This file is indexed.

/usr/share/gap/lib/trans.gi is in gap-libs 4r6p5-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
#############################################################################
##
#W  trans.gi           GAP library                    Andrew Solomon
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the implementation for transformations
##
##  Further Maintanence and development by:
##  James D. Mitchell
##


## Functions altered JDM
## 1) KernelOfTransformation
## 2) PermLeftQuoTransformation
## 3) RandomTransformation is an operation

#############################################################################
##  
#F  Transformation(<images>) - create a Transformation in IsTransformationRep
#F  TransformationNC( <images> )
#F  IdentityTransformation( <n> )
#F  RandomTransformation( <n> )
## 
##  <images> is a list of the images defining the element
##  These two notions are mutually inverse.
##
##  These two functions should be the only piece of representation
##  specific code.
##
##  IdentityTransformation returns the identity transformation on n points
## 

InstallGlobalFunction(Transformation,
    function(images)
        local n, X, i;

        n := Length(images);
        #check that it is a transformation.
       
        if ForAny([1..n], i-> not images[i] in [1..n]) then
            Error ("<images> does not describe a transformation");
        fi;

        return(Objectify(TransformationType(n), [Immutable(images)]));
    end);

InstallGlobalFunction(TransformationNC,
    function(images)
        return(Objectify(TransformationType(Length(images)), 
            [Immutable(images)]));
    end);

InstallGlobalFunction(IdentityTransformation,
    function(n)
        if not IsPosInt(n) then
            Error("error, function requires a positive integer");
        fi;
        return Transformation([1..n]);
    end);

InstallMethod(RandomTransformation, "<trans>", true,
        [IsPosInt], 0,
    function(n)
        return Transformation(List([1..n], i-> Random([1..n])));
    end);

#############################################################################
##
#A  ImageSetOfTransformation(<trans>)
#A  ImageListOfTransformation( <trans> )
##  
##  Returns the set (list i.e. with repeats) of images of a transformation
##  
InstallMethod(ImageSetOfTransformation, "<trans>", true,
        [IsTransformation], 0,
    function(x) 
        return Set(ImageListOfTransformation(x));
    end);

InstallMethod(ImageListOfTransformation, "<trans>", true, 
        [IsTransformation and IsTransformationRep], 0,
    function(x)
        return x![1];
    end);

#############################################################################
##
#A  RankOfTransformation(<trans>)
##  
##   Size of image set
##  
InstallMethod(RankOfTransformation, "<trans>", true, [IsTransformation], 0,
    function(x) 
        return Size(Set(ImageListOfTransformation(x)));
    end);

#############################################################################
##
#O  PreimagesOfTransformation(<trans>, <i>)
##  
##  subset of [1 .. n]  which maps to <i> under <trans>
##  
InstallMethod(PreimagesOfTransformation, "<trans>", true,
        [IsTransformation, IsInt], 0,
    function(x,i)  
        return Filtered([1 .. DegreeOfTransformation(x)], j->j^x =i);
    end);

#############################################################################
##
#O  RestrictedTransformation( <trans>, <alpha> )
## 
##  
InstallMethod(RestrictedTransformation, "for transformation", true,
        [IsTransformation, IsListOrCollection], 0,
    function(t,a)
        local ind;

        if not IsSubset([1..DegreeOfTransformation(t)],a) then
             Error("error, <alpha> must be a subset of source of transformation");
        fi;

        ind := [1..DegreeOfTransformation(t)];
        ind{a}:=ImageListOfTransformation(t){a};
        return TransformationNC(ind);
    end);

#############################################################################
##
#A  KernelOfTransformation(<trans>)
##  
##  Equivalence relation on [1 .. n] 
##  JDM

InstallMethod(KernelOfTransformation, "to give a kernel of a transformation as a partition of its domain including singletons!!", true, [IsTransformation and IsTransformationRep], 0, 
function(trans)

local ker, imgs, i;

# initialize.
ker:= []; imgs:= ImageListOfTransformation(trans);
   for i in imgs do 
      ker[i]:= [];
   od;

   # compute preimages.
   for i in [1..Length(imgs)] do
      Add(ker[imgs[i]], i);
   od;

   # return kernel.
   return Set(ker);

end);



#############################################################################
##  
#O  PermLeftQuoTransformation(<tr1>, <tr2>)
##
##  Given transformations <tr1> and <tr2> with equal kernel and image, 
##  we compute the permutation induced by <tr1>^-1*<tr2> on the set of 
##  images of <tr1>. If the kernels and images are not equal, an error 
##  is signaled.
##  JDM

InstallMethod(PermLeftQuoTransformation, "for two transformations", true,
        [IsTransformation, IsTransformation], 0,
function(t1,t2)
local pl, i, deg;


if KernelOfTransformation(t1)<>KernelOfTransformation(t2) and 
  ImageSetOfTransformation(t1)<>ImageSetOfTransformation(t2) then
  Error("error, transformations must have the same kernel and image set");
fi;
deg:=DegreeOfTransformation(t1);

pl:=[1..deg];

for i in [1..deg] do 
  pl[i^t1]:=i^t2;
od;
  return PermList(pl);
end);

#############################################################################
##  
#F  TransformationFamily(n)
#F  TransformationType(n)
#F  TransformationData(n)
#V  _TransformationFamiliesDatabase
## 
##  For each n > 0 there is a single family and type of transformations
##  on n points. To speed things up, we store these in
##  _TransformationFamiliesDatabase. The three functions above a then
##  access functions. If the nth entry isn't yet created, they trigger
##  creation as well.
##
##  For n > 0, element n  of _TransformationFamiliesDatabase is
##  [TransformationFamily(n), TransformationType(n)]

InstallGlobalFunction(TransformationData,
    function(n)
        local Fam;

        if (n <= 0) then
            Error ("Transformations must be on a positive number of points");
        fi;
        if IsBound(_TransformationFamiliesDatabase[n]) then
            return _TransformationFamiliesDatabase[n];
        fi;

        Fam := NewFamily(
                   Concatenation("Transformations of the set [",String(n),"]"),
                   IsTransformation,CanEasilySortElements,CanEasilySortElements);
        # Putting IsTransformation in the NewFamily means that when you make, 
        # say [a] it picks up the Category from the Family object and makes 
        # sure that [a] has CollectionsCategory(IsTransformation)

        _TransformationFamiliesDatabase[n] := 
        [Fam, NewType(Fam,IsTransformation and IsTransformationRep, n)];

        return _TransformationFamiliesDatabase[n];
    end);

InstallGlobalFunction(TransformationType,
    function(n)
        return TransformationData(n)[2];
    end);

InstallGlobalFunction(TransformationFamily,
    function(n)
        return TransformationData(n)[1];
    end);

############################################################################
##
#O  Print(<trans>)
##
##  Just print the list of images.
##
InstallMethod(PrintObj, "for transformations", true,
        [IsTransformation], 0, 
    function(x) 
        Print("Transformation( ",ImageListOfTransformation(x)," )");
    end);

############################################################################
##
#A  DegreeOfTransformation(<trans>)
##
##  When a  transformation is an endomorphism of the set of integers
##  [1 .. n] its degree is n.
## 
InstallMethod(DegreeOfTransformation, "for a transformation", true, 
        [IsTransformation and IsTransformationRep], 0, 
    function(x) 
        return  DataType(TypeObj(x));
    end);

############################################################################
##
#M  AsTransformation( <perm> )
#M  AsTransformation( <rel> )     -- relation on n points
#M  AsTransformation( <trans> )
##
#M  AsTransformation( <perm>, <n> )
#M  AsTransformationNC( <perm>, <n> )
##
#M  AsTransformation( <trans>, <n> )
#M  AsTransformationNC( <trans>, <n> )
##
##  returns the <perm> as a transformation.   In the second form, it
##  returns <perm> as a transformation of degree <n>, signalling an error
##  if <perm> moves points greater than <n>
##
InstallMethod(AsTransformation, "for a permutation", true,
        [IsPerm], 0,
    perm->TransformationNC(ListPerm(perm))
    );

InstallOtherMethod(AsTransformation, "for a permutation and degree", true,
        [IsPerm, IsPosInt], 0,
    function(perm, n)
        if IsOne( perm ) then
            return TransformationNC([1..n]);
        fi;
        if n < LargestMovedPoint(perm) then
            Error("Permutation moves points over the degree specified");
        fi;
        return TransformationNC(OnTuples([1..n], perm));
    end);

InstallOtherMethod(AsTransformationNC, "for a permutation and degree", true,
        [IsPerm, IsPosInt], 0,
    function(perm, n)
        return TransformationNC(OnTuples([1..n], perm));
    end);

InstallOtherMethod(AsTransformation, "for binary relations on points", true,
        [IsBinaryRelation and IsBinaryRelationOnPointsRep], 0,
function(rel)
    if not IsMapping(rel) then
             Error("error, <rel> must be a mapping"); 
    fi;
    return Transformation(Flat(Successors(rel)));
end);

InstallOtherMethod(AsTransformation, "for a transformation",
       [IsTransformation], t->t); 

InstallOtherMethod(AsTransformation, "for a transformation and degree", true,
        [IsTransformation, IsPosInt], 0,
function(t, n)
    local d;
    if IsOne( t ) then
        return TransformationNC([1..n]);
    fi;
    d := DegreeOfTransformation(t);
    if d=n then
        return t;
    elif d<n then
        return TransformationNC(Concatenation(ImageListOfTransformation(t),
                       [d+1..n]));
    else
        if ForAny([n+1..d],i->i^t<>i) then
            Error("Transformation moves points over the degree specified");
        fi;
        return TransformationNC(ImageListOfTransformation(t){[1..n]});
    fi;
end);

InstallOtherMethod(AsTransformationNC, "for a transformation and degree", true,
        [IsTransformation, IsPosInt], 0,
function(t, n)
    local d;
    d := DegreeOfTransformation(t);
    if d=n then
        return t;
    elif d<n then
        return TransformationNC(Concatenation(ImageListOfTransformation(t),
                       [d+1..n]));
    else
        return TransformationNC(ImageListOfTransformation(t){[1..n]});
    fi;
end);

############################################################################
###
#M  AsPermutation(<trans>)
#M  AsPermutation(<perm>)
##   
##  If trans is a permutation, then allow it to be converted into one.
##  return fail if the transformation is not a permutation.
##
InstallMethod(AsPermutation, "for a transformation", [IsTransformation],
       t->PermList(ImageListOfTransformation(t))); 

InstallMethod(AsPermutation, "for a permutation", [IsPerm],
       p->p);

InstallMethod(AsPermutation, "for binary relations on points", true,
        [IsBinaryRelation and IsBinaryRelationOnPointsRep], 0,
function(rel)
    if not IsMapping(rel) then
             Error("error, <rel> must be a mapping");
    fi;
    return AsPermutation(Transformation(Flat(Successors(rel))));
end);

###########################################################################
##
#M  Permuted(<list>,<trans>)
##
##  If the transformtation is a permutation then permute the 
##  list as indicated otherwise return fail
##
##  
InstallOtherMethod(Permuted, "for a list and a transformation",
       [IsList, IsTransformation],
function(l,t)
    if AsPermutation(t) = fail then 
        return fail;
    else
        return Permuted(l,AsPermutation(t));
    fi;
end); 

############################################################################
##
#M  TransformationRelation( <rel> )
##
InstallMethod(TransformationRelation, "for relation over [1..n]", true,
    [IsGeneralMapping], 0,
function(rel)
    local ims;

	if not IsEndoGeneralMapping(rel) then
		Error(rel, " is not a binary relation");
	fi;
    ims:= ImagesListOfBinaryRelation(rel);
    if not ForAll(ims, x->Length(x) = 1) then
        return fail;
    fi;

    return Transformation(List(ims, x->x[1]));
end);

############################################################################
## 
#M  Return the largest moved point of a transformation. 
##  If the transformation is the identity (no moved points) return 0.
##
InstallOtherMethod(LargestMovedPoint, "for a transformation",
       [IsTransformation],
       function(t)
   if t=One(t) then
       return 0;
   fi;
   return Maximum(Filtered([1..DegreeOfTransformation(t)], i->not i^t= i));
end); 

#############################################################################
##
#M  BinaryRelationTransformation( <trans> )
##
InstallMethod( BinaryRelationTransformation, "for a transformation", true,
    [IsTransformation], 0,
        t->BinaryRelationByListOfImagesNC(
            List(ImageListOfTransformation(t), x->[x])));

############################################################################
##
#M  <trans> * <trans>
##
##  Can only multiply transformations of the same degree.
##  Note:  Transformations act on the right, so that i (a*b) = (i a)b,
##  or in functional notation, (a*b)(i) = b(a(i)), which is to say
##  that transformations act on the set [1 .. n] on the right.
## 
## JDM changed this too.

InstallMethod(\*, "trans * trans", IsIdenticalObj,
        [IsTransformation and IsTransformationRep, 
         IsTransformation and IsTransformationRep], 0, 
    function(x, y) 
        local a,b;

        a:= x![1]; b := y![1];
        #return TransformationNC(List([1 .. Length(a)], i -> b[a[i]]));
        return TransformationNC(b{a});
    end);

############################################################################
##
#M  <trans> * <perm>
##
InstallMethod(\*, "trans * perm", true,
	[IsTransformation and IsTransformationRep, IsPerm], 0,
function(t, p)
	return t * AsTransformation(p, DegreeOfTransformation(t));
end);

############################################################################
##
#M  <trans>^perm
##
##  Makes sense in that permutations have inverses and are transformations
##
InstallOtherMethod(\^, "for a transformation and a permutation",
       [IsTransformation, IsPerm],
       function(t,p)
   return p^-1*t*p;
end); 

############################################################################
##
#M  <perm> * <trans>
##
InstallMethod(\*, "trans * perm", true,
	[IsPerm, IsTransformation and IsTransformationRep], 0,
function(p, t)
	return AsTransformation(p, DegreeOfTransformation(t)) * t;
end);

############################################################################
##
#M  <map> * <trans>
##
InstallMethod( \*, "binary relation * trans", true,
    [IsGeneralMapping, IsTransformation], 0,
function(r, t)
    return r * BinaryRelationTransformation(t);
end);

############################################################################
##
#M  <trans> * <map>
##
InstallMethod( \*, "trans * binary relation", true,
    [IsTransformation, IsGeneralMapping], 0,
function(t, r)
    return BinaryRelationTransformation(t) * r;
end);


############################################################################
##
#M  <trans> < <trans>
##
##  Lexicographic ordering on image lists.
## 

InstallMethod(\<, "<trans> < <trans>", IsIdenticalObj, 
        [IsTransformation and IsTransformationRep, 
        IsTransformation and IsTransformationRep], 0,   
    function(x, y) 
        return x![1] < y![1];
    end);

InstallMethod(\<, "for a transformation and a permutation",
        [IsTransformation, IsPerm],
        ReturnFalse);

InstallMethod(\<, "for a permutation and a transformation",
        [IsPerm, IsTransformation],
        ReturnTrue);

############################################################################
##
#M  One(<trans>)
##
##  The identity transformation on the set [1 .. n] where
##  n is the degree of <trans>.
## 

InstallMethod(One, "One(<trans>)", true, 
        [IsTransformation and IsTransformationRep], 0, 
    function(x)  
        return TransformationNC([1 .. DegreeOfTransformation(x)]);
    end);

############################################################################
##
#M  <trans> = <trans>
##
##  Two transformations are equal if their image lists are equal.
## 

InstallMethod(\=, "for two transformations of the same set", IsIdenticalObj,
        [IsTransformation and IsTransformationRep, 
        IsTransformation and IsTransformationRep], 0, 
    function(x, y) 
        return  x![1] = y![1];
    end);
    
    
############################################################################
##
#M  <i> ^ <trans>
##
##  Image of a point under a transformation
## 
InstallOtherMethod(\^, "i ^ trans", true,
        [IsInt, IsTransformation and IsTransformationRep], 0, 
    function(i, x) 
        return x![1][i];
    end);


InstallMethod(InverseOp, "Inverse operation of transformations", true,
        [IsTransformation], 0,
    t -> BinaryRelationTransformation(t)^-1
    );

InstallMethod(\^, "for transformations and negative integers", true,
        [IsTransformation,IsInt and IsNegRat], 0,
    function(t, n) 
        return InverseOp(t)^(-n);
    end); 

InstallMethod(\^, "for transformations and zero", true,
        [IsTransformation, IsZeroCyc],0,
    function(t,z)
        return One(t);
    end);

############################################################################
##
#E