/usr/share/gap/lib/tom.gd is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 | #############################################################################
##
#W tom.gd GAP library Götz Pfeiffer
#W & Thomas Merkwitz
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declarations of the category and family of tables
## of marks, and their properties, attributes, operations and functions.
##
## 1. Tables of Marks
## 2. More about Tables of Marks
## 3. Table of Marks Objects in ⪆
## 4. Constructing Tables of Marks
## 5. Printing Tables of Marks
## 6. Sorting Tables of Marks
## 7. Technical Details about Tables of Marks
## 8. Attributes of Tables of Marks
## 9. Properties of Tables of Marks
## 10. Other Operations for Tables of Marks
## 11. Accessing Subgroups via Tables of Marks
## 12. The Interface between Tables of Marks and Character Tables
## 13. Generic Construction of Tables of Marks
##
#############################################################################
##
## 1. Tables of Marks
##
## <#GAPDoc Label="[1]{tom}">
## The concept of a <E>table of marks</E> was introduced by W. Burnside
## in his book <Q>Theory of Groups of Finite Order</Q>,
## see <Cite Key="Bur55"/>.
## Therefore a table of marks is sometimes called a <E>Burnside matrix</E>.
## <P/>
## The table of marks of a finite group <M>G</M> is a matrix whose rows and
## columns are labelled by the conjugacy classes of subgroups of <M>G</M>
## and where for two subgroups <M>A</M> and <M>B</M> the <M>(A, B)</M>-entry
## is the number of fixed points of <M>B</M> in the transitive action of
## <M>G</M> on the cosets of <M>A</M> in <M>G</M>.
## So the table of marks characterizes the set of all permutation
## representations of <M>G</M>.
## <P/>
## Moreover, the table of marks gives a compact description of the subgroup
## lattice of <M>G</M>, since from the numbers of fixed points the numbers
## of conjugates of a subgroup <M>B</M> contained in a subgroup <M>A</M>
## can be derived.
## <P/>
## A table of marks of a given group <M>G</M> can be constructed from the
## subgroup lattice of <M>G</M>
## (see <Ref Sect="Constructing Tables of Marks"/>).
## For several groups, the table of marks can be restored from the &GAP;
## library of tables of marks
## (see <Ref Sect="The Library of Tables of Marks"/>).
## <P/>
## Given the table of marks of <M>G</M>, one can display it
## (see <Ref Sect="Printing Tables of Marks"/>)
## and derive information about <M>G</M> and its Burnside ring from it
## (see <Ref Sect="Attributes of Tables of Marks"/>,
## <Ref Sect="Properties of Tables of Marks"/>,
## <Ref Sect="Other Operations for Tables of Marks"/>).
## Moreover, tables of marks in &GAP; provide an easy access to the classes
## of subgroups of their underlying groups
## (see <Ref Sect="Accessing Subgroups via Tables of Marks"/>).
## <#/GAPDoc>
##
#############################################################################
##
## 2. More about Tables of Marks
##
## <#GAPDoc Label="[2]{tom}">
## Let <M>G</M> be a finite group with <M>n</M> conjugacy classes of
## subgroups <M>C_1, C_2, \ldots, C_n</M> and representatives
## <M>H_i \in C_i</M>, <M>1 \leq i \leq n</M>.
## The <E>table of marks</E> of <M>G</M> is defined to be the
## <M>n \times n</M> matrix <M>M = (m_{ij})</M> where the
## <E>mark</E> <M>m_{ij}</M> is the number of fixed points of the subgroup
## <M>H_j</M> in the action of <M>G</M> on the right cosets of <M>H_i</M>
## in <M>G</M>.
## <P/>
## Since <M>H_j</M> can only have fixed points if it is contained in a point
## stabilizer the matrix <M>M</M> is lower triangular if the classes
## <M>C_i</M> are sorted according to the condition that if <M>H_i</M>
## is contained in a conjugate of <M>H_j</M> then <M>i \leq j</M>.
## <P/>
## Moreover, the diagonal entries <M>m_{ii}</M> are nonzero
## since <M>m_{ii}</M> equals the index of <M>H_i</M> in its normalizer
## in <M>G</M>. Hence <M>M</M> is invertible.
## Since any transitive action of <M>G</M> is equivalent to an action on the
## cosets of a subgroup of <M>G</M>, one sees that the table of marks
## completely characterizes the set of all permutation representations of
## <M>G</M>.
## <P/>
## The marks <M>m_{ij}</M> have further meanings.
## If <M>H_1</M> is the trivial subgroup of <M>G</M> then each mark
## <M>m_{i1}</M> in the first column of <M>M</M> is equal to the index of
## <M>H_i</M> in <M>G</M> since the trivial subgroup fixes all cosets of
## <M>H_i</M>.
## If <M>H_n = G</M> then each <M>m_{nj}</M> in the last row of <M>M</M> is
## equal to <M>1</M> since there is only one coset of <M>G</M> in <M>G</M>.
## In general, <M>m_{ij}</M> equals the number of conjugates of <M>H_i</M>
## containing <M>H_j</M>, multiplied by the index of <M>H_i</M> in its
## normalizer in <M>G</M>.
## Moreover, the number <M>c_{ij}</M> of conjugates of <M>H_j</M> which are
## contained in <M>H_i</M> can be derived from the marks <M>m_{ij}</M> via
## the formula
## <Display Mode="M">
## c_{ij} = ( m_{ij} m_{j1} ) / ( m_{i1} m_{jj} )
## </Display>.
## <P/>
## Both the marks <M>m_{ij}</M> and the numbers of subgroups <M>c_{ij}</M>
## are needed for the functions described in this chapter.
## <P/>
## A brief survey of properties of tables of marks and a description of
## algorithms for the interactive construction of tables of marks using
## &GAP; can be found in <Cite Key="Pfe97"/>.
## <#/GAPDoc>
##
#############################################################################
##
## 3. Table of Marks Objects in &GAP;
##
## <#GAPDoc Label="[3]{tom}">
## A table of marks of a group <M>G</M> in &GAP; is represented by an
## immutable (see <Ref Sect="Mutability and Copyability"/>) object
## <A>tom</A> in the category <Ref Func="IsTableOfMarks"/>,
## with defining attributes <Ref Func="SubsTom"/> and
## <Ref Func="MarksTom"/>.
## These two attributes encode the matrix of marks in a compressed form.
## The <Ref Func="SubsTom"/> value of <A>tom</A> is a list where for each
## conjugacy class of subgroups the class numbers of its subgroups are
## stored.
## These are exactly the positions in the corresponding row of the matrix of
## marks which have nonzero entries.
## The marks themselves are stored via the <Ref Func="MarksTom"/> value of
## <A>tom</A>, which is a list that contains for each entry in
## <C>SubsTom( <A>tom</A> )</C> the corresponding nonzero value of the
## table of marks.
## <P/>
## It is possible to create table of marks objects that do not store a
## group, moreover one can create a table of marks object from a matrix of
## marks (see <Ref Func="TableOfMarks" Label="for a matrix"/>).
## So it may happen that a table of marks object in &GAP; is in fact
## <E>not</E> the table of marks of a group.
## To some extent, the consistency of a table of marks object can be checked
## (see <Ref Sect="Other Operations for Tables of Marks"/>),
## but &GAP; knows no general way to prove or disprove that a given matrix
## of nonnegative integers is the matrix of marks for a group.
## Many functions for tables of marks work well without access to the group
## –this is one of the arguments why tables of marks are so
## useful–,
## but for example normalizers (see <Ref Func="NormalizerTom"/>)
## and derived subgroups (see <Ref Func="DerivedSubgroupTom"/>) of
## subgroups are in general not uniquely determined by the matrix of marks.
## <P/>
## &GAP; tables of marks are assumed to be in lower triangular form,
## that is, if a subgroup from the conjugacy class corresponding to the
## <M>i</M>-th row is contained in a subgroup from the class corresponding
## to the <M>j</M>-th row j then <M>i \leq j</M>.
## <P/>
## The <Ref Func="MarksTom"/> information can be computed from the values of
## the attributes <Ref Func="NrSubsTom"/>, <Ref Func="LengthsTom"/>,
## <Ref Func="OrdersTom"/>, and <Ref Func="SubsTom"/>.
## <Ref Func="NrSubsTom"/> stores a list containing for each entry in the
## <Ref Func="SubsTom"/> value the corresponding number of conjugates that
## are contained in a subgroup,
## <Ref Func="LengthsTom"/> a list containing for each conjugacy class
## of subgroups its length,
## and <Ref Func="OrdersTom"/> a list containing for each class of subgroups
## their order.
## So the <Ref Func="MarksTom"/> value of <A>tom</A> may be missing
## provided that the values of <Ref Func="NrSubsTom"/>,
## <Ref Func="LengthsTom"/>, and <Ref Func="OrdersTom"/> are stored in
## <A>tom</A>.
## <P/>
## Additional information about a table of marks is needed by some
## functions.
## The class numbers of normalizers in <M>G</M> and the number of the
## derived subgroup of <M>G</M> can be stored via appropriate attributes
## (see <Ref Func="NormalizersTom"/>,
## <Ref Func="DerivedSubgroupTom"/>).
## <P/>
## If <A>tom</A> stores its group <M>G</M> and a bijection from the rows and
## columns of the matrix of marks of <A>tom</A> to the classes of subgroups
## of <M>G</M> then clearly normalizers, derived subgroup etc. can be
## computed from this information.
## But in general a table of marks need not have access to <M>G</M>,
## for example <A>tom</A> might have been constructed from a generic table
## of marks
## (see <Ref Sect="Generic Construction of Tables of Marks"/>),
## or as table of marks of a factor group from a given table of marks
## (see <Ref Func="FactorGroupTom"/>).
## Access to the group <M>G</M> is provided by the attribute
## <Ref Attr="UnderlyingGroup" Label="for tables of marks"/>
## if this value is set.
## Access to the relevant information about conjugacy classes of subgroups
## of <M>G</M>
## –compatible with the ordering of rows and columns of the marks in
## <A>tom</A>– is signalled by the filter
## <Ref Func="IsTableOfMarksWithGens"/>.
## <#/GAPDoc>
##
#############################################################################
##
## 4. Constructing Tables of Marks
##
#############################################################################
##
#A TableOfMarks( <G> )
#A TableOfMarks( <string> )
#A TableOfMarks( <matrix> )
##
## <#GAPDoc Label="TableOfMarks">
## <ManSection>
## <Attr Name="TableOfMarks" Arg='G' Label="for a group"/>
## <Attr Name="TableOfMarks" Arg='string' Label="for a string"/>
## <Attr Name="TableOfMarks" Arg='matrix' Label="for a matrix"/>
##
## <Description>
## In the first form, <A>G</A> must be a finite group,
## and <Ref Func="TableOfMarks" Label="for a group"/>
## constructs the table of marks of <A>G</A>.
## This computation requires the knowledge of the complete subgroup lattice
## of <A>G</A> (see <Ref Func="LatticeSubgroups"/>).
## If the lattice is not yet stored then it will be constructed.
## This may take a while if <A>G</A> is large.
## The result has the <Ref Func="IsTableOfMarksWithGens"/> value
## <K>true</K>.
## <P/>
## In the second form, <A>string</A> must be a string,
## and <Ref Func="TableOfMarks" Label="for a string"/> gets
## the table of marks with name <A>string</A> from the &GAP; library
## (see <Ref Sect="The Library of Tables of Marks"/>).
## If no table of marks with this name is contained in the library then
## <K>fail</K> is returned.
## <P/>
## In the third form, <A>matrix</A> must be a matrix or a list of rows
## describing a lower triangular matrix where the part above the diagonal is
## omitted.
## For such an argument <A>matrix</A>,
## <Ref Func="TableOfMarks" Label="for a matrix"/> returns
## a table of marks object
## (see <Ref Sect="Table of Marks Objects in GAP"/>)
## for which <A>matrix</A> is the matrix of marks.
## Note that not every matrix
## (containing only nonnegative integers and having lower triangular shape)
## describes a table of marks of a group.
## Necessary conditions are checked with
## <Ref Func="IsInternallyConsistent" Label="for tables of marks"/>
## (see <Ref Sect="Other Operations for Tables of Marks"/>),
## and <K>fail</K> is returned if <A>matrix</A> is proved not to describe a
## matrix of marks;
## but if <Ref Func="TableOfMarks" Label="for a matrix"/> returns a table of
## marks object created from a matrix then it may still happen that this
## object does not describe the table of marks of a group.
## <P/>
## For an overview of operations for table of marks objects,
## see the introduction to Chapter <Ref Chap="Tables of Marks"/>.
## <P/>
## <Example><![CDATA[
## gap> tom:= TableOfMarks( AlternatingGroup( 5 ) );
## TableOfMarks( Alt( [ 1 .. 5 ] ) )
## gap> TableOfMarks( "J5" );
## fail
## gap> a5:= TableOfMarks( "A5" );
## TableOfMarks( "A5" )
## gap> mat:=
## > [ [ 60, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 30, 2, 0, 0, 0, 0, 0, 0, 0 ],
## > [ 20, 0, 2, 0, 0, 0, 0, 0, 0 ], [ 15, 3, 0, 3, 0, 0, 0, 0, 0 ],
## > [ 12, 0, 0, 0, 2, 0, 0, 0, 0 ], [ 10, 2, 1, 0, 0, 1, 0, 0, 0 ],
## > [ 6, 2, 0, 0, 1, 0, 1, 0, 0 ], [ 5, 1, 2, 1, 0, 0, 0, 1, 0 ],
## > [ 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ];;
## gap> TableOfMarks( mat );
## TableOfMarks( <9 classes> )
## ]]></Example>
## <P/>
## The following <Ref Func="TableOfMarks" Label="for a group"/> methods
## for a group are installed.
## <List>
## <Item>
## If the group is known to be cyclic then
## <Ref Func="TableOfMarks" Label="for a group"/> constructs the
## table of marks essentially without the group, instead the knowledge
## about the structure of cyclic groups is used.
## </Item>
## <Item>
## If the lattice of subgroups is already stored in the group then
## <Ref Func="TableOfMarks" Label="for a group"/> computes the
## table of marks from the lattice
## (see <Ref Func="TableOfMarksByLattice"/>).
## </Item>
## <Item>
## If the group is known to be solvable then
## <Ref Func="TableOfMarks" Label="for a group"/> takes the
## lattice of subgroups (see <Ref Func="LatticeSubgroups"/>) of the
## group –which means that the lattice is computed if it is not yet
## stored–
## and then computes the table of marks from it.
## This method is also accessible via the global function
## <Ref Func="TableOfMarksByLattice"/>.
## </Item>
## <Item>
## If the group doesn't know its lattice of subgroups or its conjugacy
## classes of subgroups then the table of marks and the conjugacy
## classes of subgroups are computed at the same time by the cyclic
## extension method.
## Only the table of marks is stored because the conjugacy classes of
## subgroups or the lattice of subgroups can be easily read off
## (see <Ref Func="LatticeSubgroupsByTom"/>).
## </Item>
## </List>
## <P/>
## Conversely, the lattice of subgroups of a group with known table of marks
## can be computed using the table of marks, via the function
## <Ref Func="LatticeSubgroupsByTom"/>.
## This is also installed as a method for <Ref Func="LatticeSubgroups"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "TableOfMarks", IsGroup );
DeclareAttribute( "TableOfMarks", IsString );
DeclareAttribute( "TableOfMarks", IsTable );
#############################################################################
##
#F TableOfMarksByLattice( <G> )
##
## <#GAPDoc Label="TableOfMarksByLattice">
## <ManSection>
## <Func Name="TableOfMarksByLattice" Arg='G'/>
##
## <Description>
## <Ref Func="TableOfMarksByLattice"/> computes the table of marks of the
## group <A>G</A> from the lattice of subgroups of <A>G</A>.
## This lattice is computed via <Ref Func="LatticeSubgroups"/>
## if it is not yet stored in <A>G</A>.
## The function <Ref Func="TableOfMarksByLattice"/> is installed as a method
## for <Ref Func="TableOfMarks" Label="for a group"/> for solvable groups
## and groups with stored subgroup lattice,
## and is available as a global variable only in order to provide
## explicit access to this method.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "TableOfMarksByLattice" );
#############################################################################
##
#F LatticeSubgroupsByTom( <G> )
##
## <#GAPDoc Label="LatticeSubgroupsByTom">
## <ManSection>
## <Func Name="LatticeSubgroupsByTom" Arg='G'/>
##
## <Description>
## <Ref Func="LatticeSubgroupsByTom"/> computes the lattice of subgroups of
## <A>G</A> from the table of marks of <A>G</A>,
## using <Ref Func="RepresentativeTom"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "LatticeSubgroupsByTom" );
#############################################################################
##
## 5. Printing Tables of Marks
##
## <#GAPDoc Label="[5]{tom}">
## <ManSection>
## <Meth Name="ViewObj" Arg='tom' Label="for a table of marks"/>
##
## <Description>
## The default <Ref Func="ViewObj"/> method for tables of marks prints
## the string <C>"TableOfMarks"</C>,
## followed by –if known– the identifier
## (see <Ref Attr="Identifier" Label="for tables of marks"/>)
## or the group of the table of marks enclosed in brackets;
## if neither group nor identifier are known then just
## the number of conjugacy classes of subgroups is printed instead.
## </Description>
## </ManSection>
##
## <ManSection>
## <Meth Name="PrintObj" Arg='tom' Label="for a table of marks"/>
##
## <Description>
## The default <Ref Func="PrintObj"/> method for tables of marks
## does the same as <Ref Func="ViewObj"/>,
## except that <Ref Func="PrintObj"/> is used for the group instead of
## <Ref Func="ViewObj"/>.
## </Description>
## </ManSection>
##
## <ManSection>
## <Meth Name="Display" Arg='tom[, arec]' Label="for a table of marks"/>
##
## <Description>
## The default <Ref Func="Display"/> method for a table of marks <A>tom</A>
## produces a formatted output of the marks in <A>tom</A>.
## Each line of output begins with the number of the corresponding class of
## subgroups.
## This number is repeated if the output spreads over several pages.
## The number of columns printed at one time depends on the actual
## line length, which can be accessed and changed by the function
## <Ref Func="SizeScreen"/>.
## <P/>
## An interactive variant of <Ref Oper="Display"/> is the
## <Ref Oper="Browse" BookName="browse"/> method for tables of marks
## that is provided by the &GAP; package <Package>Browse</Package>,
## see <Ref Meth="Browse" Label="for tables of marks"
## BookName="browse"/>.
## <P/>
## The optional second argument <A>arec</A> of <Ref Func="Display"/> can be
## used to change the default style for displaying a table of marks.
## <A>arec</A> must be a record, its relevant components are the following.
## <P/>
## <List>
## <Mark><C>classes</C></Mark>
## <Item>
## a list of class numbers to select only the rows and columns of the
## matrix that correspond to this list for printing,
## </Item>
## <Mark><C>form</C></Mark>
## <Item>
## one of the strings <C>"subgroups"</C>, <C>"supergroups"</C>;
## in the former case, at position <M>(i,j)</M> of the matrix the number
## of conjugates of <M>H_j</M> contained in <M>H_i</M> is printed,
## and in the latter case, at position <M>(i,j)</M> the number of
## conjugates of <M>H_i</M> which contain <M>H_j</M> is printed.
## </Item>
## </List>
## <P/>
## <Example><![CDATA[
## gap> tom:= TableOfMarks( "A5" );;
## gap> Display( tom );
## 1: 60
## 2: 30 2
## 3: 20 . 2
## 4: 15 3 . 3
## 5: 12 . . . 2
## 6: 10 2 1 . . 1
## 7: 6 2 . . 1 . 1
## 8: 5 1 2 1 . . . 1
## 9: 1 1 1 1 1 1 1 1 1
##
## gap> Display( tom, rec( classes:= [ 1, 2, 3, 4, 8 ] ) );
## 1: 60
## 2: 30 2
## 3: 20 . 2
## 4: 15 3 . 3
## 8: 5 1 2 1 1
##
## gap> Display( tom, rec( form:= "subgroups" ) );
## 1: 1
## 2: 1 1
## 3: 1 . 1
## 4: 1 3 . 1
## 5: 1 . . . 1
## 6: 1 3 1 . . 1
## 7: 1 5 . . 1 . 1
## 8: 1 3 4 1 . . . 1
## 9: 1 15 10 5 6 10 6 5 1
##
## gap> Display( tom, rec( form:= "supergroups" ) );
## 1: 1
## 2: 15 1
## 3: 10 . 1
## 4: 5 1 . 1
## 5: 6 . . . 1
## 6: 10 2 1 . . 1
## 7: 6 2 . . 1 . 1
## 8: 5 1 2 1 . . . 1
## 9: 1 1 1 1 1 1 1 1 1
##
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
#############################################################################
##
## 6. Sorting Tables of Marks
##
#############################################################################
##
#C IsTableOfMarks( <obj> )
##
## <#GAPDoc Label="IsTableOfMarks">
## <ManSection>
## <Filt Name="IsTableOfMarks" Arg='obj' Type='Category'/>
##
## <Description>
## Each table of marks belongs to this category.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsTableOfMarks", IsObject );
#############################################################################
##
#O SortedTom( <tom>, <perm> )
##
## <#GAPDoc Label="SortedTom">
## <ManSection>
## <Oper Name="SortedTom" Arg='tom, perm'/>
##
## <Description>
## <Ref Func="SortedTom"/> returns a table of marks where the rows and
## columns of the table of marks <A>tom</A> are reordered according to the
## permutation <A>perm</A>.
## <P/>
## <E>Note</E> that in each table of marks in &GAP;,
## the matrix of marks is assumed to have lower triangular shape
## (see <Ref Sect="Table of Marks Objects in GAP"/>).
## If the permutation <A>perm</A> does <E>not</E> have this property then
## the functions for tables of marks might return wrong results when applied
## to the output of <Ref Func="SortedTom"/>.
## <P/>
## The returned table of marks has only those attribute values stored that
## are known for <A>tom</A> and listed in
## <Ref Var="TableOfMarksComponents"/>.
## <P/>
## <Example><![CDATA[
## gap> tom:= TableOfMarksCyclic( 6 );; Display( tom );
## 1: 6
## 2: 3 3
## 3: 2 . 2
## 4: 1 1 1 1
##
## gap> sorted:= SortedTom( tom, (2,3) );; Display( sorted );
## 1: 6
## 2: 2 2
## 3: 3 . 3
## 4: 1 1 1 1
##
## gap> wrong:= SortedTom( tom, (1,2) );; Display( wrong );
## 1: 3
## 2: . 6
## 3: . 2 2
## 4: 1 1 1 1
##
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "SortedTom", [ IsTableOfMarks, IsPerm ] );
#############################################################################
##
#A PermutationTom( <tom> )
##
## <#GAPDoc Label="PermutationTom">
## <ManSection>
## <Attr Name="PermutationTom" Arg='tom'/>
##
## <Description>
## For the table of marks <A>tom</A> of the group <M>G</M> stored as
## <Ref Attr="UnderlyingGroup" Label="for tables of marks"/>
## value of <A>tom</A>,
## <Ref Func="PermutationTom"/> is a permutation <M>\pi</M> such that the
## <M>i</M>-th conjugacy class of subgroups of <M>G</M> belongs to the
## <M>i^\pi</M>-th column and row of marks in <A>tom</A>.
## <P/>
## This attribute value is bound only if <A>tom</A> was obtained from
## another table of marks by permuting with <Ref Func="SortedTom"/>,
## and there is no default method to compute its value.
## <P/>
## The attribute is necessary because the original and the sorted table of
## marks have the same identifier and the same group,
## and information computed from the group may depend on the ordering of
## marks, for example the fusion from the ordinary character table of
## <M>G</M> into <A>tom</A>.
## <P/>
## <Example><![CDATA[
## gap> MarksTom( tom )[2];
## [ 3, 3 ]
## gap> MarksTom( sorted )[2];
## [ 2, 2 ]
## gap> HasPermutationTom( sorted );
## true
## gap> PermutationTom( sorted );
## (2,3)
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "PermutationTom", IsTableOfMarks );
#############################################################################
##
## 7. Technical Details about Tables of Marks
##
#############################################################################
##
#V InfoTom
##
## <#GAPDoc Label="InfoTom">
## <ManSection>
## <InfoClass Name="InfoTom"/>
##
## <Description>
## is the info class for computations concerning tables of marks.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareInfoClass( "InfoTom" );
#############################################################################
##
#V TableOfMarksFamily
##
## <#GAPDoc Label="TableOfMarksFamily">
## <ManSection>
## <Var Name="TableOfMarksFamily"/>
##
## <Description>
## Each table of marks belongs to this family.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BindGlobal( "TableOfMarksFamily",
NewFamily( "TableOfMarksFamily", IsTableOfMarks ) );
#############################################################################
##
#F ConvertToTableOfMarks( <record> )
##
## <#GAPDoc Label="ConvertToTableOfMarks">
## <ManSection>
## <Func Name="ConvertToTableOfMarks" Arg='record'/>
##
## <Description>
## <Ref Func="ConvertToTableOfMarks"/> converts a record with components
## from <Ref Var="TableOfMarksComponents"/> into a table of marks object
## with the corresponding attributes.
## <P/>
## <Example><![CDATA[
## gap> record:= rec( MarksTom:= [ [ 4 ], [ 2, 2 ], [ 1, 1, 1 ] ],
## > SubsTom:= [ [ 1 ], [ 1, 2 ], [ 1, 2, 3 ] ] );;
## gap> ConvertToTableOfMarks( record );;
## gap> record;
## TableOfMarks( <3 classes> )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "ConvertToTableOfMarks" );
#############################################################################
##
## 8. Attributes of Tables of Marks
##
#############################################################################
##
#A MarksTom( <tom> ) . . . . . . . . . . . . . . . . . . defining attribute
#A SubsTom( <tom> ) . . . . . . . . . . . . . . . . . . defining attribute
##
## <#GAPDoc Label="MarksTom">
## <ManSection>
## <Attr Name="MarksTom" Arg='tom'/>
## <Attr Name="SubsTom" Arg='tom'/>
##
## <Description>
## The matrix of marks (see <Ref Sect="More about Tables of Marks"/>)
## of the table of marks <A>tom</A> is stored in a compressed form
## where zeros are omitted,
## using the attributes <Ref Func="MarksTom"/> and <Ref Func="SubsTom"/>.
## If <M>M</M> is the square matrix of marks of <A>tom</A>
## (see <Ref Func="MatTom"/>) then the <Ref Func="SubsTom"/> value of
## <A>tom</A> is a list that contains at position <M>i</M> the list
## of all positions of nonzero entries of the <M>i</M>-th row of <M>M</M>,
## and the <Ref Func="MarksTom"/> value of <A>tom</A> is a list
## that contains at position <M>i</M> the list of the corresponding marks.
## <P/>
## <Ref Func="MarksTom"/> and <Ref Func="SubsTom"/> are defining attributes
## of tables of marks (see <Ref Sect="Table of Marks Objects in GAP"/>).
## There is no default method for computing the <Ref Func="SubsTom"/> value,
## and the default <Ref Func="MarksTom"/> method needs the values of
## <Ref Func="NrSubsTom"/> and <Ref Func="OrdersTom"/>.
## <P/>
## <Example><![CDATA[
## gap> a5:= TableOfMarks( "A5" );
## TableOfMarks( "A5" )
## gap> MarksTom( a5 );
## [ [ 60 ], [ 30, 2 ], [ 20, 2 ], [ 15, 3, 3 ], [ 12, 2 ],
## [ 10, 2, 1, 1 ], [ 6, 2, 1, 1 ], [ 5, 1, 2, 1, 1 ],
## [ 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ]
## gap> SubsTom( a5 );
## [ [ 1 ], [ 1, 2 ], [ 1, 3 ], [ 1, 2, 4 ], [ 1, 5 ], [ 1, 2, 3, 6 ],
## [ 1, 2, 5, 7 ], [ 1, 2, 3, 4, 8 ], [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "MarksTom", IsTableOfMarks );
DeclareAttribute( "SubsTom", IsTableOfMarks );
#############################################################################
##
#A NrSubsTom( <tom> )
#A OrdersTom( <tom> )
##
## <#GAPDoc Label="NrSubsTom">
## <ManSection>
## <Attr Name="NrSubsTom" Arg='tom'/>
## <Attr Name="OrdersTom" Arg='tom'/>
##
## <Description>
## Instead of storing the marks (see <Ref Func="MarksTom"/>) of the
## table of marks <A>tom</A> one can use a matrix which contains at position
## <M>(i,j)</M> the number of subgroups of conjugacy class <M>j</M>
## that are contained in one member of the conjugacy class <M>i</M>.
## These values are stored in the <Ref Func="NrSubsTom"/> value in the same
## way as the marks in the <Ref Func="MarksTom"/> value.
## <P/>
## <Ref Func="OrdersTom"/> returns a list that contains at position <M>i</M>
## the order of a representative of the <M>i</M>-th conjugacy class of
## subgroups of <A>tom</A>.
## <P/>
## One can compute the <Ref Func="NrSubsTom"/> and <Ref Func="OrdersTom"/>
## values from the <Ref Func="MarksTom"/> value of <A>tom</A>
## and vice versa.
## <P/>
## <Example><![CDATA[
## gap> NrSubsTom( a5 );
## [ [ 1 ], [ 1, 1 ], [ 1, 1 ], [ 1, 3, 1 ], [ 1, 1 ], [ 1, 3, 1, 1 ],
## [ 1, 5, 1, 1 ], [ 1, 3, 4, 1, 1 ], [ 1, 15, 10, 5, 6, 10, 6, 5, 1 ]
## ]
## gap> OrdersTom( a5 );
## [ 1, 2, 3, 4, 5, 6, 10, 12, 60 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "NrSubsTom", IsTableOfMarks );
DeclareAttribute( "OrdersTom", IsTableOfMarks );
#############################################################################
##
#A LengthsTom( <tom> )
##
## <#GAPDoc Label="LengthsTom">
## <ManSection>
## <Attr Name="LengthsTom" Arg='tom'/>
##
## <Description>
## For a table of marks <A>tom</A>,
## <Ref Func="LengthsTom"/> returns a list of the lengths of
## the conjugacy classes of subgroups.
## <P/>
## <Example><![CDATA[
## gap> LengthsTom( a5 );
## [ 1, 15, 10, 5, 6, 10, 6, 5, 1 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "LengthsTom", IsTableOfMarks );
#############################################################################
##
#A ClassTypesTom( <tom> )
##
## <#GAPDoc Label="ClassTypesTom">
## <ManSection>
## <Attr Name="ClassTypesTom" Arg='tom'/>
##
## <Description>
## <Ref Attr="ClassTypesTom"/> distinguishes isomorphism types of the
## classes of subgroups of the table of marks <A>tom</A>
## as far as this is possible from the <Ref Func="SubsTom"/> and
## <Ref Func="MarksTom"/> values of <A>tom</A>.
## <P/>
## Two subgroups are clearly not isomorphic if they have different orders.
## Moreover, isomorphic subgroups must contain the same number of subgroups
## of each type.
## <P/>
## Each type is represented by a positive integer.
## <Ref Attr="ClassTypesTom"/> returns the list which contains for each
## class of subgroups its corresponding type.
## <P/>
## <Example><![CDATA[
## gap> a6:= TableOfMarks( "A6" );;
## gap> ClassTypesTom( a6 );
## [ 1, 2, 3, 3, 4, 5, 6, 6, 7, 7, 8, 9, 10, 11, 11, 12, 13, 13, 14, 15,
## 15, 16 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "ClassTypesTom", IsTableOfMarks );
#############################################################################
##
#A ClassNamesTom( <tom> )
##
## <#GAPDoc Label="ClassNamesTom">
## <ManSection>
## <Attr Name="ClassNamesTom" Arg='tom'/>
##
## <Description>
## <Ref Func="ClassNamesTom"/> constructs generic names for the conjugacy
## classes of subgroups of the table of marks <A>tom</A>.
## In general, the generic name of a class of non-cyclic subgroups consists
## of three parts and has the form
## <C>"(</C><A>o</A><C>)_{</C><A>t</A><C>}</C><A>l</A><C>"</C>,
## where <A>o</A> indicates the order of the subgroup,
## <A>t</A> is a number that distinguishes different types of subgroups of
## the same order, and <A>l</A> is a letter that distinguishes classes of
## subgroups of the same type and order.
## The type of a subgroup is determined by the numbers of its subgroups of
## other types (see <Ref Func="ClassTypesTom"/>).
## This is slightly weaker than isomorphism.
## <P/>
## The letter is omitted if there is only one class of subgroups of that
## order and type,
## and the type is omitted if there is only one class of that order.
## Moreover, the braces <C>{}</C> around the type are omitted
## if the type number has only one digit.
## <P/>
## For classes of cyclic subgroups, the parentheses round the order and the
## type are omitted.
## Hence the most general form of their generic names is
## <C>"<A>o</A>,<A>l</A>"</C>.
## Again, the letter is omitted if there is only one class of cyclic
## subgroups of that order.
## <P/>
## <Example><![CDATA[
## gap> ClassNamesTom( a6 );
## [ "1", "2", "3a", "3b", "5", "4", "(4)_2a", "(4)_2b", "(6)a", "(6)b",
## "(8)", "(9)", "(10)", "(12)a", "(12)b", "(18)", "(24)a", "(24)b",
## "(36)", "(60)a", "(60)b", "(360)" ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "ClassNamesTom", IsTableOfMarks );
#############################################################################
##
#A FusionsTom( <tom> )
##
## <#GAPDoc Label="FusionsTom">
## <ManSection>
## <Attr Name="FusionsTom" Arg='tom'/>
##
## <Description>
## For a table of marks <A>tom</A>,
## <Ref Func="FusionsTom"/> is a list of fusions into other tables of marks.
## Each fusion is a list of length two, the first entry being the
## <Ref Attr="Identifier" Label="for tables of marks"/>) value
## of the image table, the second entry being the list of images of
## the class positions of <A>tom</A> in the image table.
## <P/>
## This attribute is mainly used for tables of marks in the &GAP; library
## (see <Ref Sect="The Library of Tables of Marks"/>).
## <P/>
## <Example><![CDATA[
## gap> fus:= FusionsTom( a6 );;
## gap> fus[1];
## [ "L3(4)",
## [ 1, 2, 3, 3, 14, 5, 9, 7, 15, 15, 24, 26, 27, 32, 33, 50, 57, 55,
## 63, 73, 77, 90 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "FusionsTom", IsTableOfMarks, "mutable" );
#############################################################################
##
#A UnderlyingGroup( <tom> )
##
## <#GAPDoc Label="UnderlyingGroup:tom">
## <ManSection>
## <Attr Name="UnderlyingGroup" Arg='tom' Label="for tables of marks"/>
##
## <Description>
## <Ref Func="UnderlyingGroup" Label="for tables of marks"/> is used
## to access an underlying group that is stored on the table of marks
## <A>tom</A>.
## There is no default method to compute an underlying group if it is not
## stored.
## <P/>
## <Example><![CDATA[
## gap> UnderlyingGroup( a6 );
## Group([ (1,2)(3,4), (1,2,4,5)(3,6) ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "UnderlyingGroup", IsTableOfMarks );
#############################################################################
##
#A IdempotentsTom( <tom> )
#A IdempotentsTomInfo( <tom> )
##
## <#GAPDoc Label="IdempotentsTom">
## <ManSection>
## <Attr Name="IdempotentsTom" Arg='tom'/>
## <Attr Name="IdempotentsTomInfo" Arg='tom'/>
##
## <Description>
## <Ref Func="IdempotentsTom"/> encodes the idempotents of the integral
## Burnside ring described by the table of marks <A>tom</A>.
## The return value is a list <M>l</M> of positive integers such that each
## row vector describing a primitive idempotent has value <M>1</M> at all
## positions with the same entry in <M>l</M>, and <M>0</M> at all other
## positions.
## <P/>
## According to A. Dress <Cite Key="Dre69"/>
## (see also <Cite Key="Pfe97"/>),
## these idempotents correspond to the classes of perfect subgroups,
## and each such idempotent is the characteristic function of all those
## subgroups that arise by cyclic extension from the corresponding perfect
## subgroup
## (see <Ref Func="CyclicExtensionsTom" Label="for a prime"/>).
## <P/>
## <Ref Func="IdempotentsTomInfo"/> returns a record with components
## <C>fixpointvectors</C> and <C>primidems</C>, both bound to lists.
## The <M>i</M>-th entry of the <C>fixpointvectors</C> list is the
## <M>0-1</M>-vector describing the <M>i</M>-th primitive idempotent,
## and the <M>i</M>-th entry of <C>primidems</C> is the decomposition of this
## idempotent in the rows of <A>tom</A>.
## <P/>
## <Example><![CDATA[
## gap> IdempotentsTom( a5 );
## [ 1, 1, 1, 1, 1, 1, 1, 1, 9 ]
## gap> IdempotentsTomInfo( a5 );
## rec(
## fixpointvectors := [ [ 1, 1, 1, 1, 1, 1, 1, 1, 0 ],
## [ 0, 0, 0, 0, 0, 0, 0, 0, 1 ] ],
## primidems := [ [ 1, -2, -1, 0, 0, 1, 1, 1 ],
## [ -1, 2, 1, 0, 0, -1, -1, -1, 1 ] ] )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "IdempotentsTom", IsTableOfMarks );
DeclareAttribute( "IdempotentsTomInfo", IsTableOfMarks );
#############################################################################
##
#A Identifier( <tom> )
##
## <#GAPDoc Label="Identifier:tom">
## <ManSection>
## <Attr Name="Identifier" Arg='tom' Label="for tables of marks"/>
##
## <Description>
## The identifier of a table of marks <A>tom</A> is a string.
## It is used for printing the table of marks
## (see <Ref Sect="Printing Tables of Marks"/>)
## and in fusions between tables of marks
## (see <Ref Func="FusionsTom"/>).
## <P/>
## If <A>tom</A> is a table of marks from the &GAP; library of tables of
## marks (see <Ref Sect="The Library of Tables of Marks"/>)
## then it has an identifier,
## and if <A>tom</A> was constructed from a group with <Ref Func="Name"/>
## then this name is chosen as
## <Ref Func="Identifier" Label="for tables of marks"/> value.
## There is no default method to compute an identifier in all other cases.
## <P/>
## <Example><![CDATA[
## gap> Identifier( a5 );
## "A5"
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "Identifier", IsTableOfMarks );
#############################################################################
##
#A MatTom( <tom> )
##
## <#GAPDoc Label="MatTom">
## <ManSection>
## <Attr Name="MatTom" Arg='tom'/>
##
## <Description>
## <Ref Func="MatTom"/> returns the square matrix of marks
## (see <Ref Sect="More about Tables of Marks"/>) of the table of marks
## <A>tom</A> which is stored in a compressed form using the attributes
## <Ref Func="MarksTom"/> and <Ref Func="SubsTom"/>
## This may need substantially more space than the values of
## <Ref Func="MarksTom"/> and <Ref Func="SubsTom"/>.
## <P/>
## <Example><![CDATA[
## gap> MatTom( a5 );
## [ [ 60, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 30, 2, 0, 0, 0, 0, 0, 0, 0 ],
## [ 20, 0, 2, 0, 0, 0, 0, 0, 0 ], [ 15, 3, 0, 3, 0, 0, 0, 0, 0 ],
## [ 12, 0, 0, 0, 2, 0, 0, 0, 0 ], [ 10, 2, 1, 0, 0, 1, 0, 0, 0 ],
## [ 6, 2, 0, 0, 1, 0, 1, 0, 0 ], [ 5, 1, 2, 1, 0, 0, 0, 1, 0 ],
## [ 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "MatTom", IsTableOfMarks );
#############################################################################
##
#A MoebiusTom( <tom> )
##
## <#GAPDoc Label="MoebiusTom">
## <ManSection>
## <Attr Name="MoebiusTom" Arg='tom'/>
##
## <Description>
## <Ref Func="MoebiusTom"/> computes the Möbius values both of the subgroup
## lattice of the group <M>G</M> with table of marks <A>tom</A>
## and of the poset of conjugacy classes of subgroups of <M>G</M>.
## It returns a record where the component
## <C>mu</C> contains the Möbius values of the subgroup lattice,
## and the component <C>nu</C> contains the Möbius values of the poset.
## <P/>
## Moreover, according to an observation of Isaacs et al.
## (see <Cite Key="HIO89"/>, <Cite Key="Pah93"/>),
## the values on the subgroup lattice often can be derived
## from those of the poset of conjugacy classes.
## These <Q>expected values</Q> are returned in the component <C>ex</C>,
## and the list of numbers of those subgroups where the expected value does
## not coincide with the actual value are returned in the component
## <C>hyp</C>.
## For the computation of these values, the position of the derived subgroup
## of <M>G</M> is needed (see <Ref Func="DerivedSubgroupTom"/>).
## If it is not uniquely determined then the result does not have the
## components <C>ex</C> and <C>hyp</C>.
## <P/>
## <Example><![CDATA[
## gap> MoebiusTom( a5 );
## rec( ex := [ -60, 4, 2,,, -1, -1, -1, 1 ], hyp := [ ],
## mu := [ -60, 4, 2,,, -1, -1, -1, 1 ],
## nu := [ -1, 2, 1,,, -1, -1, -1, 1 ] )
## gap> tom:= TableOfMarks( "M12" );;
## gap> moebius:= MoebiusTom( tom );;
## gap> moebius.hyp;
## [ 1, 2, 4, 16, 39, 45, 105 ]
## gap> moebius.mu[1]; moebius.ex[1];
## 95040
## 190080
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "MoebiusTom", IsTableOfMarks );
#############################################################################
##
#A WeightsTom( <tom> )
##
## <#GAPDoc Label="WeightsTom">
## <ManSection>
## <Attr Name="WeightsTom" Arg='tom'/>
##
## <Description>
## <Ref Attr="WeightsTom"/> extracts the <E>weights</E> from the table of
## marks <A>tom</A>, i.e., the diagonal entries of the matrix of marks
## (see <Ref Func="MarksTom"/>),
## indicating the index of a subgroup in its normalizer.
## <P/>
## <Example><![CDATA[
## gap> wt:= WeightsTom( a5 );
## [ 60, 2, 2, 3, 2, 1, 1, 1, 1 ]
## ]]></Example>
## <P/>
## This information may be used to obtain the numbers of conjugate
## supergroups from the marks.
## <Example><![CDATA[
## gap> marks:= MarksTom( a5 );;
## gap> List( [ 1 .. 9 ], x -> marks[x] / wt[x] );
## [ [ 1 ], [ 15, 1 ], [ 10, 1 ], [ 5, 1, 1 ], [ 6, 1 ], [ 10, 2, 1, 1 ],
## [ 6, 2, 1, 1 ], [ 5, 1, 2, 1, 1 ], [ 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "WeightsTom", IsTableOfMarks );
#############################################################################
##
## 9. Properties of Tables of Marks
##
## <#GAPDoc Label="[6]{tom}">
## For a table of marks <A>tom</A> of a group <M>G</M>,
## the following properties have the same meaning as the corresponding
## properties for <M>G</M>.
## Additionally, if a positive integer <A>sub</A> is given
## as the second argument
## then the value of the corresponding property for the <A>sub</A>-th class
## of subgroups of <A>tom</A> is returned.
## <P/>
## <ManSection>
## <Prop Name="IsAbelianTom" Arg='tom[, sub]'/>
## <Prop Name="IsCyclicTom" Arg='tom[, sub]'/>
## <Prop Name="IsNilpotentTom" Arg='tom[, sub]'/>
## <Prop Name="IsPerfectTom" Arg='tom[, sub]'/>
## <Prop Name="IsSolvableTom" Arg='tom[, sub]'/>
##
## <Description>
## <Example><![CDATA[
## gap> tom:= TableOfMarks( "A5" );;
## gap> IsAbelianTom( tom ); IsPerfectTom( tom );
## false
## true
## gap> IsAbelianTom( tom, 3 ); IsNilpotentTom( tom, 7 );
## true
## false
## gap> IsPerfectTom( tom, 7 ); IsSolvableTom( tom, 7 );
## false
## true
## gap> for i in [ 1 .. 6 ] do
## > Print( i, ": ", IsCyclicTom(a5, i), " " );
## > od; Print( "\n" );
## 1: true 2: true 3: true 4: false 5: true 6: false
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
#############################################################################
##
#P IsAbelianTom( <tom>[, <sub>] )
##
## <ManSection>
## <Prop Name="IsAbelianTom" Arg='tom[, sub]'/>
##
## <Description>
## <Ref Func="IsAbelianTom"/> tests if the underlying group of the table of
## marks <A>tom</A> is abelian.
## If a second argument <A>sub</A> is given then <Ref Func="IsAbelianTom"/>
## returns whether the groups in the <A>sub</A>-th class of subgroups in
## <A>tom</A> are abelian.
## </Description>
## </ManSection>
##
DeclareProperty( "IsAbelianTom", IsTableOfMarks );
DeclareOperation( "IsAbelianTom", [ IsTableOfMarks, IsPosInt ] );
#############################################################################
##
#P IsCyclicTom( <tom>[, <sub>] )
##
## <ManSection>
## <Prop Name="IsCyclicTom" Arg='tom[, sub]'/>
##
## <Description>
## <Ref Func="IsCyclicTom"/> tests if the underlying group of the table of
## marks <A>tom</A> is cyclic.
## If a second argument <A>sub</A> is given then <Ref Func="IsCyclicTom"/>
## returns whether the groups in the <A>sub</A>-th class of subgroups in
## <A>tom</A> are cyclic.
## <P/>
## A subgroup is cyclic if and only if the sum over the corresponding row of
## the inverse table of marks is nonzero
## (see <Cite Key="Ker91" Where="page 125"/>).
## Thus we only have to decompose the corresponding idempotent.
## </Description>
## </ManSection>
##
DeclareProperty( "IsCyclicTom", IsTableOfMarks );
DeclareOperation( "IsCyclicTom", [ IsTableOfMarks, IsPosInt ] );
#############################################################################
##
#P IsNilpotentTom( <tom>[, <sub>] )
##
## <ManSection>
## <Prop Name="IsNilpotentTom" Arg='tom[, sub]'/>
##
## <Description>
## <Ref Func="IsNilpotentTom"/> tests if the underlying group of the table
## of marks <A>tom</A> is nilpotent.
## If a second argument <A>sub</A> is given then
## <Ref Func="IsNilpotentTom"/> returns whether the groups in the
## <A>sub</A>-th class of subgroups in <A>tom</A> are nilpotent.
## </Description>
## </ManSection>
##
DeclareProperty( "IsNilpotentTom", IsTableOfMarks );
DeclareOperation( "IsNilpotentTom", [ IsTableOfMarks, IsPosInt ] );
#############################################################################
##
#P IsPerfectTom( <tom>[, <sub>] )
##
## <ManSection>
## <Prop Name="IsPerfectTom" Arg='tom[, sub]'/>
##
## <Description>
## <Ref Func="IsPerfectTom"/> tests if the underlying group of the table of
## marks <A>tom</A> is perfect.
## If a second argument <A>sub</A> is given then <Ref Func="IsPerfectTom"/>
## returns whether the groups in the <A>sub</A>-th class of subgroups in
## <A>tom</A> are perfect.
## </Description>
## </ManSection>
##
DeclareProperty( "IsPerfectTom", IsTableOfMarks );
DeclareOperation( "IsPerfectTom", [ IsTableOfMarks, IsPosInt ] );
#############################################################################
##
#P IsSolvableTom( <tom>[, <sub>] )
##
## <ManSection>
## <Prop Name="IsSolvableTom" Arg='tom[, sub]'/>
##
## <Description>
## <Ref Func="IsSolvableTom"/> tests if the underlying group of the table of
## marks <A>tom</A> is solvable.
## If a second argument <A>sub</A> is given then <Ref Func="IsSolvableTom"/>
## returns whether the groups in the <A>sub</A>-th class of subgroups in
## <A>tom</A> are solvable.
## </Description>
## </ManSection>
##
DeclareProperty( "IsSolvableTom", IsTableOfMarks );
DeclareOperation( "IsSolvableTom", [ IsTableOfMarks, IsPosInt ] );
#############################################################################
##
## 10. Other Operations for Tables of Marks
##
## <#GAPDoc Label="[7]{tom}">
## <ManSection>
## <Meth Name="IsInternallyConsistent"
## Arg='tom' Label="for tables of marks"/>
##
## <Description>
## For a table of marks <A>tom</A>,
## <Ref Func="IsInternallyConsistent" Label="for tables of marks"/>
## decomposes all tensor products of rows of <A>tom</A>.
## It returns <K>true</K> if all decomposition numbers are nonnegative
## integers, and <K>false</K> otherwise.
## This provides a strong consistency check for a table of marks.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
#############################################################################
##
#O DerivedSubgroupTom( <tom>, <sub> )
#F DerivedSubgroupsTom( <tom> )
##
## <#GAPDoc Label="DerivedSubgroupTom">
## <ManSection>
## <Oper Name="DerivedSubgroupTom" Arg='tom, sub'/>
## <Func Name="DerivedSubgroupsTom" Arg='tom'/>
##
## <Description>
## For a table of marks <A>tom</A> and a positive integer <A>sub</A>,
## <Ref Oper="DerivedSubgroupTom"/> returns either a positive integer
## <M>i</M> or a list <M>l</M> of positive integers.
## In the former case, the result means that the derived subgroups of the
## subgroups in the <A>sub</A>-th class of <A>tom</A> lie in the
## <M>i</M>-th class.
## In the latter case, the class of the derived subgroups could not be
## uniquely determined, and the position of the class of derived subgroups
## is an entry of <M>l</M>.
## <P/>
## Values computed with <Ref Oper="DerivedSubgroupTom"/> are stored
## using the attribute <Ref Func="DerivedSubgroupsTomPossible"/>.
## <P/>
## <Ref Func="DerivedSubgroupsTom"/> is just the list of
## <Ref Oper="DerivedSubgroupTom"/> values for all values of <A>sub</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "DerivedSubgroupTom", [ IsTableOfMarks, IsPosInt ] );
DeclareGlobalFunction( "DerivedSubgroupsTom");
#############################################################################
##
#A DerivedSubgroupsTomPossible( <tom> )
#A DerivedSubgroupsTomUnique( <tom> )
##
## <#GAPDoc Label="DerivedSubgroupsTomPossible">
## <ManSection>
## <Attr Name="DerivedSubgroupsTomPossible" Arg='tom'/>
## <Attr Name="DerivedSubgroupsTomUnique" Arg='tom'/>
##
## <Description>
## Let <A>tom</A> be a table of marks.
## The value of the attribute <Ref Func="DerivedSubgroupsTomPossible"/> is
## a list in which the value at position <M>i</M> –if bound–
## is a positive integer or a list; the meaning of the entry is the same as
## in <Ref Func="DerivedSubgroupTom"/>.
## <P/>
## If the value of the attribute <Ref Func="DerivedSubgroupsTomUnique"/> is
## known for <A>tom</A> then it is a list of positive integers,
## the value at position <M>i</M> being the position of the class of derived
## subgroups of the <M>i</M>-th class of subgroups in <A>tom</A>.
## <P/>
## The derived subgroups are in general not uniquely determined by the table
## of marks if no <Ref Attr="UnderlyingGroup" Label="for tables of marks"/>
## value is stored, so there is no default method for
## <Ref Func="DerivedSubgroupsTomUnique"/>.
## But in some cases the derived subgroups are explicitly set when the table
## of marks is constructed.
## In this case, <Ref Func="DerivedSubgroupTom"/> does not set values in
## the <Ref Func="DerivedSubgroupsTomPossible"/> list.
## <P/>
## The <Ref Func="DerivedSubgroupsTomUnique"/> value is automatically set
## when the last missing unique value is entered in the
## <Ref Func="DerivedSubgroupsTomPossible"/> list by
## <Ref Func="DerivedSubgroupTom"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
## Currently the `DerivedSubgroupsTomUnique' value seems to be set
## automatically in all cases.
## Therefore, no example is shown.
##
DeclareAttribute( "DerivedSubgroupsTomPossible", IsTableOfMarks, "mutable" );
DeclareAttribute( "DerivedSubgroupsTomUnique", IsTableOfMarks );
#############################################################################
##
#O NormalizerTom( <tom>, <sub> )
#A NormalizersTom( <tom> )
##
## <#GAPDoc Label="NormalizerTom">
## <ManSection>
## <Oper Name="NormalizerTom" Arg='tom, sub'/>
## <Attr Name="NormalizersTom" Arg='tom'/>
##
## <Description>
## Let <A>tom</A> be the table of marks of a group <M>G</M>, say.
## <Ref Oper="NormalizerTom"/> tries to find the conjugacy class of the
## normalizer <M>N</M> in <M>G</M> of a subgroup <M>U</M> in the
## <A>sub</A>-th class of <A>tom</A>.
## The return value is either the list of class numbers of those subgroups
## that have the right size and contain the subgroup and all subgroups that
## clearly contain it as a normal subgroup, or the class number of the
## normalizer if it is uniquely determined by these conditions.
## If <A>tom</A> knows the subgroup lattice of <M>G</M>
## (see <Ref Func="IsTableOfMarksWithGens"/>)
## then all normalizers are uniquely determined.
## <Ref Oper="NormalizerTom"/> should never return an empty list.
## <P/>
## <Ref Attr="NormalizersTom"/> returns the list of positions of the classes
## of normalizers of subgroups in <A>tom</A>.
## In addition to the criteria for a single class of subgroup used by
## <Ref Oper="NormalizerTom"/>,
## the approximations of normalizers for several classes are used and thus
## <Ref Attr="NormalizersTom"/> may return better approximations than
## <Ref Oper="NormalizerTom"/>.
## <P/>
## <Example><![CDATA[
## gap> NormalizerTom( a5, 4 );
## 8
## gap> NormalizersTom( a5 );
## [ 9, 4, 6, 8, 7, 6, 7, 8, 9 ]
## ]]></Example>
## <P/>
## The example shows that a subgroup with class number 4 in <M>A_5</M>
## (which is a Kleinian four group)
## is normalized by a subgroup in class 8.
## This class contains the subgroups of <M>A_5</M> which are isomorphic to
## <M>A_4</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "NormalizerTom", [ IsTableOfMarks, IsPosInt ] );
DeclareAttribute( "NormalizersTom", IsTableOfMarks );
#############################################################################
##
#O ContainedTom( <tom>, <sub1>, <sub2> )
##
## <#GAPDoc Label="ContainedTom">
## <ManSection>
## <Oper Name="ContainedTom" Arg='tom, sub1, sub2'/>
##
## <Description>
## <Ref Func="ContainedTom"/> returns the number of subgroups in class
## <A>sub1</A> of the table of marks <A>tom</A> that are contained in one
## fixed member of the class <A>sub2</A>.
## <P/>
## <Example><![CDATA[
## gap> ContainedTom( a5, 3, 5 ); ContainedTom( a5, 3, 8 );
## 0
## 4
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ContainedTom", [IsTableOfMarks, IsPosInt, IsPosInt ] );
#############################################################################
##
#O ContainingTom( <tom>, <sub1>, <sub2> )
##
## <#GAPDoc Label="ContainingTom">
## <ManSection>
## <Oper Name="ContainingTom" Arg='tom, sub1, sub2'/>
##
## <Description>
## <Ref Func="ContainingTom"/> returns the number of subgroups in class
## <A>sub2</A> of the table of marks <A>tom</A> that contain one fixed
## member of the class <A>sub1</A>.
## <P/>
## <Example><![CDATA[
## gap> ContainingTom( a5, 3, 5 ); ContainingTom( a5, 3, 8 );
## 0
## 2
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ContainingTom", [ IsTableOfMarks, IsPosInt, IsPosInt ] );
#############################################################################
##
#O CyclicExtensionsTom( <tom>, <p> )
#A CyclicExtensionsTom( <tom>[, <list>] )
##
## <#GAPDoc Label="CyclicExtensionsTom">
## <ManSection>
## <Oper Name="CyclicExtensionsTom" Arg='tom, p' Label="for a prime"/>
## <Attr Name="CyclicExtensionsTom" Arg='tom[, list]'
## Label="for a list of primes"/>
##
## <Description>
## According to A. Dress <Cite Key="Dre69"/>,
## two columns of the table of marks <A>tom</A> are equal modulo the prime
## <A>p</A> if and only if the corresponding subgroups are connected by a
## chain of normal extensions of order <A>p</A>.
## <P/>
## Called with <A>tom</A> and <A>p</A>,
## <Ref Func="CyclicExtensionsTom" Label="for a prime"/>
## returns the classes of this equivalence relation.
## <P/>
## In the second form, <A>list</A> must be a list of primes,
## and the return value is the list of classes of the relation obtained by
## considering chains of normal extensions of prime order where all primes
## are in <A>list</A>.
## The default value for <A>list</A> is the set of prime divisors of the
## order of the group of <A>tom</A>.
## <P/>
## (This information is <E>not</E> used by <Ref Func="NormalizerTom"/>
## although it might give additional restrictions in the search of
## normalizers.)
## <P/>
## <Example><![CDATA[
## gap> CyclicExtensionsTom( a5, 2 );
## [ [ 1, 2, 4 ], [ 3, 6 ], [ 5, 7 ], [ 8 ], [ 9 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "CyclicExtensionsTom", IsTableOfMarks );
DeclareOperation( "CyclicExtensionsTom", [ IsTableOfMarks, IsPosInt ] );
DeclareOperation( "CyclicExtensionsTom", [ IsTableOfMarks, IsList ] );
#############################################################################
##
#A ComputedCyclicExtensionsTom( <tom> )
#O CyclicExtensionsTomOp( <tom>, <p> )
#O CyclicExtensionsTomOp( <tom>, <list> )
##
## <ManSection>
## <Attr Name="ComputedCyclicExtensionsTom" Arg='tom'/>
## <Oper Name="CyclicExtensionsTomOp" Arg='tom, p'/>
## <Oper Name="CyclicExtensionsTomOp" Arg='tom, list'/>
##
## <Description>
## The attribute <Ref Func="ComputedCyclicExtensionsTom"/> is used by the
## default <Ref Func="CyclicExtensionsTom"/> method to store the computed
## equivalence classes for the table of marks <A>tom</A> and access them in
## subsequent calls.
## <P/>
## The operation <Ref Func="CyclicExtensionsTomOp"/> does the real work for
## <Ref Func="CyclicExtensionsTom"/>.
## </Description>
## </ManSection>
##
DeclareAttribute( "ComputedCyclicExtensionsTom", IsTableOfMarks, "mutable" );
DeclareOperation( "CyclicExtensionsTomOp", [ IsTableOfMarks, IsPosInt ] );
DeclareOperation( "CyclicExtensionsTomOp", [ IsTableOfMarks, IsList ] );
#############################################################################
##
#O DecomposedFixedPointVector( <tom>, <fix> )
##
## <#GAPDoc Label="DecomposedFixedPointVector">
## <ManSection>
## <Oper Name="DecomposedFixedPointVector" Arg='tom, fix'/>
##
## <Description>
## Let <A>tom</A> be the table of marks of the group <M>G</M>, say,
## and let <A>fix</A> be a vector of fixed point numbers w.r.t. an
## action of <M>G</M>, i.e., a vector which contains for each class of
## subgroups the number of fixed points under the given action.
## <Ref Func="DecomposedFixedPointVector"/> returns the decomposition of
## <A>fix</A> into rows of the table of marks.
## This decomposition corresponds to a decomposition of the action into
## transitive constituents.
## Trailing zeros in <A>fix</A> may be omitted.
## <P/>
## <Example><![CDATA[
## gap> DecomposedFixedPointVector( a5, [ 16, 4, 1, 0, 1, 1, 1 ] );
## [ 0, 0, 0, 0, 0, 1, 1 ]
## ]]></Example>
## <P/>
## The vector <A>fix</A> may be any vector of integers.
## The resulting decomposition, however, will not be integral, in general.
## <Example><![CDATA[
## gap> DecomposedFixedPointVector( a5, [ 0, 0, 0, 0, 1, 1 ] );
## [ 2/5, -1, -1/2, 0, 1/2, 1 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "DecomposedFixedPointVector",
[ IsTableOfMarks, IsList ] );
#############################################################################
##
#O EulerianFunctionByTom( <tom>, <n>[, <sub>] )
##
## <#GAPDoc Label="EulerianFunctionByTom">
## <ManSection>
## <Oper Name="EulerianFunctionByTom" Arg='tom, n[, sub]'/>
##
## <Description>
## Called with two arguments, <Ref Func="EulerianFunctionByTom"/> computes
## the Eulerian function (see <Ref Func="EulerianFunction"/>) of the
## underlying group <M>G</M> of the table of marks <A>tom</A>,
## that is, the number of <A>n</A>-tuples of elements in <M>G</M> that
## generate <M>G</M>.
## If the optional argument <A>sub</A> is given then
## <Ref Func="EulerianFunctionByTom"/> computes the Eulerian function
## of each subgroup in the <A>sub</A>-th class of subgroups of <A>tom</A>.
## <P/>
## For a group <M>G</M> whose table of marks is known,
## <Ref Func="EulerianFunctionByTom"/>
## is installed as a method for <Ref Func="EulerianFunction"/>.
## <P/>
## <Example><![CDATA[
## gap> EulerianFunctionByTom( a5, 2 );
## 2280
## gap> EulerianFunctionByTom( a5, 3 );
## 200160
## gap> EulerianFunctionByTom( a5, 2, 3 );
## 8
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "EulerianFunctionByTom", [ IsTableOfMarks, IsPosInt ] );
DeclareOperation( "EulerianFunctionByTom",
[ IsTableOfMarks, IsPosInt, IsPosInt ] );
#############################################################################
##
#O IntersectionsTom( <tom>, <sub1>, <sub2> )
##
## <#GAPDoc Label="IntersectionsTom">
## <ManSection>
## <Oper Name="IntersectionsTom" Arg='tom, sub1, sub2'/>
##
## <Description>
## The intersections of the groups in the <A>sub1</A>-th conjugacy class of
## subgroups of the table of marks <A>tom</A> with the groups in the
## <A>sub2</A>-th conjugacy classes of subgroups of <A>tom</A>
## are determined up to conjugacy by the decomposition of the tensor product
## of their rows of marks.
## <Ref Func="IntersectionsTom"/> returns a list <M>l</M> that describes
## this decomposition.
## The <M>i</M>-th entry in <M>l</M> is the multiplicity of groups in the
## <M>i</M>-th conjugacy class as an intersection.
## <P/>
## <Example><![CDATA[
## gap> IntersectionsTom( a5, 8, 8 );
## [ 0, 0, 1, 0, 0, 0, 0, 1 ]
## ]]></Example>
## Any two subgroups of class number 8 (<M>A_4</M>) of <M>A_5</M> are either
## equal and their intersection has again class number 8,
## or their intersection has class number <M>3</M>,
## and is a cyclic subgroup of order 3.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "IntersectionsTom",
[ IsTableOfMarks, IsPosInt, IsPosInt ] );
#############################################################################
##
#O FactorGroupTom( <tom>, <n> )
##
## <#GAPDoc Label="FactorGroupTom">
## <ManSection>
## <Oper Name="FactorGroupTom" Arg='tom, n'/>
##
## <Description>
## For a table of marks <A>tom</A> of the group <M>G</M>, say,
## and the normal subgroup <M>N</M> of <M>G</M> corresponding to the
## <A>n</A>-th class of subgroups of <A>tom</A>,
## <Ref Func="FactorGroupTom"/> returns the table of marks of the factor
## group <M>G / N</M>.
## <P/>
## <Example><![CDATA[
## gap> s4:= TableOfMarks( SymmetricGroup( 4 ) );
## TableOfMarks( Sym( [ 1 .. 4 ] ) )
## gap> LengthsTom( s4 );
## [ 1, 3, 6, 4, 1, 3, 3, 4, 3, 1, 1 ]
## gap> OrdersTom( s4 );
## [ 1, 2, 2, 3, 4, 4, 4, 6, 8, 12, 24 ]
## gap> s3:= FactorGroupTom( s4, 5 );
## TableOfMarks( Group([ f1, f2 ]) )
## gap> Display( s3 );
## 1: 6
## 2: 3 1
## 3: 2 . 2
## 4: 1 1 1 1
##
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "FactorGroupTom", [ IsTableOfMarks, IsPosInt ] );
#############################################################################
##
#A MaximalSubgroupsTom( <tom>[, <sub>] )
##
## <#GAPDoc Label="MaximalSubgroupsTom">
## <ManSection>
## <Attr Name="MaximalSubgroupsTom" Arg='tom[, sub]'/>
##
## <Description>
## Called with a table of marks <A>tom</A>,
## <Ref Func="MaximalSubgroupsTom"/> returns a list of length two,
## the first entry being the list of positions of the classes of maximal
## subgroups of the whole group of <A>tom</A>,
## the second entry being the list of class lengths of these groups.
## <P/>
## Called with a table of marks <A>tom</A> and a position <A>sub</A>,
## the same information for the <A>sub</A>-th class of subgroups is
## returned.
## <P/>
## <Example><![CDATA[
## gap> MaximalSubgroupsTom( s4 );
## [ [ 10, 9, 8 ], [ 1, 3, 4 ] ]
## gap> MaximalSubgroupsTom( s4, 10 );
## [ [ 5, 4 ], [ 1, 4 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "MaximalSubgroupsTom", IsTableOfMarks );
DeclareOperation( "MaximalSubgroupsTom", [ IsTableOfMarks, IsPosInt ] );
#############################################################################
##
#O MinimalSupergroupsTom( <tom>, <sub> )
##
## <#GAPDoc Label="MinimalSupergroupsTom">
## <ManSection>
## <Oper Name="MinimalSupergroupsTom" Arg='tom, sub'/>
##
## <Description>
## For a table of marks <A>tom</A>,
## <Ref Func="MinimalSupergroupsTom"/> returns a list of length two,
## the first entry being the list of positions of the classes
## containing the minimal supergroups of the groups in the <A>sub</A>-th
## class of subgroups of <A>tom</A>,
## the second entry being the list of class lengths of these groups.
## <P/>
## <Example><![CDATA[
## gap> MinimalSupergroupsTom( s4, 5 );
## [ [ 9, 10 ], [ 3, 1 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "MinimalSupergroupsTom", [ IsTableOfMarks, IsPosInt ] );
#############################################################################
##
## 11. Accessing Subgroups via Tables of Marks
##
## <#GAPDoc Label="[8]{tom}">
## Let <A>tom</A> be the table of marks of the group <M>G</M>,
## and assume that <A>tom</A> has access to <M>G</M> via the
## <Ref Attr="UnderlyingGroup" Label="for tables of marks"/> value.
## Then it makes sense to use <A>tom</A> and its ordering of conjugacy
## classes of subgroups of <M>G</M> for storing information for constructing
## representatives of these classes.
## The group <M>G</M> is in general not sufficient for this,
## <A>tom</A> needs more information;
## this is available if and only if the <Ref Func="IsTableOfMarksWithGens"/>
## value of <A>tom</A> is <K>true</K>.
## In this case, <Ref Func="RepresentativeTom"/> can be used
## to get a subgroup of the <M>i</M>-th class, for all <M>i</M>.
## <P/>
## &GAP; provides two different possibilities to store generators of the
## representatives of classes of subgroups.
## The first is implemented by the attribute
## <Ref Func="GeneratorsSubgroupsTom"/>, which uses explicit generators
## of the subgroups.
## The second, more general, possibility is implemented by the attribute
## <Ref Func="StraightLineProgramsTom"/>, which encodes the generators as
## straight line programs (see <Ref Sect="Straight Line Programs"/>)
## that evaluate to the generators in question when applied to
## <E>standard generators</E> of <M>G</M>.
## <!--, see <Ref Sect="Standard Generators of Groups" BookName="tomlib"/>. -->
## This means that on the one hand, standard generators of <M>G</M> must be
## known in order to use <Ref Func="StraightLineProgramsTom"/>.
## On the other hand, the straight line programs allow one to compute easily
## generators not only of a subgroup <M>U</M> of <M>G</M> but also
## generators of the image of <M>U</M> in any representation of <M>G</M>,
## provided that one knows standard generators of the image of <M>G</M>
## under this representation.
## See the manual of the package <Package>TomLib</Package> for details
## and an example.
## <#/GAPDoc>
##
#############################################################################
##
#A GeneratorsSubgroupsTom( <tom> )
##
## <#GAPDoc Label="GeneratorsSubgroupsTom">
## <ManSection>
## <Attr Name="GeneratorsSubgroupsTom" Arg='tom'/>
##
## <Description>
## Let <A>tom</A> be a table of marks with
## <Ref Func="IsTableOfMarksWithGens"/> value <K>true</K>.
## Then <Ref Func="GeneratorsSubgroupsTom"/> returns a list of length two,
## the first entry being a list <M>l</M> of elements of the group stored as
## <Ref Attr="UnderlyingGroup" Label="for tables of marks"/> value of
## <A>tom</A>,
## the second entry being a list that contains at position <M>i</M> a list
## of positions in <M>l</M> of generators of a representative of a subgroup
## in class <M>i</M>.
## <P/>
## The <Ref Func="GeneratorsSubgroupsTom"/> value is known for all tables of
## marks that have been computed with
## <Ref Func="TableOfMarks" Label="for a group"/> from a group,
## and there is a method to compute the value for a table of marks that
## admits <Ref Func="RepresentativeTom"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "GeneratorsSubgroupsTom", IsTableOfMarks );
#############################################################################
##
#A StraightLineProgramsTom( <tom> )
##
## <#GAPDoc Label="StraightLineProgramsTom">
## <ManSection>
## <Attr Name="StraightLineProgramsTom" Arg='tom'/>
##
## <Description>
## For a table of marks <A>tom</A> with <Ref Func="IsTableOfMarksWithGens"/>
## value <K>true</K>,
## <Ref Func="StraightLineProgramsTom"/> returns a list that contains at
## position <M>i</M> either a list of straight line programs or a
## straight line program (see <Ref Sect="Straight Line Programs"/>),
## encoding the generators of a representative of the <M>i</M>-th conjugacy
## class of subgroups of <C>UnderlyingGroup( <A>tom</A> )</C>;
## in the former case, each straight line program returns a generator,
## in the latter case, the program returns the list of generators.
## <P/>
## There is no default method to compute the
## <Ref Func="StraightLineProgramsTom"/> value
## of a table of marks if they are not yet stored.
## The value is known for all tables of marks that belong to the
## &GAP; library of tables of marks
## (see <Ref Sect="The Library of Tables of Marks"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "StraightLineProgramsTom", IsTableOfMarks );
#############################################################################
##
#F IsTableOfMarksWithGens( <tom> )
##
## <#GAPDoc Label="IsTableOfMarksWithGens">
## <ManSection>
## <Func Name="IsTableOfMarksWithGens" Arg='tom'/>
##
## <Description>
## This filter shall express the union of the filters
## <C>IsTableOfMarks and HasStraightLineProgramsTom</C> and
## <C>IsTableOfMarks and HasGeneratorsSubgroupsTom</C>.
## If a table of marks <A>tom</A> has this filter set then <A>tom</A> can be
## asked to compute information that is in general not uniquely determined
## by a table of marks,
## for example the positions of derived subgroups or normalizers of
## subgroups
## (see <Ref Func="DerivedSubgroupTom"/>, <Ref Func="NormalizerTom"/>).
## <P/>
## <Example><![CDATA[
## gap> a5:= TableOfMarks( "A5" );; IsTableOfMarksWithGens( a5 );
## true
## gap> HasGeneratorsSubgroupsTom( a5 ); HasStraightLineProgramsTom( a5 );
## false
## true
## gap> alt5:= TableOfMarks( AlternatingGroup( 5 ) );;
## gap> IsTableOfMarksWithGens( alt5 );
## true
## gap> HasGeneratorsSubgroupsTom(alt5); HasStraightLineProgramsTom(alt5);
## true
## false
## gap> progs:= StraightLineProgramsTom( a5 );;
## gap> OrdersTom( a5 );
## [ 1, 2, 3, 4, 5, 6, 10, 12, 60 ]
## gap> IsCyclicTom( a5, 4 );
## false
## gap> Length( progs[4] );
## 2
## gap> progs[4][1];
## <straight line program>
## gap> # first generator of an el. ab group of order 4:
## gap> Display( progs[4][1] );
## # input:
## r:= [ g1, g2 ];
## # program:
## r[3]:= r[2]*r[1];
## r[4]:= r[3]*r[2]^-1*r[1]*r[3]*r[2]^-1*r[1]*r[2];
## # return value:
## r[4]
## gap> x:= [ [ Z(2)^0, 0*Z(2) ], [ Z(2^2), Z(2)^0 ] ];;
## gap> y:= [ [ Z(2^2), Z(2)^0 ], [ 0*Z(2), Z(2^2)^2 ] ];;
## gap> res1:= ResultOfStraightLineProgram( progs[4][1], [ x, y ] );
## [ [ Z(2)^0, 0*Z(2) ], [ Z(2^2)^2, Z(2)^0 ] ]
## gap> res2:= ResultOfStraightLineProgram( progs[4][2], [ x, y ] );
## [ [ Z(2)^0, 0*Z(2) ], [ Z(2^2), Z(2)^0 ] ]
## gap> w:= y*x;;
## gap> res1 = w*y^-1*x*w*y^-1*x*y;
## true
## gap> subgrp:= Group( res1, res2 );; Size( subgrp ); IsCyclic( subgrp );
## 4
## false
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareFilter( "IsTableOfMarksWithGens" );
InstallTrueMethod( IsTableOfMarksWithGens,
IsTableOfMarks and HasStraightLineProgramsTom );
InstallTrueMethod( IsTableOfMarksWithGens,
IsTableOfMarks and HasGeneratorsSubgroupsTom);
#############################################################################
##
#O RepresentativeTom( <tom>, <sub> )
#O RepresentativeTomByGenerators( <tom>, <sub>, <gens> )
#O RepresentativeTomByGeneratorsNC( <tom>, <sub>, <gens> )
##
## <#GAPDoc Label="RepresentativeTom">
## <ManSection>
## <Oper Name="RepresentativeTom" Arg='tom, sub'/>
## <Oper Name="RepresentativeTomByGenerators" Arg='tom, sub, gens'/>
## <Oper Name="RepresentativeTomByGeneratorsNC" Arg='tom, sub, gens'/>
##
## <Description>
## Let <A>tom</A> be a table of marks with
## <Ref Func="IsTableOfMarksWithGens"/> value <K>true</K>,
## and <A>sub</A> a positive integer.
## <Ref Func="RepresentativeTom"/> returns a representative of the
## <A>sub</A>-th conjugacy class of subgroups of <A>tom</A>.
## <P/>
## If the attribute <Ref Attr="StraightLineProgramsTom"/> is set in
## <A>tom</A> then methods for the operations
## <Ref Func="RepresentativeTomByGenerators"/> and
## <Ref Func="RepresentativeTomByGeneratorsNC"/> are available, which
## return a representative of the <A>sub</A>-th conjugacy class of subgroups
## of <A>tom</A>, as a subgroup of the group generated by <A>gens</A>.
## This means that the standard generators of <A>tom</A> are replaced by
## <A>gens</A>.
## <P/>
## <Ref Func="RepresentativeTomByGenerators"/> checks whether mapping the
## standard generators of <A>tom</A> to <A>gens</A> extends to a group
## isomorphism, and returns <K>fail</K> if not.
## <Ref Func="RepresentativeTomByGeneratorsNC"/> omits all checks.
## So <Ref Func="RepresentativeTomByGenerators"/> is thought mainly for
## debugging purposes;
## note that when several representatives are constructed, it is cheaper to
## construct (and check) the isomorphism once, and to map the groups
## returned by <Ref Func="RepresentativeTom"/> under this isomorphism.
## The idea behind <Ref Func="RepresentativeTomByGeneratorsNC"/>, however,
## is to avoid the overhead of using isomorphisms when <A>gens</A> are known
## to be standard generators.
## In order to proceed like this, the attribute
## <Ref Attr="StraightLineProgramsTom"/> is needed.
## <P/>
## <Example><![CDATA[
## gap> RepresentativeTom( a5, 4 );
## Group([ (2,3)(4,5), (2,4)(3,5) ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "RepresentativeTom", [ IsTableOfMarks, IsPosInt ] );
DeclareOperation( "RepresentativeTomByGenerators",
[ IsTableOfMarks and HasStraightLineProgramsTom, IsPosInt,
IsHomogeneousList ] );
DeclareOperation( "RepresentativeTomByGeneratorsNC",
[ IsTableOfMarks and HasStraightLineProgramsTom, IsPosInt,
IsHomogeneousList ] );
#############################################################################
##
## 12. The Interface between Tables of Marks and Character Tables
##
#############################################################################
##
#O FusionCharTableTom( <tbl>, <tom> ) . . . . . . . . . . . element fusion
#O PossibleFusionsCharTableTom( <tbl>, <tom>[, <options>] ) . element fusion
##
## <#GAPDoc Label="FusionCharTableTom">
## <ManSection>
## <Oper Name="FusionCharTableTom" Arg='tbl, tom'/>
## <Oper Name="PossibleFusionsCharTableTom" Arg='tbl, tom[, options]'/>
##
## <Description>
## Let <A>tbl</A> be the ordinary character table of the group <M>G</M>,
## say, and <A>tom</A> the table of marks of <M>G</M>.
## <Ref Func="FusionCharTableTom"/> determines the fusion of the classes of
## elements from <A>tbl</A> to the classes of cyclic subgroups on
## <A>tom</A>, that is, a list that contains at position <M>i</M> the
## position of the class of cyclic subgroups in <A>tom</A> that are
## generated by elements in the <M>i</M>-th conjugacy class of elements in
## <A>tbl</A>.
## <P/>
## Three cases are handled differently.
## <Enum>
## <Item>
## The fusion is explicitly stored on <A>tbl</A>.
## Then nothing has to be done.
## This happens only if both <A>tbl</A> and <A>tom</A> are tables from the
## &GAP; library (see <Ref Sect="The Library of Tables of Marks"/>
## and the manual of the &GAP; Character Table Library).
## </Item>
## <Item>
## The <Ref Attr="UnderlyingGroup" Label="for tables of marks"/> values of
## <A>tbl</A> and <A>tom</A> are known and equal.
## Then the group is used to compute the fusion.
## </Item>
## <Item>
## There is neither fusion nor group information available.
## In this case only necessary conditions can be checked,
## and if they are not sufficient to determine the fusion uniquely then
## <K>fail</K> is returned by <Ref Oper="FusionCharTableTom"/>.
## </Item>
## </Enum>
## <P/>
## <Ref Oper="PossibleFusionsCharTableTom"/> computes the list of possible
## fusions from <A>tbl</A> to <A>tom</A>,
## according to the criteria that have been checked.
## So if <Ref Oper="FusionCharTableTom"/> returns a unique fusion then the
## list returned by <Ref Oper="PossibleFusionsCharTableTom"/> for the same
## arguments contains exactly this fusion,
## and if <Ref Oper="FusionCharTableTom"/> returns <K>fail</K> then the
## length of this list is different from <M>1</M>.
## <!-- this is fishy!-->
## <P/>
## The optional argument <A>options</A> must be a record that may have the
## following components.
## <List>
## <Mark><C>fusionmap</C></Mark>
## <Item>
## a parametrized map which is an approximation of the desired map,
## </Item>
## <Mark><C>quick</C></Mark>
## <Item>
## a Boolean;
## if <K>true</K> then as soon as only one possibility remains
## this possibility is returned immediately;
## the default value is <K>false</K>.
## </Item>
## </List>
## <P/>
## <Example><![CDATA[
## gap> a5c:= CharacterTable( "A5" );;
## gap> fus:= FusionCharTableTom( a5c, a5 );
## [ 1, 2, 3, 5, 5 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "FusionCharTableTom",
[ IsOrdinaryTable, IsTableOfMarks ] );
DeclareOperation( "PossibleFusionsCharTableTom",
[ IsOrdinaryTable, IsTableOfMarks ] );
DeclareOperation( "PossibleFusionsCharTableTom",
[ IsOrdinaryTable, IsTableOfMarks, IsRecord ] );
#############################################################################
##
#O PermCharsTom( <fus>, <tom> )
#O PermCharsTom( <tbl>, <tom> )
##
## <#GAPDoc Label="PermCharsTom">
## <ManSection>
## <Oper Name="PermCharsTom" Arg='fus, tom' Label="via fusion map"/>
## <Oper Name="PermCharsTom" Arg='tbl, tom' Label="from a character table"/>
##
## <Description>
## <Ref Func="PermCharsTom" Label="via fusion map"/> returns the list of
## transitive permutation characters from the table of marks <A>tom</A>.
## In the first form, <A>fus</A> must be the fusion map from the ordinary
## character table of the group of <A>tom</A> to <A>tom</A>
## (see <Ref Func="FusionCharTableTom"/>).
## In the second form, <A>tbl</A> must be the character table of the group
## of which <A>tom</A> is the table of marks.
## If the fusion map is not uniquely determined
## (see <Ref Func="FusionCharTableTom"/>) then <K>fail</K> is returned.
## <P/>
## If the fusion map <A>fus</A> is given as first argument then each
## transitive permutation character is represented by its values list.
## If the character table <A>tbl</A> is given then the permutation
## characters are class function objects
## (see Chapter <Ref Chap="Class Functions"/>).
## <P/>
## <Example><![CDATA[
## gap> PermCharsTom( a5c, a5 );
## [ Character( CharacterTable( "A5" ), [ 60, 0, 0, 0, 0 ] ),
## Character( CharacterTable( "A5" ), [ 30, 2, 0, 0, 0 ] ),
## Character( CharacterTable( "A5" ), [ 20, 0, 2, 0, 0 ] ),
## Character( CharacterTable( "A5" ), [ 15, 3, 0, 0, 0 ] ),
## Character( CharacterTable( "A5" ), [ 12, 0, 0, 2, 2 ] ),
## Character( CharacterTable( "A5" ), [ 10, 2, 1, 0, 0 ] ),
## Character( CharacterTable( "A5" ), [ 6, 2, 0, 1, 1 ] ),
## Character( CharacterTable( "A5" ), [ 5, 1, 2, 0, 0 ] ),
## Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ) ]
## gap> PermCharsTom( fus, a5 )[1];
## [ 60, 0, 0, 0, 0 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "PermCharsTom", [ IsList, IsTableOfMarks ] );
DeclareOperation( "PermCharsTom", [ IsOrdinaryTable, IsTableOfMarks ] );
#############################################################################
##
## 13. Generic Construction of Tables of Marks
##
## <#GAPDoc Label="[9]{tom}">
## The following three operations construct a table of marks only from the
## data given, i.e., without underlying group.
## <#/GAPDoc>
##
#############################################################################
##
#O TableOfMarksCyclic( <n> )
##
## <#GAPDoc Label="TableOfMarksCyclic">
## <ManSection>
## <Oper Name="TableOfMarksCyclic" Arg='n'/>
##
## <Description>
## <Ref Func="TableOfMarksCyclic"/> returns the table of marks of the cyclic
## group of order <A>n</A>.
## <P/>
## A cyclic group of order <A>n</A> has as its subgroups for each divisor
## <M>d</M> of <A>n</A> a cyclic subgroup of order <M>d</M>.
## <P/>
## <Example><![CDATA[
## gap> Display( TableOfMarksCyclic( 6 ) );
## 1: 6
## 2: 3 3
## 3: 2 . 2
## 4: 1 1 1 1
##
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "TableOfMarksCyclic", [ IsPosInt ] );
#############################################################################
##
#O TableOfMarksDihedral( <n> )
##
## <#GAPDoc Label="TableOfMarksDihedral">
## <ManSection>
## <Oper Name="TableOfMarksDihedral" Arg='n'/>
##
## <Description>
## <Ref Func="TableOfMarksDihedral"/> returns the table of marks of the
## dihedral group of order <A>m</A>.
## <P/>
## For each divisor <M>d</M> of <A>m</A>, a dihedral group of order
## <M>m = 2n</M> contains subgroups of order <M>d</M> according to the
## following rule.
## If <M>d</M> is odd and divides <M>n</M> then there is only one cyclic
## subgroup of order <M>d</M>.
## If <M>d</M> is even and divides <M>n</M> then there are a cyclic subgroup
## of order <M>d</M> and two classes of dihedral subgroups of order <M>d</M>
## (which are cyclic, too, in the case <M>d = 2</M>, see the example below).
## Otherwise (i.e., if <M>d</M> does not divide <M>n</M>) there is just one
## class of dihedral subgroups of order <M>d</M>.
## <P/>
## <Example><![CDATA[
## gap> Display( TableOfMarksDihedral( 12 ) );
## 1: 12
## 2: 6 6
## 3: 6 . 2
## 4: 6 . . 2
## 5: 4 . . . 4
## 6: 3 3 1 1 . 1
## 7: 2 2 . . 2 . 2
## 8: 2 . 2 . 2 . . 2
## 9: 2 . . 2 2 . . . 2
## 10: 1 1 1 1 1 1 1 1 1 1
##
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "TableOfMarksDihedral", [ IsPosInt ] );
#############################################################################
##
#O TableOfMarksFrobenius( <p>, <q> )
##
## <#GAPDoc Label="TableOfMarksFrobenius">
## <ManSection>
## <Oper Name="TableOfMarksFrobenius" Arg='p, q'/>
##
## <Description>
## <Ref Func="TableOfMarksFrobenius"/> computes the table of marks of a
## Frobenius group of order <M>p q</M>, where <M>p</M> is a prime and
## <M>q</M> divides <M>p-1</M>.
## <P/>
## <Example><![CDATA[
## gap> Display( TableOfMarksFrobenius( 5, 4 ) );
## 1: 20
## 2: 10 2
## 3: 5 1 1
## 4: 4 . . 4
## 5: 2 2 . 2 2
## 6: 1 1 1 1 1 1
##
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "TableOfMarksFrobenius", [ IsPosInt, IsPosInt ] );
#############################################################################
##
#V TableOfMarksComponents
##
## <#GAPDoc Label="TableOfMarksComponents">
## <ManSection>
## <Var Name="TableOfMarksComponents"/>
##
## <Description>
## The list <Ref Var="TableOfMarksComponents"/> is used when a
## table of marks object is created from a record via
## <Ref Func="ConvertToTableOfMarks"/>.
## <Ref Var="TableOfMarksComponents"/> contains at position <M>2i-1</M>
## a name of an attribute and at position <M>2i</M> the corresponding
## attribute getter function.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BindGlobal( "TableOfMarksComponents", [
"Identifier", Identifier,
"SubsTom", SubsTom,
"MarksTom", MarksTom,
"NrSubsTom", NrSubsTom,
"OrdersTom", OrdersTom,
"NormalizersTom", NormalizersTom,
"DerivedSubgroupsTomUnique", DerivedSubgroupsTomUnique,
"UnderlyingGroup", UnderlyingGroup,
"StraightLineProgramsTom", StraightLineProgramsTom,
"GeneratorsSubgroupsTom", GeneratorsSubgroupsTom,
"PermutationTom", PermutationTom,
"ClassNamesTom", ClassNamesTom,
] );
#############################################################################
##
#E
|