/usr/share/gap/lib/vspcmat.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 | #############################################################################
##
#W vspcmat.gi GAP library Thomas Breuer
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains methods for matrix spaces.
## A matrix space is a vector space whose elements are matrices.
##
## The coefficients field need *not* contain all entries of the matrices.
## If it does then the space is a *Gaussian matrix space*,
## with better methods to deal with bases.
## If it does not then the bases use the mechanism of associated bases.
##
## For all matrix spaces, the value of the attribute `DimensionOfVectors' is
## a list of length 2,
## the first entry being the number of rows and the second being the number
## of columns.
##
## Note that we must distinguish spaces of Lie matrices and spaces of
## ordinary matrices because of the different family relations.
##
## (See the file `vspcrow.gi' for methods for row spaces.)
##
## 2. Methods for bases of non-Gaussian matrix spaces
## 3. Methods for semi-echelonized bases of Gaussian matrix spaces
## 4. Methods for matrix spaces
## 5. Methods for full matrix spaces
## 7. Methods for mutable bases of Gaussian matrix spaces
##
#############################################################################
##
## 2. Methods for bases of non-Gaussian matrix spaces
##
#############################################################################
##
#M NiceFreeLeftModuleInfo( <matspace> )
#M NiceVector( <V>, <mat> )
#M UglyVector( <V>, <row> ) . . . . . . . . for matrix space and row vector
##
## The purpose of the check is twofold.
##
## First, we check whether <V> is a non-Gaussian matrix space.
## If yes then it gets the filter `IsNonGaussianMatrixSpace' that indicates
## that it is handled via the mechanism of nice bases;
## this holds also if the matrices are Lie matrices, since thus one
## indirection (``unpacking'' the Lie matrix) is avoided.
##
## Second, we set the filter `IsMatrixModule' if <V> consists of matrices.
## If additionally <V> turns out to be Gaussian then we set also the filter
## `IsGaussianSpace';
## also this holds for both ordinary and Lie matrices.
##
InstallHandlingByNiceBasis( "IsNonGaussianMatrixSpace", rec(
detect := function( F, mats, V, zero )
local dims;
# Check that all entries in `mats' are matrices of the same shape.
if IsEmpty( mats ) then
if IsMatrix( zero ) then
SetFilterObj( V, IsMatrixModule );
SetFilterObj( V, IsGaussianSpace );
return fail;
fi;
return false;
elif not IsMatrix( mats[1] ) then
return false;
fi;
dims:= DimensionsMat( mats[1] );
if not ForAll( mats, mat -> IsMatrix( mat )
and DimensionsMat( mat ) = dims ) then
return false;
fi;
SetFilterObj( V, IsMatrixModule );
SetDimensionOfVectors( V, dims );
if ForAll( mats, mat -> ForAll( mat, row -> IsSubset( F, row ) ) ) then
# If <V> is an ideal in a matrix algebra, and <mats> is a list of
# ideal generators then we have to look also at algebra generators
# of the acting ring(s).
if HasLeftActingRingOfIdeal( V )
and not ForAll( GeneratorsOfFLMLOR( LeftActingRingOfIdeal( V ) ),
mat -> ForAll( mat, row -> IsSubset( F, row ) ) ) then
return true;
fi;
if HasRightActingRingOfIdeal( V )
and not ForAll( GeneratorsOfFLMLOR( RightActingRingOfIdeal( V ) ),
mat -> ForAll( mat, row -> IsSubset( F, row ) ) ) then
return true;
fi;
if IsDivisionRing( F ) then
SetFilterObj( V, IsGaussianMatrixSpace );
return fail;
fi;
return false;
fi;
return true;
end,
NiceFreeLeftModuleInfo := ReturnFalse,
NiceVector := function( V, mat )
if DimensionsMat( mat ) <> DimensionOfVectors( V )then
return fail;
else
return Concatenation( mat );
fi;
end,
UglyVector := function( V, row )
local mat, # the matrix, result
dim, # dimensions of the matrix
i; # loop over the rows
dim:= DimensionOfVectors( V );
if Length( row ) <> dim[1] * dim[2] then
return fail;
fi;
mat:= [];
for i in [ 1 .. dim[1] ] do
mat[i]:= row{ [ (i-1) * dim[2] + 1 .. i * dim[2] ] };
od;
if IsLieObjectCollection( V ) then
mat:= LieObject( mat );
fi;
return mat;
end ) );
#############################################################################
##
## 3. Methods for semi-echelonized bases of Gaussian matrix spaces
##
#############################################################################
##
#R IsSemiEchelonBasisOfGaussianMatrixSpaceRep( <B> )
##
## A basis of a Gaussian matrix space is either semi-echelonized or it is a
## relative basis.
## (So there is no need for `IsBasisGaussianMatrixSpace').
##
## If basis vectors are known and if the space is nontrivial
## then the component `heads' is bound.
##
DeclareRepresentation( "IsSemiEchelonBasisOfGaussianMatrixSpaceRep",
IsAttributeStoringRep,
[ "heads" ] );
InstallTrueMethod( IsSmallList,
IsList and IsSemiEchelonBasisOfGaussianMatrixSpaceRep );
#############################################################################
##
#M Coefficients( <B>, <v> ) . method for semi-ech. basis of Gaussian space
##
InstallMethod( Coefficients,
"for semi-ech. basis of a Gaussian matrix space, and a matrix",
IsCollsElms,
[ IsBasis and IsSemiEchelonBasisOfGaussianMatrixSpaceRep, IsMatrix ],
function( B, v )
local vectors, # basis vectors of `B'
heads, # heads info of `B'
coeff, # coefficients list, result
zero, # zero of the field
m, # number of rows
n, # number of columns
i, j, # loop over rows and columns
val, # one coefficient
bvec, # one basis vector
k; # loop over rows
# Check whether the matrix has the right dimensions.
# (The heads info is not available before the basis vectors are known.)
vectors := BasisVectors( B );
heads:= B!.heads;
if DimensionsMat( v ) <> DimensionsMat( heads ) then
return fail;
fi;
# Preset the coefficients list with zeroes.
zero := Zero( v[1][1] );
coeff := [];
for i in [ 1 .. Length( vectors ) ] do
coeff[i]:= zero;
od;
# Compute the coefficients of the basis vectors.
m:= Length( v );
n:= Length( v[1] );
v:= List( v, ShallowCopy );
for i in [ 1 .. Length( heads ) ] do
j:= PositionNonZero( v[i] );
while j <= n do
val:= v[i][j];
if heads[i][j] = 0 or val = zero then
return fail;
else
coeff[ heads[i][j] ]:= val;
# Subtract `v[i][j]' times the `heads[i][j]'-th basis vector.
bvec:= vectors[ heads[i][j] ];
for k in [ 1 .. m ] do
AddRowVector( v[k], bvec[k], -val );
od;
fi;
j:= PositionNonZero( v[i] );
od;
od;
# Check whether the coefficients lie in the left acting domain.
if not IsSubset( LeftActingDomain( UnderlyingLeftModule( B ) ), coeff ) then
return fail;
fi;
# Return the coefficients.
return coeff;
end );
#############################################################################
##
#F SiftedVectorForGaussianMatrixSpace( <F>, <vectors>, <heads>, <v> )
##
## is the remainder of the matrix <v> after sifting through the (mutable)
## <F>-basis with basis vectors <vectors> and heads information <heads>.
##
BindGlobal( "SiftedVectorForGaussianMatrixSpace",
function( F, vectors, heads, v )
local zero, # zero of `F'
m, # number of rows
i, j, k, # loop over rows and columns
scalar, # one field element
bvec; # one basis vector
if DimensionsMat( v ) <> DimensionsMat( heads )
or not ForAll( v, row -> IsSubset( F, row ) ) then
return fail;
fi;
v:= List( v, ShallowCopy );
zero:= Zero( v[1][1] );
m:= Length( heads );
# Compute the coefficients of the basis vectors.
for i in [ 1 .. m ] do
for j in [ 1 .. Length( heads[i] ) ] do
if heads[i][j] <> 0 and v[i][j] <> zero then
# Subtract `v[i][j]' times the `heads[i][j]'-th basis vector.
scalar:= -v[i][j];
bvec:= vectors[ heads[i][j] ];
for k in [ 1 .. m ] do
AddRowVector( v[k], bvec[k], scalar );
od;
fi;
od;
od;
if IsLieObjectCollection( vectors ) then
v:= LieObject( v );
fi;
# Return the remainder.
return v;
end );
#############################################################################
##
#M SiftedVector( <B>, <v> )
##
## If `<B>!.heads[<i>][<j>]' is nonzero this means that the entry in the
## <i>-th row and <j>-th column is leading entry of the
## `<B>!.heads[<i>][<j>]'-th vector in the basis.
##
InstallMethod( SiftedVector,
"for semi-ech. basis of Gaussian matrix space, and matrix",
IsCollsElms,
[ IsBasis and IsSemiEchelonBasisOfGaussianMatrixSpaceRep, IsMatrix ],
function( B, v )
return SiftedVectorForGaussianMatrixSpace(
LeftActingDomain( UnderlyingLeftModule( B ) ),
BasisVectors( B ), B!.heads, v );
end );
#############################################################################
##
#F HeadsInfoOfSemiEchelonizedMats( <mats>, <dims> )
##
## is the `heads' information of the list of matrices <mats> of dimensions
## <dims> if <mats> can be viewed as a semi-echelonized basis
## of a Gaussian matrix space, and `fail' otherwise.
#T move to `matrix.gi'?
##
BindGlobal( "HeadsInfoOfSemiEchelonizedMats", function( mats, dims )
local zero, # zero of the field
one, # one of the field
nmats, # number of basis vectors
dimrow, # no. of rows in the matrices
dimcol, # no. of columns in the matrices
heads, # list of pivot rows
i, # loop over rows
j, # pivot column
k, # loop over lower rows
row; #
nmats := Length( mats );
dimrow := dims[1];
dimcol := dims[2];
heads:= ListWithIdenticalEntries( dimcol, 0 );
heads:= List( [ 1 .. dimrow ], x -> ShallowCopy( heads ) );
if 0 < nmats then
zero := Zero( mats[1][1][1] );
one := One( zero );
# Loop over the columns.
for i in [ 1 .. nmats ] do
# Get the pivot.
row:= 1;
j:= PositionNot( mats[i][row], zero );
while dimcol < j and row < dimrow do
row:= row + 1;
j:= PositionNot( mats[i][row], zero );
od;
if dimrow < row or mats[i][ row ][j] <> one then
# No nonzero entry in the whole matrix, or pivot is not `one'.
return fail;
fi;
for k in [ i+1 .. nmats ] do
if mats[k][ row ][j] <> zero then
return fail;
fi;
od;
heads[ row ][j] := i;
od;
fi;
return heads;
end );
#############################################################################
##
#M IsSemiEchelonized( <B> )
##
## A basis of a Gaussian matrix space is in semi-echelon form
## if the concatenations of the basis vectors form a semi-echelonized
## row space basis.
##
InstallMethod( IsSemiEchelonized,
"for basis (of a Gaussian matrix space)",
[ IsBasis ],
function( B )
local V;
V:= UnderlyingLeftModule( B );
if not ( IsMatrixModule( V ) and IsGaussianMatrixSpace( V ) ) then
#T The basis does not know whether it is a basis of a matrix space at all.
TryNextMethod();
else
return HeadsInfoOfSemiEchelonizedMats( BasisVectors( B ),
DimensionOfVectors( V ) ) <> fail;
#T change the basis from relative to seb ?
fi;
end );
#############################################################################
##
## 4. Methods for matrix spaces
##
#############################################################################
##
#M Basis( <V> ) . . . . . . . . . . . . . . . . . for Gaussian matrix space
#M Basis( <V>, <vectors> ) . . . . . . . . . . . . for Gaussian matrix space
#M BasisNC( <V>, <vectors> ) . . . . . . . . . . . for Gaussian matrix space
##
## Distinguish the cases whether the space <V> is a *Gaussian* matrix vector
## space or not.
##
## If the coefficients field is big enough then either a semi-echelonized or
## a relative basis is constructed.
##
## Otherwise the mechanism of associated nice bases is used.
## In this case the default methods have been installed by
## `InstallHandlingByNiceBasis'.
##
InstallMethod( Basis,
"for Gaussian matrix space (construct a semi-echelonized basis)",
[ IsGaussianMatrixSpace ],
SemiEchelonBasis );
InstallMethod( Basis,
"for Gaussian matrix space and list of matrices (try semi-ech.)",
IsIdenticalObj,
[ IsGaussianMatrixSpace, IsHomogeneousList ],
function( V, gens )
local dims,
heads,
B,
v;
# Check whether the entries of `gens' are matrices of the right shape.
dims:= DimensionOfVectors( V );
if not ForAll( gens, entry -> IsMatrix( entry )
and DimensionsMat( entry ) = dims ) then
return fail;
fi;
# Test whether the vectors form a semi-echelonized basis.
# (If not then give up.)
heads:= HeadsInfoOfSemiEchelonizedMats( gens, dims );
if heads = fail then
TryNextMethod();
fi;
# Construct a semi-echelonized basis.
B:= Objectify( NewType( FamilyObj( gens ),
IsFiniteBasisDefault
and IsSemiEchelonized
and IsSemiEchelonBasisOfGaussianMatrixSpaceRep ),
rec() );
SetUnderlyingLeftModule( B, V );
SetBasisVectors( B, gens );
SetIsEmpty( B, IsEmpty( gens ) );
B!.heads:= heads;
# The basis vectors are linearly independent since they form
# a semi-echelonized matrix.
# Hence it is sufficient to check whether they generate the space.
for v in GeneratorsOfLeftModule( V ) do
if Coefficients( B, v ) = fail then
return fail;
fi;
od;
# Return the basis.
return B;
end );
InstallMethod( BasisNC,
"for Gaussian matrix space and list of matrices (try semi-ech.)",
IsIdenticalObj,
[ IsGaussianMatrixSpace, IsHomogeneousList ],
function( V, gens )
local B, heads;
# Test whether the vectors form a semi-echelonized basis.
# (If not then give up.)
heads:= HeadsInfoOfSemiEchelonizedMats( gens, DimensionOfVectors( V ) );
if heads = fail then
TryNextMethod();
fi;
# Construct a semi-echelonized basis.
B:= Objectify( NewType( FamilyObj( gens ),
IsFiniteBasisDefault
and IsSemiEchelonized
and IsSemiEchelonBasisOfGaussianMatrixSpaceRep ),
rec() );
SetUnderlyingLeftModule( B, V );
SetBasisVectors( B, gens );
SetIsEmpty( B, IsEmpty( gens ) );
B!.heads:= heads;
# Return the basis.
return B;
end );
#############################################################################
##
#M SemiEchelonBasis( <V> )
#M SemiEchelonBasis( <V>, <vectors> )
#M SemiEchelonBasisNC( <V>, <vectors> )
##
InstallImmediateMethod( SemiEchelonBasis,
IsGaussianMatrixSpace and HasCanonicalBasis
and IsAttributeStoringRep, 20,
CanonicalBasis );
InstallMethod( SemiEchelonBasis,
"for Gaussian matrix space",
[ IsGaussianMatrixSpace ],
function( V )
local B;
B:= Objectify( NewType( FamilyObj( V ),
IsFiniteBasisDefault
and IsSemiEchelonized
and IsSemiEchelonBasisOfGaussianMatrixSpaceRep ),
rec() );
SetUnderlyingLeftModule( B, V );
return B;
end );
InstallMethod( SemiEchelonBasis,
"for Gaussian matrix space and list of matrices",
IsIdenticalObj,
[ IsGaussianMatrixSpace, IsHomogeneousList ],
function( V, gens )
local heads, # heads info for the basis
B, # the basis, result
v; # loop over vector space generators
# Check that the vectors form a semi-echelonized basis.
heads:= HeadsInfoOfSemiEchelonizedMats( gens, DimensionOfVectors( V ) );
if heads = fail then
return fail;
fi;
# Construct the basis.
B:= Objectify( NewType( FamilyObj( gens ),
IsFiniteBasisDefault
and IsSemiEchelonized
and IsSemiEchelonBasisOfGaussianMatrixSpaceRep ),
rec() );
SetUnderlyingLeftModule( B, V );
SetBasisVectors( B, gens );
SetIsEmpty( B, IsEmpty( gens ) );
B!.heads:= heads;
# The basis vectors are linearly independent since they form
# a semi-echelonized list of matrices.
# Hence it is sufficient to check whether they generate the space.
for v in GeneratorsOfLeftModule( V ) do
if Coefficients( B, v ) = fail then
return fail;
fi;
od;
return B;
end );
InstallMethod( SemiEchelonBasisNC,
"for Gaussian matrix space and list of matrices",
IsIdenticalObj,
[ IsGaussianMatrixSpace, IsHomogeneousList ],
function( V, gens )
local B; # the basis, result
B:= Objectify( NewType( FamilyObj( gens ),
IsFiniteBasisDefault
and IsSemiEchelonized
and IsSemiEchelonBasisOfGaussianMatrixSpaceRep ),
rec() );
SetUnderlyingLeftModule( B, V );
SetBasisVectors( B, gens );
SetIsEmpty( B, IsEmpty( gens ) );
# Provide the `heads' information.
B!.heads:= HeadsInfoOfSemiEchelonizedMats( gens, DimensionOfVectors(V) );
# Return the basis.
return B;
end );
#############################################################################
##
#M BasisVectors( <B> ) . . . . for semi-ech. basis of Gaussian matrix space
##
InstallMethod( BasisVectors,
"for semi-ech. basis of a Gaussian matrix space",
[ IsBasis and IsSemiEchelonBasisOfGaussianMatrixSpaceRep ],
function( B )
local V, gens, zero, vectors;
V:= UnderlyingLeftModule( B );
# Note that we must not ask for the dimension here \ldots
gens:= GeneratorsOfLeftModule( V );
if IsEmpty( gens ) then
SetIsEmpty( B, true );
zero:= Zero( [ 1 .. DimensionOfVectors( V )[2] ] );
B!.heads:= ListWithIdenticalEntries( DimensionOfVectors(V)[1], zero );
vectors:= [];
else
gens:= SemiEchelonMats( gens );
B!.heads:= gens.heads;
vectors:= gens.vectors;
if IsLieObjectCollection( B ) then
vectors:= List( vectors, LieObject );
fi;
fi;
return vectors;
end );
#############################################################################
##
#M Zero( <V> ) . . . . . . . . . . . . . . . . . . . . . . for matrix space
##
InstallOtherMethod( Zero,
"for a matrix space",
[ IsMatrixSpace ],
function( V )
local zero;
zero:= DimensionOfVectors( V );
zero:= NullMat( zero[1], zero[2], LeftActingDomain( V ) );
if IsLieObjectCollection( V ) then
zero:= LieObject( zero );
fi;
return zero;
end );
#############################################################################
##
#M CanonicalBasis( <V> ) . . . . . . . . . . . . . for Gaussian matrix space
##
## The canonical basis of a Gaussian matrix space is defined by applying
## a full Gauss algorithm to the generators of the space.
##
InstallMethod( CanonicalBasis,
"for Gaussian matrix space",
[ IsGaussianMatrixSpace ],
function( V )
local B, # semi-echelonized basis
vectors, # basis vectors of `B'
base, # vectors of the canonical basis
newheads, # `heads' component of the canonical basis
m, n, # dimensions of the matrices
i, j, # loop over rows and columns
k, l, # loop over rows and columns
v; # one basis vector
# Compute a semi-echelonized basis.
B:= SemiEchelonBasis( V );
vectors:= BasisVectors( B );
# Sort the vectors such that the sequence of pivot positions
# is increasing.
base:= [];
newheads:= List( B!.heads, ShallowCopy );
if not IsEmpty( vectors ) then
# Get the matrix dimensions.
m:= DimensionOfVectors( V )[1];
n:= DimensionOfVectors( V )[2];
for i in [ 1 .. m ] do
for j in [ 1 .. n ] do
if B!.heads[i][j] <> 0 then
# Reduce each vector with all those that
# have bigger pivot positions and are stored later.
v:= vectors[ newheads[i][j] ];
for l in [ j+1 .. n ] do
if B!.heads[i][l] <> 0 and newheads[i][j] < newheads[i][l] then
#T use AddRowVector (make copy!)
v:= v - v[i][l] * vectors[ B!.heads[i][l] ];
fi;
od;
for k in [ i+1 .. m ] do
for l in [ 1 .. n ] do
if B!.heads[k][l] <> 0 and newheads[i][j] < newheads[k][l] then
v:= v - v[k][l] * vectors[ B!.heads[k][l] ];
#T use AddRowVector (make copy!)
fi;
od;
od;
Add( base, v );
newheads[i][j]:= Length( base );
fi;
od;
od;
fi;
# Make the basis.
B:= Objectify( NewType( FamilyObj( V ),
IsFiniteBasisDefault
and IsSemiEchelonized
and IsSemiEchelonBasisOfGaussianMatrixSpaceRep
and IsCanonicalBasis ),
rec() );
SetUnderlyingLeftModule( B, V );
SetBasisVectors( B, base );
SetIsEmpty( B, IsEmpty( base ) );
B!.heads:= newheads;
# Return the basis.
return B;
end );
#############################################################################
##
## 5. Methods for full matrix spaces
##
#############################################################################
##
#M IsFullMatrixModule( V )
##
InstallMethod( IsFullMatrixModule,
"for Gaussian matrix space",
[ IsGaussianMatrixSpace ],
V -> Dimension( V ) = Product( DimensionOfVectors( V ) ) );
InstallMethod( IsFullMatrixModule,
"for non-Gaussian matrix space",
[ IsVectorSpace and IsNonGaussianMatrixSpace ],
ReturnFalse );
InstallOtherMethod( IsFullMatrixModule,
"for arbitrary free left module",
[ IsLeftModule ],
function( V )
local gens, R;
# A full matrix module is a free left module.
if not IsFreeLeftModule( V ) then
return false;
fi;
# The elements of a full matrix module are matrices over the
# left acting domain,
# and the dimension equals the number of entries of the matrices.
gens:= GeneratorsOfLeftModule( V );
if IsEmpty( gens ) then
gens:= [ Zero( V ) ];
fi;
R:= LeftActingDomain( V );
return ForAll( gens,
mat -> IsMatrix( mat )
and ForAll( mat, row -> IsSubset( R, row ) ) )
and Dimension( V ) = Product( DimensionsMat( gens[1] ) );
end );
#############################################################################
##
#M CanonicalBasis( <V> )
##
InstallMethod( CanonicalBasis,
"for full matrix space",
[ IsFullMatrixModule ],
function( V )
local B, dims, m, n;
B:= Objectify( NewType( FamilyObj( V ),
IsFiniteBasisDefault
and IsCanonicalBasis
and IsSemiEchelonized
and IsSemiEchelonBasisOfGaussianMatrixSpaceRep
and IsCanonicalBasisFullMatrixModule ),
rec() );
SetUnderlyingLeftModule( B, V );
dims:= DimensionOfVectors( V );
m:= dims[1];
n:= dims[2];
B!.heads:= List( [ 0 .. m-1 ], i -> i * n + [ 1 .. n ] );
return B;
end );
#############################################################################
##
## 7. Methods for mutable bases of Gaussian matrix spaces
##
#############################################################################
##
#R IsMutableBasisOfGaussianMatrixSpaceRep( <B> )
##
## The default mutable bases of Gaussian matrix spaces are semi-echelonized.
## Note that we switch to a mutable basis of representation
## `IsMutableBasisByImmutableBasisRep' if the mutable basis is closed by a
## vector that makes the space non-Gaussian.
#T better switch to mutable basis by nice mutable basis !
##
## Note that the `basisVectors' component consists of ordinary matrices
## also if the defining matrices are Lie matrices.
##
DeclareRepresentation( "IsMutableBasisOfGaussianMatrixSpaceRep",
IsComponentObjectRep,
[ "heads", "basisVectors", "leftActingDomain", "zero" ] );
#############################################################################
##
#M MutableBasis( <R>, <mats> ) . . . . . . . . . . . . for matrices over <R>
##
InstallMethod( MutableBasis,
"to construct mutable bases of Gaussian matrix spaces",
IsElmsCollColls,
[ IsRing, IsCollection ],
function( R, mats )
local newmats, B;
if ForAny( mats, mat -> ForAny( mat, v -> not IsSubset( R, v ) ) ) then
# If Gaussian elimination is not allowed,
# we construct a mutable basis that uses a nice mutable basis.
B:= MutableBasisViaNiceMutableBasisMethod2( R, mats );
else
# Note that `mats' is not empty.
newmats:= SemiEchelonMats( mats );
B:= Objectify( NewType( FamilyObj( mats ),
IsMutableBasis
and IsMutable
and IsMutableBasisOfGaussianMatrixSpaceRep ),
rec(
basisVectors := ShallowCopy( newmats.vectors ),
heads := ShallowCopy( newmats.heads ),
zero := Zero( mats[1] ),
leftActingDomain := R
) );
fi;
return B;
end );
#############################################################################
##
#M MutableBasis( <R>, <mats> ) . . . . . . . . . . . . . . for Lie matrices
##
InstallMethod( MutableBasis,
"to construct a mutable basis of a Lie matrix space",
IsElmsCollLieColls,
[ IsDivisionRing, IsLieObjectCollection ],
function( R, mats )
local B, newmats;
if ForAny( mats, mat -> ForAny( mat, v -> not IsSubset( R, v ) ) ) then
# If Gaussian elimination is not allowed,
# we construct a mutable basis that uses a nice mutable basis.
B:= MutableBasisViaNiceMutableBasisMethod2( R, mats );
else
# Note that `mats' is not empty.
newmats:= SemiEchelonMats( mats );
B:= Objectify( NewType( FamilyObj( mats ),
IsMutableBasis
and IsMutable
and IsMutableBasisOfGaussianMatrixSpaceRep ),
rec(
basisVectors := ShallowCopy( newmats.vectors ),
heads := newmats.heads,
zero := Zero( mats[1] ),
leftActingDomain := R
) );
fi;
return B;
end );
#############################################################################
##
#M MutableBasis( <R>, <mats>, <zero> ) . . . . . . . . for matrices over <R>
##
InstallOtherMethod( MutableBasis,
"to construct mutable bases of matrix spaces",
function( FamR, Fammats, Famzero )
return IsElmsColls( FamR, Famzero )
or IsElmsLieColls( FamR, Famzero );
end,
[ IsRing, IsHomogeneousList, IsMatrix ],
function( R, mats, zero )
local B, z;
if ForAny( mats, mat -> ForAny( mat, v -> not IsSubset( R, v ) ) ) then
# If Gaussian elimination is not allowed,
# we construct a mutable basis that uses a nice mutable basis.
B:= MutableBasisViaNiceMutableBasisMethod3( R, mats, zero );
else
B:= Objectify( NewType( CollectionsFamily( FamilyObj( zero ) ),
IsMutableBasis
and IsMutable
and IsMutableBasisOfGaussianMatrixSpaceRep ),
rec(
zero:= zero,
leftActingDomain := R
) );
if IsEmpty( mats ) then
B!.basisVectors:= [];
z:= ListWithIdenticalEntries( Length( zero[1] ), 0 );
B!.heads:= List( zero, i -> ShallowCopy( z ) );
#T problem for `NullAlgebra' !!
else
mats:= SemiEchelonMats( mats );
B!.basisVectors:= ShallowCopy( mats.vectors );
B!.heads:= mats.heads;
fi;
fi;
return B;
end );
#############################################################################
##
#M ViewObj( <MB> ) . . . . . . view mutable basis of a Gaussian matrix space
##
InstallMethod( ViewObj,
"for a mutable basis of a Gaussian matrix space",
[ IsMutableBasis and IsMutableBasisOfGaussianMatrixSpaceRep ],
function( MB )
Print( "<mutable basis over ", MB!.leftActingDomain, ", ",
Length( MB!.basisVectors ), " vectors>" );
end );
#############################################################################
##
#M PrintObj( <MB> ) . . . . print mutable basis of a Gaussian matrix space
##
InstallMethod( PrintObj,
"for a mutable basis of a Gaussian matrix space",
[ IsMutableBasis and IsMutableBasisOfGaussianMatrixSpaceRep ],
function( MB )
Print( "MutableBasis( ", MB!.leftActingDomain, ", " );
if NrBasisVectors( MB ) = 0 then
Print( "[], ", Zero( MB!.leftActingDomain ), " )" );
else
Print( MB!.basisVectors, " )" );
fi;
end );
#############################################################################
##
#M BasisVectors( <MB> ) . . . for mutable basis of a Gaussian matrix space
##
InstallOtherMethod( BasisVectors,
"for a mutable basis of a Gaussian matrix space",
[ IsMutableBasis and IsMutableBasisOfGaussianMatrixSpaceRep ],
function( MB )
if IsLieObjectCollection( MB ) then
return Immutable( List( MB!.basisVectors, LieObject ) );
else
return Immutable( MB!.basisVectors );
fi;
end );
#############################################################################
##
#M CloseMutableBasis( <MB>, <v> ) . for mut. basis of Gaussian matrix space
##
InstallMethod( CloseMutableBasis,
"for a mut. basis of a Gaussian matrix space, and a matrix",
IsCollsElms,
[ IsMutableBasis and IsMutable
and IsMutableBasisOfGaussianMatrixSpaceRep,
IsMatrix ],
function( MB, v )
local V, # corresponding free left module
m, # number of rows
n, # number of columns
heads, # heads info of the basis
zero, # zero coefficient
basisvectors, # list of basis vectors of `MB'
i, j, k, # loop variables
scalar, # one coefficient
bv; # one basis vector
# Check whether the mutable basis belongs to a Gaussian matrix space
# after the closure.
v:= List( v, ShallowCopy );
if not ForAll( v, row -> IsSubset( MB!.leftActingDomain, row ) ) then
# Change the representation to a mutable basis by immutable basis.
#T better mechanism!
#T change to m.b. via nice m.b. !!
basisvectors:= Concatenation( MB!.basisVectors, [ v ] );
if IsLieObjectCollection( MB ) then
basisvectors:= List( basisvectors, LieObject );
fi;
V:= LeftModuleByGenerators( MB!.leftActingDomain, basisvectors );
UseBasis( V, basisvectors );
SetFilterObj( MB, IsMutableBasisByImmutableBasisRep );
ResetFilterObj( MB, IsMutableBasisOfGaussianMatrixSpaceRep );
MB!.immutableBasis:= Basis( V );
else
m:= Length( v );
n:= Length( v[1] );
heads:= MB!.heads;
zero:= Zero( v[1][1] );
basisvectors:= MB!.basisVectors;
# Reduce `v' with the known basis vectors.
for i in [ 1 .. m ] do
for j in [ 1 .. n ] do
if zero <> v[i][j] and heads[i][j] <> 0 then
scalar:= - v[i][j];
bv:= basisvectors[ heads[i][j] ];
for k in [ 1 .. m ] do
AddRowVector( v[k], bv[k], scalar );
od;
fi;
od;
od;
# If necessary add the sifted vector, and update the basis info.
for i in [ 1 .. m ] do
j := PositionNot( v[i], zero );
if j <= n then
scalar:= Inverse( v[i][j] );
for k in [ 1 .. m ] do
MultRowVector( v[k], scalar );
od;
Add( basisvectors, v );
heads[i][j]:= Length( basisvectors );
break;
fi;
od;
fi;
end );
#############################################################################
##
#M IsContainedInSpan( <MB>, <v> ) . for mut. basis of Gaussian matrix space
##
InstallMethod( IsContainedInSpan,
"for a mut. basis of a Gaussian matrix space, and a matrix",
IsCollsElms,
[ IsMutableBasis and IsMutableBasisOfGaussianMatrixSpaceRep,
IsMatrix ],
function( MB, v )
local m, # number of rows
n, # number of columns
heads, # heads info of the basis
zero, # zero coefficient
basisvectors, # list of basis vectors of `MB'
i, j, k, # loop variables
scalar, # one coefficient
bv; # one basis vector
if not ForAll( v, row -> IsSubset( MB!.leftActingDomain, row ) ) then
return false;
else
v:= List( v, ShallowCopy );
m:= Length( v );
n:= Length( v[1] );
heads:= MB!.heads;
zero:= Zero( v[1][1] );
basisvectors:= MB!.basisVectors;
# Reduce `v' with the known basis vectors.
for i in [ 1 .. m ] do
for j in [ 1 .. n ] do
if heads[i][j] <> 0 then
scalar:= - v[i][j];
bv:= basisvectors[ heads[i][j] ];
for k in [ 1 .. m ] do
AddRowVector( v[k], bv[k], scalar );
od;
fi;
od;
od;
# Check whether the sifted vector is zero.
return IsZero( v );
fi;
end );
#############################################################################
##
#M SiftedVector( <MB>, <v> )
##
## If `<MB>!.heads[<i>][<j>]' is nonzero this means that the entry in the
## <i>-th row and <j>-th column is leading entry of the
## `<MB>!.heads[<i>][<j>]'-th vector in the basis.
##
InstallOtherMethod( SiftedVector,
"for mutable basis of Gaussian matrix space, and matrix",
IsCollsElms,
[ IsMutableBasis and IsMutableBasisOfGaussianMatrixSpaceRep,
IsMatrix ],
function( MB, v )
return SiftedVectorForGaussianMatrixSpace( MB!.leftActingDomain,
MB!.basisVectors, MB!.heads, v );
end );
#############################################################################
##
#M ImmutableBasis( <MB> ) . . for mutable basis of a Gaussian matrix space
##
InstallMethod( ImmutableBasis,
"for a mutable basis of a Gaussian matrix space",
[ IsMutableBasis and IsMutableBasisOfGaussianMatrixSpaceRep ],
function( MB )
local V;
V:= FreeLeftModule( MB!.leftActingDomain,
BasisVectors( MB ),
MB!.zero );
MB:= SemiEchelonBasisNC( V, BasisVectors( MB ) );
#T use known `heads' info !!
UseBasis( V, MB );
return MB;
end );
#T mutable bases for Gaussian row and matrix spaces are always semi-ech.
#T (note that we construct a mutable basis only if we want to do successive
#T closures)
#############################################################################
##
#E
|