/usr/share/gap/lib/trans.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 | #############################################################################
##
#W trans.gi GAP library Andrew Solomon
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the implementation for transformations
##
## Further Maintanence and development by:
## James D. Mitchell
##
## Functions altered JDM
## 1) KernelOfTransformation
## 2) PermLeftQuoTransformation
## 3) RandomTransformation is an operation
#############################################################################
##
#F Transformation(<images>) - create a Transformation in IsTransformationRep
#F TransformationNC( <images> )
#F IdentityTransformation( <n> )
#F RandomTransformation( <n> )
##
## <images> is a list of the images defining the element
## These two notions are mutually inverse.
##
## These two functions should be the only piece of representation
## specific code.
##
## IdentityTransformation returns the identity transformation on n points
##
InstallGlobalFunction(Transformation,
function(images)
local n, X, i;
n := Length(images);
#check that it is a transformation.
if ForAny([1..n], i-> not images[i] in [1..n]) then
Error ("<images> does not describe a transformation");
fi;
return(Objectify(TransformationType(n), [Immutable(images)]));
end);
InstallGlobalFunction(TransformationNC,
function(images)
return(Objectify(TransformationType(Length(images)),
[Immutable(images)]));
end);
InstallGlobalFunction(IdentityTransformation,
function(n)
if not IsPosInt(n) then
Error("error, function requires a positive integer");
fi;
return Transformation([1..n]);
end);
InstallMethod(RandomTransformation, "<trans>", true,
[IsPosInt], 0,
function(n)
return Transformation(List([1..n], i-> Random([1..n])));
end);
#############################################################################
##
#A ImageSetOfTransformation(<trans>)
#A ImageListOfTransformation( <trans> )
##
## Returns the set (list i.e. with repeats) of images of a transformation
##
InstallMethod(ImageSetOfTransformation, "<trans>", true,
[IsTransformation], 0,
function(x)
return Set(ImageListOfTransformation(x));
end);
InstallMethod(ImageListOfTransformation, "<trans>", true,
[IsTransformation and IsTransformationRep], 0,
function(x)
return x![1];
end);
#############################################################################
##
#A RankOfTransformation(<trans>)
##
## Size of image set
##
InstallMethod(RankOfTransformation, "<trans>", true, [IsTransformation], 0,
function(x)
return Size(Set(ImageListOfTransformation(x)));
end);
#############################################################################
##
#O PreimagesOfTransformation(<trans>, <i>)
##
## subset of [1 .. n] which maps to <i> under <trans>
##
InstallMethod(PreimagesOfTransformation, "<trans>", true,
[IsTransformation, IsInt], 0,
function(x,i)
return Filtered([1 .. DegreeOfTransformation(x)], j->j^x =i);
end);
#############################################################################
##
#O RestrictedTransformation( <trans>, <alpha> )
##
##
InstallMethod(RestrictedTransformation, "for transformation", true,
[IsTransformation, IsListOrCollection], 0,
function(t,a)
local ind;
if not IsSubset([1..DegreeOfTransformation(t)],a) then
Error("error, <alpha> must be a subset of source of transformation");
fi;
ind := [1..DegreeOfTransformation(t)];
ind{a}:=ImageListOfTransformation(t){a};
return TransformationNC(ind);
end);
#############################################################################
##
#A KernelOfTransformation(<trans>)
##
## Equivalence relation on [1 .. n]
## JDM
InstallMethod(KernelOfTransformation, "to give a kernel of a transformation as a partition of its domain including singletons!!", true, [IsTransformation and IsTransformationRep], 0,
function(trans)
local ker, imgs, i;
# initialize.
ker:= []; imgs:= ImageListOfTransformation(trans);
for i in imgs do
ker[i]:= [];
od;
# compute preimages.
for i in [1..Length(imgs)] do
Add(ker[imgs[i]], i);
od;
# return kernel.
return Set(ker);
end);
#############################################################################
##
#O PermLeftQuoTransformation(<tr1>, <tr2>)
##
## Given transformations <tr1> and <tr2> with equal kernel and image,
## we compute the permutation induced by <tr1>^-1*<tr2> on the set of
## images of <tr1>. If the kernels and images are not equal, an error
## is signaled.
## JDM
InstallMethod(PermLeftQuoTransformation, "for two transformations", true,
[IsTransformation, IsTransformation], 0,
function(t1,t2)
local pl, i, deg;
if KernelOfTransformation(t1)<>KernelOfTransformation(t2) and
ImageSetOfTransformation(t1)<>ImageSetOfTransformation(t2) then
Error("error, transformations must have the same kernel and image set");
fi;
deg:=DegreeOfTransformation(t1);
pl:=[1..deg];
for i in [1..deg] do
pl[i^t1]:=i^t2;
od;
return PermList(pl);
end);
#############################################################################
##
#F TransformationFamily(n)
#F TransformationType(n)
#F TransformationData(n)
#V _TransformationFamiliesDatabase
##
## For each n > 0 there is a single family and type of transformations
## on n points. To speed things up, we store these in
## _TransformationFamiliesDatabase. The three functions above a then
## access functions. If the nth entry isn't yet created, they trigger
## creation as well.
##
## For n > 0, element n of _TransformationFamiliesDatabase is
## [TransformationFamily(n), TransformationType(n)]
InstallGlobalFunction(TransformationData,
function(n)
local Fam;
if (n <= 0) then
Error ("Transformations must be on a positive number of points");
fi;
if IsBound(_TransformationFamiliesDatabase[n]) then
return _TransformationFamiliesDatabase[n];
fi;
Fam := NewFamily(
Concatenation("Transformations of the set [",String(n),"]"),
IsTransformation,CanEasilySortElements,CanEasilySortElements);
# Putting IsTransformation in the NewFamily means that when you make,
# say [a] it picks up the Category from the Family object and makes
# sure that [a] has CollectionsCategory(IsTransformation)
_TransformationFamiliesDatabase[n] :=
[Fam, NewType(Fam,IsTransformation and IsTransformationRep, n)];
return _TransformationFamiliesDatabase[n];
end);
InstallGlobalFunction(TransformationType,
function(n)
return TransformationData(n)[2];
end);
InstallGlobalFunction(TransformationFamily,
function(n)
return TransformationData(n)[1];
end);
############################################################################
##
#O Print(<trans>)
##
## Just print the list of images.
##
InstallMethod(PrintObj, "for transformations", true,
[IsTransformation], 0,
function(x)
Print("Transformation( ",ImageListOfTransformation(x)," )");
end);
############################################################################
##
#A DegreeOfTransformation(<trans>)
##
## When a transformation is an endomorphism of the set of integers
## [1 .. n] its degree is n.
##
InstallMethod(DegreeOfTransformation, "for a transformation", true,
[IsTransformation and IsTransformationRep], 0,
function(x)
return DataType(TypeObj(x));
end);
############################################################################
##
#M AsTransformation( <perm> )
#M AsTransformation( <rel> ) -- relation on n points
#M AsTransformation( <trans> )
##
#M AsTransformation( <perm>, <n> )
#M AsTransformationNC( <perm>, <n> )
##
#M AsTransformation( <trans>, <n> )
#M AsTransformationNC( <trans>, <n> )
##
## returns the <perm> as a transformation. In the second form, it
## returns <perm> as a transformation of degree <n>, signalling an error
## if <perm> moves points greater than <n>
##
InstallMethod(AsTransformation, "for a permutation", true,
[IsPerm], 0,
perm->TransformationNC(ListPerm(perm))
);
InstallOtherMethod(AsTransformation, "for a permutation and degree", true,
[IsPerm, IsPosInt], 0,
function(perm, n)
if IsOne( perm ) then
return TransformationNC([1..n]);
fi;
if n < LargestMovedPoint(perm) then
Error("Permutation moves points over the degree specified");
fi;
return TransformationNC(OnTuples([1..n], perm));
end);
InstallOtherMethod(AsTransformationNC, "for a permutation and degree", true,
[IsPerm, IsPosInt], 0,
function(perm, n)
return TransformationNC(OnTuples([1..n], perm));
end);
InstallOtherMethod(AsTransformation, "for binary relations on points", true,
[IsBinaryRelation and IsBinaryRelationOnPointsRep], 0,
function(rel)
if not IsMapping(rel) then
Error("error, <rel> must be a mapping");
fi;
return Transformation(Flat(Successors(rel)));
end);
InstallOtherMethod(AsTransformation, "for a transformation",
[IsTransformation], t->t);
InstallOtherMethod(AsTransformation, "for a transformation and degree", true,
[IsTransformation, IsPosInt], 0,
function(t, n)
local d;
if IsOne( t ) then
return TransformationNC([1..n]);
fi;
d := DegreeOfTransformation(t);
if d=n then
return t;
elif d<n then
return TransformationNC(Concatenation(ImageListOfTransformation(t),
[d+1..n]));
else
if ForAny([n+1..d],i->i^t<>i) then
Error("Transformation moves points over the degree specified");
fi;
return TransformationNC(ImageListOfTransformation(t){[1..n]});
fi;
end);
InstallOtherMethod(AsTransformationNC, "for a transformation and degree", true,
[IsTransformation, IsPosInt], 0,
function(t, n)
local d;
d := DegreeOfTransformation(t);
if d=n then
return t;
elif d<n then
return TransformationNC(Concatenation(ImageListOfTransformation(t),
[d+1..n]));
else
return TransformationNC(ImageListOfTransformation(t){[1..n]});
fi;
end);
############################################################################
###
#M AsPermutation(<trans>)
#M AsPermutation(<perm>)
##
## If trans is a permutation, then allow it to be converted into one.
## return fail if the transformation is not a permutation.
##
InstallMethod(AsPermutation, "for a transformation", [IsTransformation],
t->PermList(ImageListOfTransformation(t)));
InstallMethod(AsPermutation, "for a permutation", [IsPerm],
p->p);
InstallMethod(AsPermutation, "for binary relations on points", true,
[IsBinaryRelation and IsBinaryRelationOnPointsRep], 0,
function(rel)
if not IsMapping(rel) then
Error("error, <rel> must be a mapping");
fi;
return AsPermutation(Transformation(Flat(Successors(rel))));
end);
###########################################################################
##
#M Permuted(<list>,<trans>)
##
## If the transformtation is a permutation then permute the
## list as indicated otherwise return fail
##
##
InstallOtherMethod(Permuted, "for a list and a transformation",
[IsList, IsTransformation],
function(l,t)
if AsPermutation(t) = fail then
return fail;
else
return Permuted(l,AsPermutation(t));
fi;
end);
############################################################################
##
#M TransformationRelation( <rel> )
##
InstallMethod(TransformationRelation, "for relation over [1..n]", true,
[IsGeneralMapping], 0,
function(rel)
local ims;
if not IsEndoGeneralMapping(rel) then
Error(rel, " is not a binary relation");
fi;
ims:= ImagesListOfBinaryRelation(rel);
if not ForAll(ims, x->Length(x) = 1) then
return fail;
fi;
return Transformation(List(ims, x->x[1]));
end);
############################################################################
##
#M Return the largest moved point of a transformation.
## If the transformation is the identity (no moved points) return 0.
##
InstallOtherMethod(LargestMovedPoint, "for a transformation",
[IsTransformation],
function(t)
if t=One(t) then
return 0;
fi;
return Maximum(Filtered([1..DegreeOfTransformation(t)], i->not i^t= i));
end);
#############################################################################
##
#M BinaryRelationTransformation( <trans> )
##
InstallMethod( BinaryRelationTransformation, "for a transformation", true,
[IsTransformation], 0,
t->BinaryRelationByListOfImagesNC(
List(ImageListOfTransformation(t), x->[x])));
############################################################################
##
#M <trans> * <trans>
##
## Can only multiply transformations of the same degree.
## Note: Transformations act on the right, so that i (a*b) = (i a)b,
## or in functional notation, (a*b)(i) = b(a(i)), which is to say
## that transformations act on the set [1 .. n] on the right.
##
## JDM changed this too.
InstallMethod(\*, "trans * trans", IsIdenticalObj,
[IsTransformation and IsTransformationRep,
IsTransformation and IsTransformationRep], 0,
function(x, y)
local a,b;
a:= x![1]; b := y![1];
#return TransformationNC(List([1 .. Length(a)], i -> b[a[i]]));
return TransformationNC(b{a});
end);
############################################################################
##
#M <trans> * <perm>
##
InstallMethod(\*, "trans * perm", true,
[IsTransformation and IsTransformationRep, IsPerm], 0,
function(t, p)
return t * AsTransformation(p, DegreeOfTransformation(t));
end);
############################################################################
##
#M <trans>^perm
##
## Makes sense in that permutations have inverses and are transformations
##
InstallOtherMethod(\^, "for a transformation and a permutation",
[IsTransformation, IsPerm],
function(t,p)
return p^-1*t*p;
end);
############################################################################
##
#M <perm> * <trans>
##
InstallMethod(\*, "trans * perm", true,
[IsPerm, IsTransformation and IsTransformationRep], 0,
function(p, t)
return AsTransformation(p, DegreeOfTransformation(t)) * t;
end);
############################################################################
##
#M <map> * <trans>
##
InstallMethod( \*, "binary relation * trans", true,
[IsGeneralMapping, IsTransformation], 0,
function(r, t)
return r * BinaryRelationTransformation(t);
end);
############################################################################
##
#M <trans> * <map>
##
InstallMethod( \*, "trans * binary relation", true,
[IsTransformation, IsGeneralMapping], 0,
function(t, r)
return BinaryRelationTransformation(t) * r;
end);
############################################################################
##
#M <trans> < <trans>
##
## Lexicographic ordering on image lists.
##
InstallMethod(\<, "<trans> < <trans>", IsIdenticalObj,
[IsTransformation and IsTransformationRep,
IsTransformation and IsTransformationRep], 0,
function(x, y)
return x![1] < y![1];
end);
InstallMethod(\<, "for a transformation and a permutation",
[IsTransformation, IsPerm],
ReturnFalse);
InstallMethod(\<, "for a permutation and a transformation",
[IsPerm, IsTransformation],
ReturnTrue);
############################################################################
##
#M One(<trans>)
##
## The identity transformation on the set [1 .. n] where
## n is the degree of <trans>.
##
InstallMethod(One, "One(<trans>)", true,
[IsTransformation and IsTransformationRep], 0,
function(x)
return TransformationNC([1 .. DegreeOfTransformation(x)]);
end);
############################################################################
##
#M <trans> = <trans>
##
## Two transformations are equal if their image lists are equal.
##
InstallMethod(\=, "for two transformations of the same set", IsIdenticalObj,
[IsTransformation and IsTransformationRep,
IsTransformation and IsTransformationRep], 0,
function(x, y)
return x![1] = y![1];
end);
############################################################################
##
#M <i> ^ <trans>
##
## Image of a point under a transformation
##
InstallOtherMethod(\^, "i ^ trans", true,
[IsInt, IsTransformation and IsTransformationRep], 0,
function(i, x)
return x![1][i];
end);
InstallMethod(InverseOp, "Inverse operation of transformations", true,
[IsTransformation], 0,
t -> BinaryRelationTransformation(t)^-1
);
InstallMethod(\^, "for transformations and negative integers", true,
[IsTransformation,IsInt and IsNegRat], 0,
function(t, n)
return InverseOp(t)^(-n);
end);
InstallMethod(\^, "for transformations and zero", true,
[IsTransformation, IsZeroCyc],0,
function(t,z)
return One(t);
end);
############################################################################
##
#E
|