/usr/share/gap/lib/trans.gd is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 | #############################################################################
##
#W trans.gd GAP library Andrew Solomon
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declarations for transformations
##
## Further maintenance and development by:
## Andrew Solomon
## Robert F. Morse
## <#GAPDoc Label="[1]{trans}">
## A <E>transformation</E> in &GAP; is an endomorphism of a set of integers
## of the form <M>\{ 1, \ldots, n \}</M>.
## Transformations are taken to act on the right, which defines the
## composition <M>i^{(\alpha \beta)} = (i^\alpha)^\beta</M>
## for <M>i</M> in <M>\{ 1, \ldots, n \}</M>.
## <P/>
## For a transformation <M>\alpha</M> on the set <M>\{ 1, \ldots, n \}</M>,
## we define its <E>degree</E> to be <M>n</M>,
## its <E>image list</E> to be the list
## <M>[1 \alpha, \ldots, n \alpha]</M>, its <E>image</E> to be the image
## list considered as a set,
## and its <E>rank</E> to be the size of the image.
## We also define the <E>kernel</E> of <M>\alpha</M> to be the
## equivalence relation containing the pair <M>(i, j)</M> if and only if
## <M>i^\alpha = j^\alpha</M>.
## <P/>
## Note that unlike permutations, we do not consider
## unspecified points to be fixed by a transformation.
## Therefore multiplication is only defined on two transformations of the same
## degree.
## <#/GAPDoc>
##
############################################################################
##
#C IsTransformation(<obj>)
#C IsTransformationCollection(<obj>)
##
## <#GAPDoc Label="IsTransformation">
## <ManSection>
## <Filt Name="IsTransformation" Arg='obj' Type='Category'/>
## <Filt Name="IsTransformationCollection" Arg='obj' Type='Category'/>
##
## <Description>
## We declare it as <Ref Func="IsMultiplicativeElementWithOne"/> since
## the identity automorphism of <M>\{ 1, \ldots, n \}</M> is a
## multiplicative two sided identity for any transformation on the same set.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory("IsTransformation",
IsMultiplicativeElementWithOne and IsAssociativeElement);
DeclareCategoryCollections("IsTransformation");
############################################################################
##
#R IsTransformationRep(<obj>)
##
## <ManSection>
## <Filt Name="IsTransformationRep" Arg='obj' Type='Representation'/>
##
## <Description>
## A transformation is an endomorphism of a set of integers
## of the form <C>[1 .. n]</C>.
## <P/>
## A transformation is completely specified by a list of images
## the ith element is the image of i under the transformation.
## </Description>
## </ManSection>
##
DeclareRepresentation("IsTransformationRep", IsPositionalObjectRep ,[1]);
#############################################################################
##
#F Transformation(<images>)
#F TransformationNC(<images>)
##
## <#GAPDoc Label="Transformation">
## <ManSection>
## <Func Name="Transformation" Arg='images'/>
## <Func Name="TransformationNC" Arg='images'/>
##
## <Description>
## both return a transformation with the image list <A>images</A>.
## The first version checks that the all the elements of the given list
## lie within the range <M>\{ 1, \ldots, n \}</M> where <M>n</M> is
## the length of <A>images</A>,
## but for speed purposes, a non-checking version is also supplied.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("Transformation");
DeclareGlobalFunction("TransformationNC");
#############################################################################
##
#F IdentityTransformation(<n>)
##
## <#GAPDoc Label="IdentityTransformation">
## <ManSection>
## <Func Name="IdentityTransformation" Arg='n'/>
##
## <Description>
## returns the identity transformation of degree <A>n</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("IdentityTransformation");
#############################################################################
##
#F RandomTransformation(<n>)
##
## <#GAPDoc Label="RandomTransformation">
## <ManSection>
## <Func Name="RandomTransformation" Arg='n'/>
##
## <Description>
## returns a random transformation of degree <A>n</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("RandomTransformation",
[IsPosInt]);
############################################################################
##
#A DegreeOfTransformation(<trans>)
##
## <#GAPDoc Label="DegreeOfTransformation">
## <ManSection>
## <Attr Name="DegreeOfTransformation" Arg='trans'/>
##
## <Description>
## returns the degree of <A>trans</A>.
## <Example><![CDATA[
## gap> t:= Transformation([2, 3, 4, 2, 4]);
## Transformation( [ 2, 3, 4, 2, 4 ] )
## gap> DegreeOfTransformation(t);
## 5
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute("DegreeOfTransformation", IsTransformation);
#############################################################################
##
#A ImageListOfTransformation(<trans>)
##
## <#GAPDoc Label="ImageListOfTransformation">
## <ManSection>
## <Attr Name="ImageListOfTransformation" Arg='trans'/>
##
## <Description>
## returns the image list of <A>trans</A>.
## <Example><![CDATA[
## gap> ImageListOfTransformation(t);
## [ 2, 3, 4, 2, 4 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute("ImageListOfTransformation", IsTransformation);
#############################################################################
##
#A ImageSetOfTransformation(<trans>)
##
## <#GAPDoc Label="ImageSetOfTransformation">
## <ManSection>
## <Attr Name="ImageSetOfTransformation" Arg='trans'/>
##
## <Description>
## returns the image of <A>trans</A> as a set.
## <Example><![CDATA[
## gap> ImageSetOfTransformation(t);
## [ 2, 3, 4 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute("ImageSetOfTransformation", IsTransformation);
#############################################################################
##
#A RankOfTransformation( <trans> )
##
## <#GAPDoc Label="RankOfTransformation">
## <ManSection>
## <Attr Name="RankOfTransformation" Arg='trans'/>
##
## <Description>
## returns the rank of <A>trans</A>.
## <Example><![CDATA[
## gap> RankOfTransformation(t);
## 3
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute("RankOfTransformation", IsTransformation);
#############################################################################
##
#A KernelOfTransformation(<trans>)
##
## <#GAPDoc Label="KernelOfTransformation">
## <ManSection>
## <Attr Name="KernelOfTransformation" Arg='trans'/>
##
## <Description>
## returns the kernel of <A>trans</A> as an equivalence relation,
## see <Ref Sect="General Binary Relations"/>).
## <Example><![CDATA[
## gap> KernelOfTransformation(t);
## [ [ 1, 4 ], [ 2 ], [ 3, 5 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute("KernelOfTransformation", IsTransformation);
#############################################################################
##
#O PreimagesOfTransformation(<trans>, <i>)
##
## <#GAPDoc Label="PreimagesOfTransformation">
## <ManSection>
## <Oper Name="PreimagesOfTransformation" Arg='trans, i'/>
##
## <Description>
## returns the subset of <M>\{ 1, \ldots, n \}</M> which maps to <A>i</A>
## under <A>trans</A>.
## <Example><![CDATA[
## gap> PreimagesOfTransformation(t, 2);
## [ 1, 4 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("PreimagesOfTransformation",[IsTransformation, IsInt]);
#############################################################################
##
#O RestrictedTransformation(<trans>, <alpha>)
##
## <#GAPDoc Label="RestrictedTransformation">
## <ManSection>
## <Oper Name="RestrictedTransformation" Arg='trans, alpha'/>
##
## <Description>
## The transformation <A>trans</A> is restricted to only those points of
## <A>alpha</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("RestrictedTransformation",
[IsTransformation, IsListOrCollection]);
############################################################################
##
#O AsTransformation( <O>[, <n>] )
#O AsTransformationNC( <O>, <n> )
##
## <#GAPDoc Label="AsTransformation">
## <ManSection>
## <Oper Name="AsTransformation" Arg='O[, n]'/>
## <Oper Name="AsTransformationNC" Arg='O, n'/>
##
## <Description>
## returns the object <A>O</A> as a transformation.
## Supported objects are permutations and binary relations on points.
## Called with two arguments, the operation returns a transformation of
## degree <A>n</A>,
## signalling an error if such a representation is not possible.
## <Ref Func="AsTransformationNC"/> does not perform this check.
## <Example><![CDATA[
## gap> AsTransformation((1, 3)(2, 4));
## Transformation( [ 3, 4, 1, 2 ] )
## gap> AsTransformation((1, 3)(2, 4), 10);
## Transformation( [ 3, 4, 1, 2, 5, 6, 7, 8, 9, 10 ] )
## ]]></Example>
## <P/>
## <Log><![CDATA[
## gap> AsTransformation((1, 3)(2, 4), 3);
## Error, Permutation moves points over the degree specified called from
## <function>( <arguments> ) called from read-eval-loop
## Entering break read-eval-print loop ...
## you can 'quit;' to quit to outer loop, or
## you can 'return;' to continue
## brk> quit;
## ]]></Log>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("AsTransformation", [IsObject]);
DeclareOperation("AsTransformationNC", [IsObject]);
DeclareOperation("AsPermutation",[IsObject]);
############################################################################
##
#O TransformationRelation( <R> )
##
## <#GAPDoc Label="TransformationRelation">
## <ManSection>
## <Oper Name="TransformationRelation" Arg='R'/>
##
## <Description>
## returns the binary relation <A>R</A> when considered as a transformation.
## Only makes sense for injective binary relations over <C>[1..n]</C>.
## An error is signalled if the relation is not over <C>[1..n]</C>,
## and <K>fail</K> if it is not injective.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("TransformationRelation", [IsGeneralMapping]);
#############################################################################
##
#O BinaryRelationTransformation( <trans> )
##
## <#GAPDoc Label="BinaryRelationTransformation">
## <ManSection>
## <Oper Name="BinaryRelationTransformation" Arg='trans'/>
##
## <Description>
## returns <A>trans</A> when considered as a binary relation.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("BinaryRelationTransformation", [IsTransformation]);
DeclareOperation("InverseOp", [IsTransformation]);
#############################################################################
##
#O PermLeftQuoTransformation(<tr1>, <tr2>)
##
## <#GAPDoc Label="PermLeftQuoTransformation">
## <ManSection>
## <Oper Name="PermLeftQuoTransformation" Arg='tr1, tr2'/>
##
## <Description>
## Given transformations <A>tr1</A> and <A>tr2</A> with equal kernel and
## image, we compute the permutation induced by
## (<A>tr1</A>)<M>^{{-1}} *</M> <A>tr2</A> on the set of images of
## <A>tr1</A>.
## If the kernels and images are not equal, an error is signaled.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("PermLeftQuoTransformation",
[IsTransformation, IsTransformation]);
#############################################################################
##
#F TransformationFamily(n)
#F TransformationType(n)
#F TransformationData(n)
##
## <#GAPDoc Label="TransformationFamily">
## <ManSection>
## <Func Name="TransformationFamily" Arg='n'/>
## <Func Name="TransformationType" Arg='n'/>
## <Func Name="TransformationData" Arg='n'/>
##
## <Description>
## For each <C><A>n</A> > 0</C> there is a single family and type of
## transformations on <A>n</A> points.
## To speed things up, we store these in a database of types.
## The three functions above a then access functions.
## If the <A>n</A>th entry isn't yet created, they trigger creation as well.
## <P/>
## For <C><A>n</A> > 0</C>, element <A>n</A> of the type database is
## <C>[TransformationFamily(</C><A>n</A><C>), TransformationType(</C><A>n</A><C>)]</C>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("TransformationFamily");
DeclareGlobalFunction("TransformationType");
DeclareGlobalFunction("TransformationData");
_TransformationFamiliesDatabase := [];
#############################################################################
##
#E
|