/usr/share/gap/lib/upoly.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 | #############################################################################
##
##
#W upoly.gi GAP Library Alexander Hulpke
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1999 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains methods for univariate polynomials
##
#############################################################################
##
#M IrrFacsPol(<f>) . . . lists of irreducible factors of polynomial over
## ring, initialize default
##
InstallMethod(IrrFacsPol,true,[IsPolynomial],0,f -> []);
#############################################################################
##
#F StoreFactorsPol( <pring>, <upol>, <factlist> ) . . . . store factors list
##
InstallGlobalFunction(StoreFactorsPol,function(R,f,fact)
local irf;
irf:=IrrFacsPol(f);
if not ForAny(irf,i->i[1]=R) then
Add(irf,[R,Immutable(fact)]);
fi;
end);
#############################################################################
##
#M IsIrreducibleRingElement(<pol>) . . . Irreducibility test for polynomials
##
InstallMethod(IsIrreducibleRingElement,"polynomial",IsCollsElms,
[IsPolynomialRing,IsPolynomial],0,
function(R,f)
local d;
if not IsUnivariatePolynomial(f) then
TryNextMethod();
fi;
d:=DegreeOfLaurentPolynomial(f);
if d=DEGREE_ZERO_LAURPOL then
# the zero polynomial: irreducible elements are nonzero
return false;
elif d=0 then
# constant polynomial -> refer to base ring
f:=CoefficientsOfLaurentPolynomial(f)[1][1];
return IsIrreducibleRingElement(LeftActingDomain(R),f);
else
return Length(Factors(R,f: factoroptions:=
rec(stopdegs:=[1..DegreeOfLaurentPolynomial(f)-1]) ))<=1;
fi;
end);
#############################################################################
##
#F RootsOfUPol(<upol>) . . . . . . . . . . . . . . . . roots of a polynomial
##
InstallGlobalFunction( RootsOfUPol, function(arg)
local roots,factor,f,fact,fie,m,inum;
roots:=[];
f:=arg[Length(arg)];
inum:=IndeterminateNumberOfUnivariateLaurentPolynomial(f);
if Length(arg)=1 then
fact:=Factors(f);
elif IsString(arg[1]) and arg[1]="split" then
fie:=SplittingField(f);
m:=List(IrrFacsPol(f),i->Maximum(List(i[2],DegreeOfLaurentPolynomial)));
m:=IrrFacsPol(f)[Position(m,Minimum(m))][2];
fact:=Concatenation(List(m,i->Factors(PolynomialRing(fie,[inum]),i)));
else
fact:=Factors(PolynomialRing(arg[1],[inum]),f);
fi;
for factor in fact do
if DegreeOfLaurentPolynomial(factor)=1 then
factor:=CoefficientsOfLaurentPolynomial(factor);
if factor[2]=0 then
Add(roots,-factor[1][1]/factor[1][2]);
else
Add(roots,0*factor[1][1]);
fi;
fi;
od;
return roots;
end );
#M for factorization redisplatch if found out the polynomial is univariate
RedispatchOnCondition(Factors,true,[IsPolynomial],[IsUnivariatePolynomial],0);
RedispatchOnCondition(Factors,true,[IsRing,IsPolynomial],
[,IsUnivariatePolynomial],0);
RedispatchOnCondition(IsIrreducibleRingElement,true,[IsRing,IsPolynomial],
[,IsUnivariatePolynomial],0);
#############################################################################
##
#F CyclotomicPol( <n> ) . . . coefficients of <n>-th cyclotomic polynomial
##
InstallGlobalFunction( CyclotomicPol, function( n )
local f, # result (after stripping off other cyclotomic polynomials)
div, # divisors of 'n'
d, # one divisor of 'n'
q, # coefficiens of a quotient that arises in division
g, # coefficients of 'd'-th cyclotomic polynomial
l, # degree of 'd'-th cycl. pol.
m,
i,
c,
k;
if not IsBound( CYCLOTOMICPOLYNOMIALS[ n ] ) then
# We have to compute the polynomial. Start with 'X^n - 1' ...
f := List( [ 1 .. n ], x -> 0 );
f[1] := -1;
f[ n+1 ] := 1;
div:= ShallowCopy( DivisorsInt( n ) );
RemoveSet( div, n );
# ... and divide by all 'd'-th cyclotomic polynomials
# for proper divisors 'd' of 'n'.
for d in div do
q := [];
g := CyclotomicPol( d );
l := Length( g );
m := Length( f ) - l;
for i in [ 0 .. m ] do
c := f[ m - i + l ] / g[ l ];
for k in [ 1 .. l ] do
f[ m - i + k ] := f[ m - i + k ] - c * g[k];
od;
q[ m - i + 1 ] := c;
od;
f:= q;
od;
# store the coefficients list
CYCLOTOMICPOLYNOMIALS[n]:= Immutable( f );
else
# just fetch the coefficients list
f := CYCLOTOMICPOLYNOMIALS[n];
fi;
# return the coefficients list
return f;
end );
############################################################################
##
#F CyclotomicPolynomial( <F>, <n> ) . . . . . . <n>-th cycl. pol. over <F>
##
## returns the <n>-th cyclotomic polynomial over the ring <F>.
##
InstallGlobalFunction( CyclotomicPolynomial, function( F, n )
local char; # characteristic of 'F'
if not IsInt( n ) or n <= 0 or not IsRing( F ) then
Error( "<n> must be a positive integer, <F> a ring" );
fi;
char:= Characteristic( F );
if char <> 0 then
# replace 'n' by its $p^{\prime}$ part
while n mod char = 0 do
n := n / char;
od;
fi;
return UnivariatePolynomial( F, One( F ) * CyclotomicPol(n) );
end );
#############################################################################
##
#M IsPrimitivePolynomial( <F>, <pol> )
##
InstallMethod( IsPrimitivePolynomial,
"for a (finite) field, and a polynomial",
function( F1, F2 )
return HasCoefficientsFamily( F2 )
and IsCollsElms( F1, CoefficientsFamily( F2 ) );
end,
[ IsField, IsRationalFunction ], 0,
function( F, pol )
local coeffs, # coefficients of `pol'
one, # `One( F )'
pmc, # result of `PowerModCoeffs'
size, # size of mult. group of the extension field
x, # polynomial `x'
p; # loop over prime divisors of `size'
# Check the arguments.
if not IsPolynomial( pol ) then
return false;
elif not IsFinite( F ) then
TryNextMethod();
fi;
coeffs:= CoefficientsOfUnivariatePolynomial( pol );
one:= One( F );
if IsZero( coeffs[1] ) or coeffs[ Length( coeffs ) ] <> one then
return false;
fi;
size:= Size( F ) ^ ( Length( coeffs ) - 1 ) - 1;
# make sure that compressed coeffs are used if input is compressed
x:= ShallowCopy(Zero( F ) * coeffs{[1,1]});
x[2] := one;
# Primitive polynomials divide the polynomial $x^{q^d-1} - 1$ \ldots
pmc:= PowerModCoeffs( x, size, coeffs );
ShrinkRowVector( pmc );
if pmc <> [ one ] then
return false;
fi;
# \ldots and are not divisible by $x^m - 1$
# for proper divisors $m$ of $q^d-1$.
if size <> 1 then
for p in Set( Factors( size ) ) do
pmc:= PowerModCoeffs( x, size / p, coeffs );
ShrinkRowVector( pmc );
if pmc = [ one ] then
return false;
fi;
od;
fi;
return true;
end );
#############################################################################
##
#E
|