 1, 1, 9 ]
##  gap> IdempotentsTomInfo( a5 );
##  rec( 
##    fixpointvectors := [ [ 1, 1, 1, 1, 1, 1, 1, 1, 0 ], 
##        [ 0, 0, 0, 0, 0, 0, 0, 0, 1 ] ], 
##    primidems := [ [ 1, -2, -1, 0, 0, 1, 1, 1 ], 
##        [ -1, 2, 1, 0, 0, -1, -1, -1, 1 ] ] )
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "IdempotentsTom", IsTableOfMarks );
DeclareAttribute( "IdempotentsTomInfo", IsTableOfMarks );


#############################################################################
##
#A  Identifier( <tom> )
##
##  <#GAPDoc Label="Identifier:tom">
##  <ManSection>
##  <Attr Name="Identifier" Arg='tom' Label="for tables of marks"/>
##
##  <Description>
##  The identifier of a table of marks <A>tom</A> is a string.
##  It is used for printing the table of marks
##  (see&nbsp;<Ref Sect="Printing Tables of Marks"/>)
##  and in fusions between tables of marks
##  (see&nbsp;<Ref Func="FusionsTom"/>).
##  <P/>
##  If <A>tom</A> is a table of marks from the &GAP; library of tables of
##  marks (see&nbsp;<Ref Sect="The Library of Tables of Marks"/>)
##  then it has an identifier,
##  and if <A>tom</A> was constructed from a group with <Ref Func="Name"/>
##  then this name is chosen as
##  <Ref Func="Identifier" Label="for tables of marks"/> value.
##  There is no default method to compute an identifier in all other cases.
##  <P/>
##  <Example><![CDATA[
##  gap> Identifier( a5 );
##  "A5"
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "Identifier", IsTableOfMarks );


#############################################################################
##
#A  MatTom( <tom> )
##
##  <#GAPDoc Label="MatTom">
##  <ManSection>
##  <Attr Name="MatTom" Arg='tom'/>
##
##  <Description>
##  <Ref Func="MatTom"/> returns the square matrix of marks
##  (see&nbsp;<Ref Sect="More about Tables of Marks"/>) of the table of marks
##  <A>tom</A> which is stored in a compressed form using the attributes
##  <Ref Func="MarksTom"/> and <Ref Func="SubsTom"/>
##  This may need substantially more space than the values of
##  <Ref Func="MarksTom"/> and <Ref Func="SubsTom"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> MatTom( a5 );
##  [ [ 60, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 30, 2, 0, 0, 0, 0, 0, 0, 0 ], 
##    [ 20, 0, 2, 0, 0, 0, 0, 0, 0 ], [ 15, 3, 0, 3, 0, 0, 0, 0, 0 ], 
##    [ 12, 0, 0, 0, 2, 0, 0, 0, 0 ], [ 10, 2, 1, 0, 0, 1, 0, 0, 0 ], 
##    [ 6, 2, 0, 0, 1, 0, 1, 0, 0 ], [ 5, 1, 2, 1, 0, 0, 0, 1, 0 ], 
##    [ 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "MatTom", IsTableOfMarks );


#############################################################################
##
#A  MoebiusTom( <tom> )
##
##  <#GAPDoc Label="MoebiusTom">
##  <ManSection>
##  <Attr Name="MoebiusTom" Arg='tom'/>
##
##  <Description>
##  <Ref Func="MoebiusTom"/> computes the Möbius values both of the subgroup
##  lattice of the group <M>G</M> with table of marks <A>tom</A>
##  and of the poset of conjugacy classes of subgroups of <M>G</M>.
##  It returns a record where the component
##  <C>mu</C> contains the Möbius values of the subgroup lattice,
##  and the component <C>nu</C> contains the Möbius values of the poset.
##  <P/>
##  Moreover, according to an observation of Isaacs et al.
##  (see&nbsp;<Cite Key="HIO89"/>, <Cite Key="Pah93"/>),
##  the values on the subgroup lattice often can be derived
##  from those of the poset of conjugacy classes.
##  These <Q>expected values</Q> are returned in the component <C>ex</C>,
##  and the list of numbers of those subgroups where the expected value does
##  not coincide with the actual value are returned in the component
##  <C>hyp</C>.
##  For the computation of these values, the position of the derived subgroup
##  of <M>G</M> is needed (see&nbsp;<Ref Func="DerivedSubgroupTom"/>).
##  If it is not uniquely determined then the result does not have the
##  components <C>ex</C> and <C>hyp</C>.
##  <P/>
##  <Example><![CDATA[
##  gap> MoebiusTom( a5 );
##  rec( ex := [ -60, 4, 2,,, -1, -1, -1, 1 ], hyp := [  ], 
##    mu := [ -60, 4, 2,,, -1, -1, -1, 1 ], 
##    nu := [ -1, 2, 1,,, -1, -1, -1, 1 ] )
##  gap> tom:= TableOfMarks( "M12" );;
##  gap> moebius:= MoebiusTom( tom );;
##  gap> moebius.hyp;
##  [ 1, 2, 4, 16, 39, 45, 105 ]
##  gap> moebius.mu[1];  moebius.ex[1];
##  95040
##  190080
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "MoebiusTom", IsTableOfMarks );


#############################################################################
##
#A  WeightsTom( <tom> )
##
##  <#GAPDoc Label="WeightsTom">
##  <ManSection>
##  <Attr Name="WeightsTom" Arg='tom'/>
##
##  <Description>
##  <Ref Attr="WeightsTom"/> extracts the <E>weights</E> from the table of
##  marks <A>tom</A>, i.e., the diagonal entries of the matrix of marks
##  (see&nbsp;<Ref Func="MarksTom"/>),
##  indicating the index of a subgroup in its normalizer.
##  <P/>
##  <Example><![CDATA[
##  gap> wt:= WeightsTom( a5 );
##  [ 60, 2, 2, 3, 2, 1, 1, 1, 1 ]
##  ]]></Example>
##  <P/>
##  This information may be used to obtain the numbers of conjugate
##  supergroups from the marks.
##  <Example><![CDATA[
##  gap> marks:= MarksTom( a5 );;
##  gap> List( [ 1 .. 9 ], x -> marks[x] / wt[x] );
##  [ [ 1 ], [ 15, 1 ], [ 10, 1 ], [ 5, 1, 1 ], [ 6, 1 ], [ 10, 2, 1, 1 ],
##    [ 6, 2, 1, 1 ], [ 5, 1, 2, 1, 1 ], [ 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "WeightsTom", IsTableOfMarks );


#############################################################################
##
##  9. Properties of Tables of Marks
##
##  <#GAPDoc Label="[6]{tom}">
##  For a table of marks <A>tom</A> of a group <M>G</M>,
##  the following properties have the same meaning as the corresponding
##  properties for <M>G</M>.
##  Additionally, if a positive integer <A>sub</A> is given
##  as the second argument
##  then the value of the corresponding property for the <A>sub</A>-th class
##  of subgroups of <A>tom</A> is returned.
##  <P/>
##  <ManSection>
##  <Prop Name="IsAbelianTom" Arg='tom[, sub]'/>
##  <Prop Name="IsCyclicTom" Arg='tom[, sub]'/>
##  <Prop Name="IsNilpotentTom" Arg='tom[, sub]'/>
##  <Prop Name="IsPerfectTom" Arg='tom[, sub]'/>
##  <Prop Name="IsSolvableTom" Arg='tom[, sub]'/>
##
##  <Description>
##  <Example><![CDATA[
##  gap> tom:= TableOfMarks( "A5" );;
##  gap> IsAbelianTom( tom );  IsPerfectTom( tom );
##  false
##  true
##  gap> IsAbelianTom( tom, 3 );  IsNilpotentTom( tom, 7 );
##  true
##  false
##  gap> IsPerfectTom( tom, 7 );  IsSolvableTom( tom, 7 );
##  false
##  true
##  gap> for i in [ 1 .. 6 ] do
##  > Print( i, ": ", IsCyclicTom(a5, i), "  " );
##  > od;  Print( "\n" );
##  1: true  2: true  3: true  4: false  5: true  6: false  
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##


#############################################################################
##
#P  IsAbelianTom( <tom>[, <sub>] )
##
##  <ManSection>
##  <Prop Name="IsAbelianTom" Arg='tom[, sub]'/>
##
##  <Description>
##  <Ref Func="IsAbelianTom"/> tests if the underlying group of the table of
##  marks <A>tom</A> is abelian.
##  If a second argument <A>sub</A> is given then <Ref Func="IsAbelianTom"/>
##  returns whether the groups in the <A>sub</A>-th class of subgroups in
##  <A>tom</A> are abelian.
##  </Description>
##  </ManSection>
##
DeclareProperty( "IsAbelianTom", IsTableOfMarks );
DeclareOperation( "IsAbelianTom", [ IsTableOfMarks, IsPosInt ] );


#############################################################################
##
#P  IsCyclicTom( <tom>[, <sub>] )
##
##  <ManSection>
##  <Prop Name="IsCyclicTom" Arg='tom[, sub]'/>
##
##  <Description>
##  <Ref Func="IsCyclicTom"/> tests if the underlying group of the table of
##  marks <A>tom</A> is cyclic.
##  If a second argument <A>sub</A> is given then <Ref Func="IsCyclicTom"/>
##  returns whether the groups in the <A>sub</A>-th class of subgroups in
##  <A>tom</A> are cyclic.
##  <P/>
##  A subgroup is cyclic if and only if the sum over the corresponding row of
##  the inverse table of marks is nonzero
##  (see&nbsp;<Cite Key="Ker91" Where="page 125"/>).
##  Thus we only have to decompose the corresponding idempotent.
##  </Description>
##  </ManSection>
##
DeclareProperty( "IsCyclicTom", IsTableOfMarks );
DeclareOperation( "IsCyclicTom", [ IsTableOfMarks, IsPosInt ] );


#############################################################################
##
#P  IsNilpotentTom( <tom>[, <sub>] )
##
##  <ManSection>
##  <Prop Name="IsNilpotentTom" Arg='tom[, sub]'/>
##
##  <Description>
##  <Ref Func="IsNilpotentTom"/> tests if the underlying group of the table
##  of marks <A>tom</A> is nilpotent.
##  If a second argument <A>sub</A> is given then
##  <Ref Func="IsNilpotentTom"/> returns whether the groups in the
##  <A>sub</A>-th class of subgroups in <A>tom</A> are nilpotent.
##  </Description>
##  </ManSection>
##
DeclareProperty( "IsNilpotentTom", IsTableOfMarks );
DeclareOperation( "IsNilpotentTom", [ IsTableOfMarks, IsPosInt ] );


#############################################################################
##
#P  IsPerfectTom( <tom>[, <sub>] )
##
##  <ManSection>
##  <Prop Name="IsPerfectTom" Arg='tom[, sub]'/>
##
##  <Description>
##  <Ref Func="IsPerfectTom"/> tests if the underlying group of the table of
##  marks <A>tom</A> is perfect.
##  If a second argument <A>sub</A> is given then <Ref Func="IsPerfectTom"/>
##  returns whether the groups in the <A>sub</A>-th class of subgroups in
##  <A>tom</A> are perfect.
##  </Description>
##  </ManSection>
##
DeclareProperty( "IsPerfectTom", IsTableOfMarks );
DeclareOperation( "IsPerfectTom", [ IsTableOfMarks, IsPosInt ] );


#############################################################################
##
#P  IsSolvableTom( <tom>[, <sub>] )
##
##  <ManSection>
##  <Prop Name="IsSolvableTom" Arg='tom[, sub]'/>
##
##  <Description>
##  <Ref Func="IsSolvableTom"/> tests if the underlying group of the table of
##  marks <A>tom</A> is solvable.
##  If a second argument <A>sub</A> is given then <Ref Func="IsSolvableTom"/>
##  returns whether the groups in the <A>sub</A>-th class of subgroups in
##  <A>tom</A> are solvable.
##  </Description>
##  </ManSection>
##
DeclareProperty( "IsSolvableTom", IsTableOfMarks );
DeclareOperation( "IsSolvableTom", [ IsTableOfMarks, IsPosInt ] );


#############################################################################
##
##  10. Other Operations for Tables of Marks
##
##  <#GAPDoc Label="[7]{tom}">
##  <ManSection>
##  <Meth Name="IsInternallyConsistent"
##   Arg='tom' Label="for tables of marks"/>
##
##  <Description>
##  For a table of marks <A>tom</A>,
##  <Ref Func="IsInternallyConsistent" Label="for tables of marks"/>
##  decomposes all tensor products of rows of <A>tom</A>.
##  It returns <K>true</K> if all decomposition numbers are nonnegative
##  integers, and <K>false</K> otherwise.
##  This provides a strong consistency check for a table of marks.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##


#############################################################################
##
#O  DerivedSubgroupTom( <tom>, <sub> )
#F  DerivedSubgroupsTom( <tom> )
##
##  <#GAPDoc Label="DerivedSubgroupTom">
##  <ManSection>
##  <Oper Name="DerivedSubgroupTom" Arg='tom, sub'/>
##  <Func Name="DerivedSubgroupsTom" Arg='tom'/>
##
##  <Description>
##  For a table of marks <A>tom</A> and a positive integer <A>sub</A>,
##  <Ref Oper="DerivedSubgroupTom"/> returns either a positive integer
##  <M>i</M> or a list <M>l</M> of positive integers.
##  In the former case, the result means that the derived subgroups of the
##  subgroups in the <A>sub</A>-th class of <A>tom</A> lie in the
##  <M>i</M>-th class.
##  In the latter case, the class of the derived subgroups could not be
##  uniquely determined, and the position of the class of derived subgroups
##  is an entry of <M>l</M>.
##  <P/>
##  Values computed with <Ref Oper="DerivedSubgroupTom"/> are stored
##  using the attribute <Ref Func="DerivedSubgroupsTomPossible"/>.
##  <P/>
##  <Ref Func="DerivedSubgroupsTom"/> is just the list of
##  <Ref Oper="DerivedSubgroupTom"/> values for all values of <A>sub</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "DerivedSubgroupTom", [ IsTableOfMarks, IsPosInt ] );

DeclareGlobalFunction( "DerivedSubgroupsTom");


#############################################################################
##
#A  DerivedSubgroupsTomPossible( <tom> )
#A  DerivedSubgroupsTomUnique( <tom> )
##
##  <#GAPDoc Label="DerivedSubgroupsTomPossible">
##  <ManSection>
##  <Attr Name="DerivedSubgroupsTomPossible" Arg='tom'/>
##  <Attr Name="DerivedSubgroupsTomUnique" Arg='tom'/>
##
##  <Description>
##  Let <A>tom</A> be a table of marks.
##  The value of the attribute <Ref Func="DerivedSubgroupsTomPossible"/> is
##  a list in which the value at position <M>i</M> &ndash;if bound&ndash;
##  is a positive integer or a list; the meaning of the entry is the same as
##  in <Ref Func="DerivedSubgroupTom"/>.
##  <P/>
##  If the value of the attribute <Ref Func="DerivedSubgroupsTomUnique"/> is
##  known for <A>tom</A> then it is a list of positive integers,
##  the value at position <M>i</M> being the position of the class of derived
##  subgroups of the <M>i</M>-th class of subgroups in <A>tom</A>.
##  <P/>
##  The derived subgroups are in general not uniquely determined by the table
##  of marks if no <Ref Attr="UnderlyingGroup" Label="for tables of marks"/>
##  value is stored, so there is no default method for
##  <Ref Func="DerivedSubgroupsTomUnique"/>.
##  But in some cases the derived subgroups are explicitly set when the table
##  of marks is constructed.
##  In this case, <Ref Func="DerivedSubgroupTom"/> does not set values in
##  the <Ref Func="DerivedSubgroupsTomPossible"/> list.
##  <P/>
##  The <Ref Func="DerivedSubgroupsTomUnique"/> value is automatically set
##  when the last missing unique value is entered in the
##  <Ref Func="DerivedSubgroupsTomPossible"/> list by
##  <Ref Func="DerivedSubgroupTom"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
##  Currently the `DerivedSubgroupsTomUnique' value seems to be set
##  automatically in all cases.
##  Therefore, no example is shown.
##
DeclareAttribute( "DerivedSubgroupsTomPossible", IsTableOfMarks, "mutable" );
DeclareAttribute( "DerivedSubgroupsTomUnique", IsTableOfMarks );


#############################################################################
##
#O  NormalizerTom( <tom>, <sub> )
#A  NormalizersTom( <tom> )
##
##  <#GAPDoc Label="NormalizerTom">
##  <ManSection>
##  <Oper Name="NormalizerTom" Arg='tom, sub'/>
##  <Attr Name="NormalizersTom" Arg='tom'/>
##
##  <Description>
##  Let <A>tom</A> be the table of marks of a group <M>G</M>, say.
##  <Ref Oper="NormalizerTom"/> tries to find the conjugacy class of the
##  normalizer <M>N</M> in <M>G</M> of a subgroup <M>U</M> in the
##  <A>sub</A>-th class of <A>tom</A>.
##  The return value is either the list of class numbers of those subgroups
##  that have the right size and contain the subgroup and all subgroups that
##  clearly contain it as a normal subgroup, or the class number of the
##  normalizer if it is uniquely determined by these conditions.
##  If <A>tom</A> knows the subgroup lattice of <M>G</M>
##  (see&nbsp;<Ref Func="IsTableOfMarksWithGens"/>)
##  then all normalizers are uniquely determined.
##  <Ref Oper="NormalizerTom"/> should never return an empty list.
##  <P/>
##  <Ref Attr="NormalizersTom"/> returns the list of positions of the classes
##  of normalizers of subgroups in <A>tom</A>.
##  In addition to the criteria for a single class of subgroup used by
##  <Ref Oper="NormalizerTom"/>,
##  the approximations of normalizers for several classes are used and thus
##  <Ref Attr="NormalizersTom"/> may return better approximations than
##  <Ref Oper="NormalizerTom"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> NormalizerTom( a5, 4 );
##  8
##  gap> NormalizersTom( a5 );
##  [ 9, 4, 6, 8, 7, 6, 7, 8, 9 ]
##  ]]></Example>
##  <P/>
##  The example shows that a subgroup with class number 4 in <M>A_5</M>
##  (which is a Kleinian four group)
##  is normalized by a subgroup in class 8.
##  This class contains the subgroups of <M>A_5</M> which are isomorphic to
##  <M>A_4</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "NormalizerTom", [ IsTableOfMarks, IsPosInt ] );
DeclareAttribute( "NormalizersTom", IsTableOfMarks );


#############################################################################
##
#O  ContainedTom( <tom>, <sub1>, <sub2> )
##
##  <#GAPDoc Label="ContainedTom">
##  <ManSection>
##  <Oper Name="ContainedTom" Arg='tom, sub1, sub2'/>
##
##  <Description>
##  <Ref Func="ContainedTom"/> returns the number of subgroups in class
##  <A>sub1</A> of the table of marks <A>tom</A> that are contained in one
##  fixed member of the class <A>sub2</A>.
##  <P/>
##  <Example><![CDATA[
##  gap> ContainedTom( a5, 3, 5 );  ContainedTom( a5, 3, 8 );
##  0
##  4
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ContainedTom", [IsTableOfMarks, IsPosInt, IsPosInt ] );


#############################################################################
##
#O  ContainingTom( <tom>, <sub1>, <sub2> )
##
##  <#GAPDoc Label="ContainingTom">
##  <ManSection>
##  <Oper Name="ContainingTom" Arg='tom, sub1, sub2'/>
##
##  <Description>
##  <Ref Func="ContainingTom"/> returns the number of subgroups in class
##  <A>sub2</A> of the table of marks <A>tom</A> that contain one fixed
##  member of the class <A>sub1</A>.
##  <P/>
##  <Example><![CDATA[
##  gap> ContainingTom( a5, 3, 5 );  ContainingTom( a5, 3, 8 );
##  0
##  2
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ContainingTom", [ IsTableOfMarks, IsPosInt, IsPosInt ] );


#############################################################################
##
#O  CyclicExtensionsTom( <tom>, <p> )
#A  CyclicExtensionsTom( <tom>[, <list>] )
##
##  <#GAPDoc Label="CyclicExtensionsTom">
##  <ManSection>
##  <Oper Name="CyclicExtensionsTom" Arg='tom, p' Label="for a prime"/>
##  <Attr Name="CyclicExtensionsTom" Arg='tom[, list]'
##   Label="for a list of primes"/>
##
##  <Description>
##  According to A.&nbsp;Dress&nbsp;<Cite Key="Dre69"/>,
##  two columns of the table of marks <A>tom</A> are equal modulo the prime
##  <A>p</A> if and only if the corresponding subgroups are connected by a
##  chain of normal extensions of order <A>p</A>.
##  <P/>
##  Called with <A>tom</A> and <A>p</A>,
##  <Ref Func="CyclicExtensionsTom" Label="for a prime"/>
##  returns the classes of this equivalence relation.
##  <P/>
##  In the second form, <A>list</A> must be a list of primes,
##  and the return value is the list of classes of the relation obtained by
##  considering chains of normal extensions of prime order where all primes
##  are in <A>list</A>.
##  The default value for <A>list</A> is the set of prime divisors of the
##  order of the group of <A>tom</A>.
##  <P/>
##  (This information is <E>not</E> used by <Ref Func="NormalizerTom"/>
##  although it might give additional restrictions in the search of
##  normalizers.)
##  <P/>
##  <Example><![CDATA[
##  gap> CyclicExtensionsTom( a5, 2 );
##  [ [ 1, 2, 4 ], [ 3, 6 ], [ 5, 7 ], [ 8 ], [ 9 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "CyclicExtensionsTom", IsTableOfMarks );
DeclareOperation( "CyclicExtensionsTom", [ IsTableOfMarks, IsPosInt ] );
DeclareOperation( "CyclicExtensionsTom", [ IsTableOfMarks, IsList ] );


#############################################################################
##
#A  ComputedCyclicExtensionsTom( <tom> )
#O  CyclicExtensionsTomOp( <tom>, <p> )
#O  CyclicExtensionsTomOp( <tom>, <list> )
##
##  <ManSection>
##  <Attr Name="ComputedCyclicExtensionsTom" Arg='tom'/>
##  <Oper Name="CyclicExtensionsTomOp" Arg='tom, p'/>
##  <Oper Name="CyclicExtensionsTomOp" Arg='tom, list'/>
##
##  <Description>
##  The attribute <Ref Func="ComputedCyclicExtensionsTom"/> is used by the
##  default <Ref Func="CyclicExtensionsTom"/> method to store the computed
##  equivalence classes for the table of marks <A>tom</A> and access them in
##  subsequent calls.
##  <P/>
##  The operation <Ref Func="CyclicExtensionsTomOp"/> does the real work for
##  <Ref Func="CyclicExtensionsTom"/>.
##  </Description>
##  </ManSection>
##
DeclareAttribute( "ComputedCyclicExtensionsTom", IsTableOfMarks, "mutable" );
DeclareOperation( "CyclicExtensionsTomOp", [ IsTableOfMarks, IsPosInt ] );
DeclareOperation( "CyclicExtensionsTomOp", [ IsTableOfMarks, IsList ] );


#############################################################################
##
#O  DecomposedFixedPointVector( <tom>, <fix> )
##
##  <#GAPDoc Label="DecomposedFixedPointVector">
##  <ManSection>
##  <Oper Name="DecomposedFixedPointVector" Arg='tom, fix'/>
##
##  <Description>
##  Let <A>tom</A> be the table of marks of the group <M>G</M>, say,
##  and let <A>fix</A> be a vector of fixed point numbers w.r.t.&nbsp;an
##  action of <M>G</M>, i.e., a vector which contains for each class of
##  subgroups the number of fixed points under the given action.
##  <Ref Func="DecomposedFixedPointVector"/> returns the decomposition of
##  <A>fix</A> into rows of the table of marks.
##  This decomposition  corresponds to a decomposition of the action into
##  transitive constituents.
##  Trailing zeros in <A>fix</A> may be omitted.
##  <P/>
##  <Example><![CDATA[
##  gap> DecomposedFixedPointVector( a5, [ 16, 4, 1, 0, 1, 1, 1 ] );
##  [ 0, 0, 0, 0, 0, 1, 1 ]
##  ]]></Example>
##  <P/>
##  The vector <A>fix</A> may be any vector of integers.
##  The resulting decomposition, however, will not be integral, in general.
##  <Example><![CDATA[
##  gap> DecomposedFixedPointVector( a5, [ 0, 0, 0, 0, 1, 1 ] );
##  [ 2/5, -1, -1/2, 0, 1/2, 1 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "DecomposedFixedPointVector",
    [ IsTableOfMarks, IsList ] );


#############################################################################
##
#O  EulerianFunctionByTom( <tom>, <n>[, <sub>] )
##
##  <#GAPDoc Label="EulerianFunctionByTom">
##  <ManSection>
##  <Oper Name="EulerianFunctionByTom" Arg='tom, n[, sub]'/>
##
##  <Description>
##  Called with two arguments, <Ref Func="EulerianFunctionByTom"/> computes
##  the Eulerian function (see&nbsp;<Ref Func="EulerianFunction"/>) of the
##  underlying group <M>G</M> of the table of marks <A>tom</A>,
##  that is, the number of <A>n</A>-tuples of elements in <M>G</M> that
##  generate <M>G</M>.
##  If the optional argument <A>sub</A> is given then
##  <Ref Func="EulerianFunctionByTom"/> computes the Eulerian function
##  of each subgroup in the <A>sub</A>-th class of subgroups of <A>tom</A>.
##  <P/>
##  For a group <M>G</M> whose table of marks is known,
##  <Ref Func="EulerianFunctionByTom"/>
##  is installed as a method for <Ref Func="EulerianFunction"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> EulerianFunctionByTom( a5, 2 );
##  2280
##  gap> EulerianFunctionByTom( a5, 3 );
##  200160
##  gap> EulerianFunctionByTom( a5, 2, 3 );
##  8
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "EulerianFunctionByTom", [ IsTableOfMarks, IsPosInt ] );
DeclareOperation( "EulerianFunctionByTom",
    [ IsTableOfMarks, IsPosInt, IsPosInt ] );


#############################################################################
##
#O  IntersectionsTom( <tom>, <sub1>, <sub2> )
##
##  <#GAPDoc Label="IntersectionsTom">
##  <ManSection>
##  <Oper Name="IntersectionsTom" Arg='tom, sub1, sub2'/>
##
##  <Description>
##  The intersections of the groups in the <A>sub1</A>-th conjugacy class of
##  subgroups of the table of marks <A>tom</A> with the groups in the
##  <A>sub2</A>-th conjugacy classes of subgroups of <A>tom</A>
##  are determined up to conjugacy by the decomposition of the tensor product
##  of their rows of marks.
##  <Ref Func="IntersectionsTom"/> returns a list <M>l</M> that describes
##  this decomposition.
##  The <M>i</M>-th entry in <M>l</M> is the multiplicity of groups in the
##  <M>i</M>-th conjugacy class as an intersection.
##  <P/>
##  <Example><![CDATA[
##  gap> IntersectionsTom( a5, 8, 8 );
##  [ 0, 0, 1, 0, 0, 0, 0, 1 ]
##  ]]></Example>
##  Any two subgroups of class number 8 (<M>A_4</M>) of <M>A_5</M> are either
##  equal and their intersection has again class number 8,
##  or their intersection has class number <M>3</M>,
##  and is a cyclic subgroup of order 3.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "IntersectionsTom",
    [ IsTableOfMarks, IsPosInt, IsPosInt ] );


#############################################################################
##
#O  FactorGroupTom( <tom>, <n> )
##
##  <#GAPDoc Label="FactorGroupTom">
##  <ManSection>
##  <Oper Name="FactorGroupTom" Arg='tom, n'/>
##
##  <Description>
##  For a table of marks <A>tom</A> of the group <M>G</M>, say,
##  and the normal subgroup <M>N</M> of <M>G</M> corresponding to the
##  <A>n</A>-th class of subgroups of <A>tom</A>,
##  <Ref Func="FactorGroupTom"/> returns the table of marks of the factor
##  group <M>G / N</M>.
##  <P/>
##  <Example><![CDATA[
##  gap> s4:= TableOfMarks( SymmetricGroup( 4 ) );
##  TableOfMarks( Sym( [ 1 .. 4 ] ) )
##  gap> LengthsTom( s4 );
##  [ 1, 3, 6, 4, 1, 3, 3, 4, 3, 1, 1 ]
##  gap> OrdersTom( s4 );
##  [ 1, 2, 2, 3, 4, 4, 4, 6, 8, 12, 24 ]
##  gap> s3:= FactorGroupTom( s4, 5 );
##  TableOfMarks( Group([ f1, f2 ]) )
##  gap> Display( s3 );
##  1:  6
##  2:  3 1
##  3:  2 . 2
##  4:  1 1 1 1
##  
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "FactorGroupTom", [ IsTableOfMarks, IsPosInt ] );


#############################################################################
##
#A  MaximalSubgroupsTom( <tom>[, <sub>] )
##
##  <#GAPDoc Label="MaximalSubgroupsTom">
##  <ManSection>
##  <Attr Name="MaximalSubgroupsTom" Arg='tom[, sub]'/>
##
##  <Description>
##  Called with a table of marks <A>tom</A>,
##  <Ref Func="MaximalSubgroupsTom"/> returns a list of length two,
##  the first entry being the list of positions of the classes of maximal
##  subgroups of the whole group of <A>tom</A>,
##  the second entry being the list of class lengths of these groups.
##  <P/>
##  Called with a table of marks <A>tom</A> and a position <A>sub</A>,
##  the same information for the <A>sub</A>-th class of subgroups is
##  returned.
##  <P/>
##  <Example><![CDATA[
##  gap> MaximalSubgroupsTom( s4 );
##  [ [ 10, 9, 8 ], [ 1, 3, 4 ] ]
##  gap> MaximalSubgroupsTom( s4, 10 );
##  [ [ 5, 4 ], [ 1, 4 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "MaximalSubgroupsTom", IsTableOfMarks );
DeclareOperation( "MaximalSubgroupsTom", [ IsTableOfMarks, IsPosInt ] );


#############################################################################
##
#O  MinimalSupergroupsTom( <tom>, <sub> )
##
##  <#GAPDoc Label="MinimalSupergroupsTom">
##  <ManSection>
##  <Oper Name="MinimalSupergroupsTom" Arg='tom, sub'/>
##
##  <Description>
##  For a table of marks <A>tom</A>,
##  <Ref Func="MinimalSupergroupsTom"/> returns a list of length two,
##  the first entry being the list of positions of the classes
##  containing the minimal supergroups of the groups in the <A>sub</A>-th
##  class of subgroups of <A>tom</A>,
##  the second entry being the list of class lengths of these groups.
##  <P/>
##  <Example><![CDATA[
##  gap> MinimalSupergroupsTom( s4, 5 );
##  [ [ 9, 10 ], [ 3, 1 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "MinimalSupergroupsTom", [ IsTableOfMarks, IsPosInt ] );


#############################################################################
##
##  11. Accessing Subgroups via Tables of Marks
##
##  <#GAPDoc Label="[8]{tom}">
##  Let <A>tom</A> be the table of marks of the group <M>G</M>,
##  and assume that <A>tom</A> has access to <M>G</M> via the
##  <Ref Attr="UnderlyingGroup" Label="for tables of marks"/> value.
##  Then it makes sense to use <A>tom</A> and its ordering of conjugacy
##  classes of subgroups of <M>G</M> for storing information for constructing
##  representatives of these classes.
##  The group <M>G</M> is in general not sufficient for this,
##  <A>tom</A> needs more information;
##  this is available if and only if the <Ref Func="IsTableOfMarksWithGens"/>
##  value of <A>tom</A> is <K>true</K>.
##  In this case, <Ref Func="RepresentativeTom"/> can be used
##  to get a subgroup of the <M>i</M>-th class, for all <M>i</M>.
##  <P/>
##  &GAP; provides two different possibilities to store generators of the
##  representatives of classes of subgroups.
##  The first is implemented by the attribute
##  <Ref Func="GeneratorsSubgroupsTom"/>, which uses explicit generators
##  of the subgroups.
##  The second, more general, possibility is implemented by the attribute
##  <Ref Func="StraightLineProgramsTom"/>, which encodes the generators as
##  straight line programs (see&nbsp;<Ref Sect="Straight Line Programs"/>)
##  that evaluate to the generators in question when applied to
##  <E>standard generators</E> of <M>G</M>.
##  <!--, see <Ref Sect="Standard Generators of Groups" BookName="tomlib"/>. -->
##  This means that on the one hand, standard generators of <M>G</M> must be
##  known in order to use <Ref Func="StraightLineProgramsTom"/>.
##  On the other hand, the straight line programs allow one to compute easily
##  generators not only of a subgroup <M>U</M> of <M>G</M> but also
##  generators of the image of <M>U</M> in any representation of <M>G</M>,
##  provided that one knows standard generators of the image of <M>G</M>
##  under this representation.
##  See the manual of the package <Package>TomLib</Package> for details
##  and an example.
##  <#/GAPDoc>
##


#############################################################################
##
#A  GeneratorsSubgroupsTom( <tom> )
##
##  <#GAPDoc Label="GeneratorsSubgroupsTom">
##  <ManSection>
##  <Attr Name="GeneratorsSubgroupsTom" Arg='tom'/>
##
##  <Description>
##  Let <A>tom</A> be a table of marks with
##  <Ref Func="IsTableOfMarksWithGens"/> value <K>true</K>.
##  Then <Ref Func="GeneratorsSubgroupsTom"/> returns a list of length two,
##  the first entry being a list <M>l</M> of elements of the group stored as
##  <Ref Attr="UnderlyingGroup" Label="for tables of marks"/> value of
##  <A>tom</A>,
##  the second entry being a list that contains at position <M>i</M> a list
##  of positions in <M>l</M> of generators of a representative of a subgroup
##  in class <M>i</M>.
##  <P/>
##  The <Ref Func="GeneratorsSubgroupsTom"/> value is known for all tables of
##  marks that have been computed with
##  <Ref Func="TableOfMarks" Label="for a group"/> from a group,
##  and there is a method to compute the value for a table of marks that
##  admits <Ref Func="RepresentativeTom"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "GeneratorsSubgroupsTom", IsTableOfMarks );


#############################################################################
##
#A  StraightLineProgramsTom( <tom> )
##
##  <#GAPDoc Label="StraightLineProgramsTom">
##  <ManSection>
##  <Attr Name="StraightLineProgramsTom" Arg='tom'/>
##
##  <Description>
##  For a table of marks <A>tom</A> with <Ref Func="IsTableOfMarksWithGens"/>
##  value <K>true</K>,
##  <Ref Func="StraightLineProgramsTom"/> returns a list that contains at
##  position <M>i</M> either a list of straight line programs or a
##  straight line program (see&nbsp;<Ref Sect="Straight Line Programs"/>),
##  encoding the generators of a representative of the <M>i</M>-th conjugacy
##  class of subgroups of <C>UnderlyingGroup( <A>tom</A> )</C>;
##  in the former case, each straight line program returns a generator,
##  in the latter case, the program returns the list of generators.
##  <P/>
##  There is no default method to compute the
##  <Ref Func="StraightLineProgramsTom"/> value
##  of a table of marks if they are not yet stored.
##  The value is known for all tables of marks that belong to the
##  &GAP; library of tables of marks
##  (see&nbsp;<Ref Sect="The Library of Tables of Marks"/>).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "StraightLineProgramsTom", IsTableOfMarks );


#############################################################################
##
#F  IsTableOfMarksWithGens( <tom> )
##
##  <#GAPDoc Label="IsTableOfMarksWithGens">
##  <ManSection>
##  <Func Name="IsTableOfMarksWithGens" Arg='tom'/>
##
##  <Description>
##  This filter shall express the union of the filters
##  <C>IsTableOfMarks and HasStraightLineProgramsTom</C> and
##  <C>IsTableOfMarks and HasGeneratorsSubgroupsTom</C>.
##  If a table of marks <A>tom</A> has this filter set then <A>tom</A> can be
##  asked to compute information that is in general not uniquely determined
##  by a table of marks,
##  for example the positions of derived subgroups or normalizers of
##  subgroups
##  (see&nbsp;<Ref Func="DerivedSubgroupTom"/>, <Ref Func="NormalizerTom"/>).
##  <P/>
##  <Example><![CDATA[
##  gap> a5:= TableOfMarks( "A5" );;  IsTableOfMarksWithGens( a5 );
##  true
##  gap> HasGeneratorsSubgroupsTom( a5 );  HasStraightLineProgramsTom( a5 );
##  false
##  true
##  gap> alt5:= TableOfMarks( AlternatingGroup( 5 ) );;
##  gap> IsTableOfMarksWithGens( alt5 );
##  true
##  gap> HasGeneratorsSubgroupsTom(alt5); HasStraightLineProgramsTom(alt5);
##  true
##  false
##  gap> progs:= StraightLineProgramsTom( a5 );;
##  gap> OrdersTom( a5 );
##  [ 1, 2, 3, 4, 5, 6, 10, 12, 60 ]
##  gap> IsCyclicTom( a5, 4 );
##  false
##  gap> Length( progs[4] );
##  2
##  gap> progs[4][1];
##  <straight line program>
##  gap> # first generator of an el. ab group of order 4:
##  gap> Display( progs[4][1] );
##  # input:
##  r:= [ g1, g2 ];
##  # program:
##  r[3]:= r[2]*r[1];
##  r[4]:= r[3]*r[2]^-1*r[1]*r[3]*r[2]^-1*r[1]*r[2];
##  # return value:
##  r[4]
##  gap> x:= [ [ Z(2)^0, 0*Z(2) ], [ Z(2^2), Z(2)^0 ] ];;
##  gap> y:= [ [ Z(2^2), Z(2)^0 ], [ 0*Z(2), Z(2^2)^2 ] ];;
##  gap> res1:= ResultOfStraightLineProgram( progs[4][1], [ x, y ] );
##  [ [ Z(2)^0, 0*Z(2) ], [ Z(2^2)^2, Z(2)^0 ] ]
##  gap> res2:= ResultOfStraightLineProgram( progs[4][2], [ x, y ] );
##  [ [ Z(2)^0, 0*Z(2) ], [ Z(2^2), Z(2)^0 ] ]
##  gap> w:= y*x;;
##  gap> res1 = w*y^-1*x*w*y^-1*x*y;
##  true
##  gap> subgrp:= Group( res1, res2 );;  Size( subgrp );  IsCyclic( subgrp );
##  4
##  false
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareFilter( "IsTableOfMarksWithGens" );

InstallTrueMethod( IsTableOfMarksWithGens,
    IsTableOfMarks and HasStraightLineProgramsTom );
InstallTrueMethod( IsTableOfMarksWithGens,
    IsTableOfMarks and HasGeneratorsSubgroupsTom);


#############################################################################
##
#O  RepresentativeTom( <tom>, <sub> )
#O  RepresentativeTomByGenerators( <tom>, <sub>, <gens> )
#O  RepresentativeTomByGeneratorsNC( <tom>, <sub>, <gens> )
##
##  <#GAPDoc Label="RepresentativeTom">
##  <ManSection>
##  <Oper Name="RepresentativeTom" Arg='tom, sub'/>
##  <Oper Name="RepresentativeTomByGenerators" Arg='tom, sub, gens'/>
##  <Oper Name="RepresentativeTomByGeneratorsNC" Arg='tom, sub, gens'/>
##
##  <Description>
##  Let <A>tom</A> be a table of marks with
##  <Ref Func="IsTableOfMarksWithGens"/> value <K>true</K>,
##  and <A>sub</A> a positive integer.
##  <Ref Func="RepresentativeTom"/> returns a representative of the
##  <A>sub</A>-th conjugacy class of subgroups of <A>tom</A>.
##  <P/>
##  If the attribute <Ref Attr="StraightLineProgramsTom"/> is set in
##  <A>tom</A> then methods for the operations
##  <Ref Func="RepresentativeTomByGenerators"/> and
##  <Ref Func="RepresentativeTomByGeneratorsNC"/> are available, which
##  return a representative of the <A>sub</A>-th conjugacy class of subgroups
##  of <A>tom</A>, as a subgroup of the group generated by <A>gens</A>.
##  This means that the standard generators of <A>tom</A> are replaced by
##  <A>gens</A>.
##  <P/>
##  <Ref Func="RepresentativeTomByGenerators"/> checks whether mapping the
##  standard generators of <A>tom</A> to <A>gens</A> extends to a group
##  isomorphism, and returns <K>fail</K> if not.
##  <Ref Func="RepresentativeTomByGeneratorsNC"/> omits all checks.
##  So <Ref Func="RepresentativeTomByGenerators"/> is thought mainly for
##  debugging purposes;
##  note that when several representatives are constructed, it is cheaper to
##  construct (and check) the isomorphism once, and to map the groups
##  returned by <Ref Func="RepresentativeTom"/> under this isomorphism.
##  The idea behind <Ref Func="RepresentativeTomByGeneratorsNC"/>, however,
##  is to avoid the overhead of using isomorphisms when <A>gens</A> are known
##  to be standard generators.
##  In order to proceed like this, the attribute
##  <Ref Attr="StraightLineProgramsTom"/> is needed.
##  <P/>
##  <Example><![CDATA[
##  gap> RepresentativeTom( a5, 4 );
##  Group([ (2,3)(4,5), (2,4)(3,5) ])
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "RepresentativeTom", [ IsTableOfMarks, IsPosInt ] );

DeclareOperation( "RepresentativeTomByGenerators",
    [ IsTableOfMarks and HasStraightLineProgramsTom, IsPosInt,
      IsHomogeneousList ] );

DeclareOperation( "RepresentativeTomByGeneratorsNC",
    [ IsTableOfMarks and HasStraightLineProgramsTom, IsPosInt,
      IsHomogeneousList ] );


#############################################################################
##
##  12. The Interface between Tables of Marks and Character Tables
##


#############################################################################
##
#O  FusionCharTableTom( <tbl>, <tom> )  . . . . . . . . . . .  element fusion
#O  PossibleFusionsCharTableTom( <tbl>, <tom>[, <options>] ) .  element fusion
##
##  <#GAPDoc Label="FusionCharTableTom">
##  <ManSection>
##  <Oper Name="FusionCharTableTom" Arg='tbl, tom'/>
##  <Oper Name="PossibleFusionsCharTableTom" Arg='tbl, tom[, options]'/>
##
##  <Description>
##  Let <A>tbl</A> be the ordinary character table of the group <M>G</M>,
##  say, and <A>tom</A> the table of marks of <M>G</M>.
##  <Ref Func="FusionCharTableTom"/> determines the fusion of the classes of
##  elements from <A>tbl</A> to the classes of cyclic subgroups on
##  <A>tom</A>, that is, a list that contains at position <M>i</M> the
##  position of the class of cyclic subgroups in <A>tom</A> that are
##  generated by elements in the <M>i</M>-th conjugacy class of elements in
##  <A>tbl</A>.
##  <P/>
##  Three cases are handled differently.
##  <Enum>
##  <Item>
##    The fusion is explicitly stored on <A>tbl</A>.
##    Then nothing has to be done.
##    This happens only if both <A>tbl</A> and <A>tom</A> are tables from the
##    &GAP; library (see&nbsp;<Ref Sect="The Library of Tables of Marks"/>
##    and the manual of the &GAP; Character Table Library).
##  </Item>
##  <Item>
##    The <Ref Attr="UnderlyingGroup" Label="for tables of marks"/> values of
##    <A>tbl</A> and <A>tom</A> are known and equal.
##    Then the group is used to compute the fusion.
##  </Item>
##  <Item>
##    There is neither fusion nor group information available.
##    In this case only necessary conditions can be checked,
##    and if they are not sufficient to determine the fusion uniquely then
##    <K>fail</K> is returned by <Ref Oper="FusionCharTableTom"/>.
##  </Item>
##  </Enum>
##  <P/>
##  <Ref Oper="PossibleFusionsCharTableTom"/> computes the list of possible
##  fusions from <A>tbl</A> to <A>tom</A>,
##  according to the criteria that have been checked.
##  So if <Ref Oper="FusionCharTableTom"/> returns a unique fusion then the
##  list returned by <Ref Oper="PossibleFusionsCharTableTom"/> for the same
##  arguments contains exactly this fusion,
##  and if <Ref Oper="FusionCharTableTom"/> returns <K>fail</K> then the
##  length of this list is different from <M>1</M>.
##  <!-- this is fishy!-->
##  <P/>
##  The optional argument <A>options</A> must be a record that may have the
##  following components.
##  <List>
##  <Mark><C>fusionmap</C></Mark>
##  <Item>
##    a parametrized map which is an approximation of the desired map,
##  </Item>
##  <Mark><C>quick</C></Mark>
##  <Item>
##    a Boolean;
##    if <K>true</K> then as soon as only one possibility remains
##    this possibility is returned immediately;
##    the default value is <K>false</K>.
##  </Item>
##  </List>
##  <P/>
##  <Example><![CDATA[
##  gap> a5c:= CharacterTable( "A5" );;
##  gap> fus:= FusionCharTableTom( a5c, a5 );
##  [ 1, 2, 3, 5, 5 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "FusionCharTableTom",
    [ IsOrdinaryTable, IsTableOfMarks ] );

DeclareOperation( "PossibleFusionsCharTableTom",
    [ IsOrdinaryTable, IsTableOfMarks ] );

DeclareOperation( "PossibleFusionsCharTableTom",
    [ IsOrdinaryTable, IsTableOfMarks, IsRecord ] );


#############################################################################
##
#O  PermCharsTom( <fus>, <tom> )
#O  PermCharsTom( <tbl>, <tom> )
##
##  <#GAPDoc Label="PermCharsTom">
##  <ManSection>
##  <Oper Name="PermCharsTom" Arg='fus, tom' Label="via fusion map"/>
##  <Oper Name="PermCharsTom" Arg='tbl, tom' Label="from a character table"/>
##
##  <Description>
##  <Ref Func="PermCharsTom" Label="via fusion map"/> returns the list of
##  transitive permutation characters from the table of marks <A>tom</A>.
##  In the first form, <A>fus</A> must be the fusion map from the ordinary
##  character table of the group of <A>tom</A> to <A>tom</A>
##  (see&nbsp;<Ref Func="FusionCharTableTom"/>).
##  In the second form, <A>tbl</A> must be the character table of the group
##  of which <A>tom</A> is the table of marks.
##  If the fusion map is not uniquely determined
##  (see&nbsp;<Ref Func="FusionCharTableTom"/>) then <K>fail</K> is returned.
##  <P/>
##  If the fusion map <A>fus</A> is given as first argument then each
##  transitive permutation character is represented by its values list.
##  If the character table <A>tbl</A> is given then the permutation
##  characters are class function objects
##  (see Chapter&nbsp;<Ref Chap="Class Functions"/>).
##  <P/>
##  <Example><![CDATA[
##  gap> PermCharsTom( a5c, a5 );
##  [ Character( CharacterTable( "A5" ), [ 60, 0, 0, 0, 0 ] ), 
##    Character( CharacterTable( "A5" ), [ 30, 2, 0, 0, 0 ] ), 
##    Character( CharacterTable( "A5" ), [ 20, 0, 2, 0, 0 ] ), 
##    Character( CharacterTable( "A5" ), [ 15, 3, 0, 0, 0 ] ), 
##    Character( CharacterTable( "A5" ), [ 12, 0, 0, 2, 2 ] ), 
##    Character( CharacterTable( "A5" ), [ 10, 2, 1, 0, 0 ] ), 
##    Character( CharacterTable( "A5" ), [ 6, 2, 0, 1, 1 ] ), 
##    Character( CharacterTable( "A5" ), [ 5, 1, 2, 0, 0 ] ), 
##    Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ) ]
##  gap> PermCharsTom( fus, a5 )[1];
##  [ 60, 0, 0, 0, 0 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "PermCharsTom", [ IsList, IsTableOfMarks ] );
DeclareOperation( "PermCharsTom", [ IsOrdinaryTable, IsTableOfMarks ] );


#############################################################################
##
##  13. Generic Construction of Tables of Marks
##
##  <#GAPDoc Label="[9]{tom}">
##  The following three operations construct a table of marks only from the
##  data given, i.e., without underlying group.
##  <#/GAPDoc>
##


#############################################################################
##
#O  TableOfMarksCyclic( <n> )
##
##  <#GAPDoc Label="TableOfMarksCyclic">
##  <ManSection>
##  <Oper Name="TableOfMarksCyclic" Arg='n'/>
##
##  <Description>
##  <Ref Func="TableOfMarksCyclic"/> returns the table of marks of the cyclic
##  group of order <A>n</A>.
##  <P/>
##  A cyclic group of order <A>n</A> has as its subgroups for each divisor
##  <M>d</M> of <A>n</A> a cyclic subgroup of order <M>d</M>.
##  <P/>
##  <Example><![CDATA[
##  gap> Display( TableOfMarksCyclic( 6 ) );
##  1:  6
##  2:  3 3
##  3:  2 . 2
##  4:  1 1 1 1
##  
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "TableOfMarksCyclic", [ IsPosInt ] );


#############################################################################
##
#O  TableOfMarksDihedral( <n> )
##
##  <#GAPDoc Label="TableOfMarksDihedral">
##  <ManSection>
##  <Oper Name="TableOfMarksDihedral" Arg='n'/>
##
##  <Description>
##  <Ref Func="TableOfMarksDihedral"/> returns the table of marks of the
##  dihedral group of order <A>m</A>.
##  <P/>
##  For each divisor <M>d</M> of <A>m</A>, a dihedral group of order
##  <M>m = 2n</M> contains subgroups of order <M>d</M> according to the
##  following rule.
##  If <M>d</M> is odd and divides <M>n</M> then there is only one cyclic
##  subgroup of order <M>d</M>.
##  If <M>d</M> is even and divides <M>n</M> then there are a cyclic subgroup
##  of order <M>d</M> and two classes of dihedral subgroups of order <M>d</M>
##  (which are cyclic, too, in the case <M>d = 2</M>, see the example below).
##  Otherwise (i.e., if <M>d</M> does not divide <M>n</M>) there is just one
##  class of dihedral subgroups of order <M>d</M>.
##  <P/>
##  <Example><![CDATA[
##  gap> Display( TableOfMarksDihedral( 12 ) );
##   1:  12
##   2:   6 6
##   3:   6 . 2
##   4:   6 . . 2
##   5:   4 . . . 4
##   6:   3 3 1 1 . 1
##   7:   2 2 . . 2 . 2
##   8:   2 . 2 . 2 . . 2
##   9:   2 . . 2 2 . . . 2
##  10:   1 1 1 1 1 1 1 1 1 1
##  
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "TableOfMarksDihedral", [ IsPosInt ] );


#############################################################################
##
#O  TableOfMarksFrobenius( <p>, <q> )
##
##  <#GAPDoc Label="TableOfMarksFrobenius">
##  <ManSection>
##  <Oper Name="TableOfMarksFrobenius" Arg='p, q'/>
##
##  <Description>
##  <Ref Func="TableOfMarksFrobenius"/> computes the table of marks of a
##  Frobenius group of order <M>p q</M>, where <M>p</M> is a prime and
##  <M>q</M> divides <M>p-1</M>.
##  <P/>
##  <Example><![CDATA[
##  gap> Display( TableOfMarksFrobenius( 5, 4 ) );
##  1:  20
##  2:  10 2
##  3:   5 1 1
##  4:   4 . . 4
##  5:   2 2 . 2 2
##  6:   1 1 1 1 1 1
##  
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "TableOfMarksFrobenius", [ IsPosInt, IsPosInt ] );


#############################################################################
##
#V  TableOfMarksComponents
##
##  <#GAPDoc Label="TableOfMarksComponents">
##  <ManSection>
##  <Var Name="TableOfMarksComponents"/>
##
##  <Description>
##  The list <Ref Var="TableOfMarksComponents"/> is used when a
##  table of marks object is created from a record via
##  <Ref Func="ConvertToTableOfMarks"/>.
##  <Ref Var="TableOfMarksComponents"/> contains at position <M>2i-1</M>
##  a name of an attribute and at position <M>2i</M> the corresponding
##  attribute getter function.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BindGlobal( "TableOfMarksComponents", [
      "Identifier",                 Identifier,
      "SubsTom",                    SubsTom,
      "MarksTom",                   MarksTom,
      "NrSubsTom",                  NrSubsTom,
      "OrdersTom",                  OrdersTom,
      "NormalizersTom",             NormalizersTom,
      "DerivedSubgroupsTomUnique",  DerivedSubgroupsTomUnique,
      "UnderlyingGroup",            UnderlyingGroup,
      "StraightLineProgramsTom",    StraightLineProgramsTom,
      "GeneratorsSubgroupsTom",     GeneratorsSubgroupsTom,
      "PermutationTom",             PermutationTom,
      "ClassNamesTom",              ClassNamesTom,
    ] );


#############################################################################
##
#E