/usr/share/gap/lib/vspcrow.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 | #############################################################################
##
#W vspcrow.gi GAP library Thomas Breuer
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains methods for row spaces.
## A row space is a vector space whose elements are row vectors.
##
## The coefficients field need *not* contain all entries of the row vectors.
## If it does then the space is a *Gaussian row space*,
## with better methods to deal with bases.
## If it does not then the bases use the mechanism of associated bases.
##
## (See the file `vspcmat.gi' for methods for matrix spaces.)
##
## For all row spaces, the value of the attribute `DimensionOfVectors' is
## the length of the row vectors in the space.
##
## 1. Domain constructors for row spaces
## 2. Methods for bases of non-Gaussian row spaces
## 3. Methods for semi-echelonized bases of Gaussian row spaces
## 4. Methods for row spaces
## 5. Methods for full row spaces
## 6. Methods for collections of subspaces of full row spaces
## 7. Methods for mutable bases of Gaussian row spaces
## 8. Methods installed by somebody else without documenting this ...
##
#############################################################################
##
## 1. Domain constructors for row spaces
##
#############################################################################
##
#M LeftModuleByGenerators( <F>, <mat>[, <zerorow>] )
##
## We keep these special methods since row spaces are the most usual ones,
## and the explicit construction shall not be slowed down by the call of
## `CheckForHandlingByNiceBasis'.
## However, the method installed for the filter `IsNonGaussianRowSpace'
## would be sufficient to force `IsGaussianRowSpace'.
##
## Additionally, we guarantee that vector spaces really know that their
## left acting domain is a division ring.
##
InstallMethod( LeftModuleByGenerators,
"for division ring and matrix over it",
IsElmsColls,
[ IsDivisionRing, IsMatrix ],
function( F, mat )
local V;
if ForAll( mat, row -> IsSubset( F, row ) ) then
V:= Objectify( NewType( FamilyObj( mat ),
IsGaussianRowSpace
and IsAttributeStoringRep ),
rec() );
else
V:= Objectify( NewType( FamilyObj( mat ),
IsVectorSpace
and IsNonGaussianRowSpace
and IsRowModule
and IsAttributeStoringRep ),
rec() );
fi;
SetLeftActingDomain( V, F );
SetGeneratorsOfLeftModule( V, AsList( mat ) );
SetDimensionOfVectors( V, Length( mat[1] ) );
return V;
end );
InstallMethod( LeftModuleByGenerators,
"for division ring, empty list, and row vector",
[ IsDivisionRing, IsList and IsEmpty, IsRowVector ],
function( F, empty, zero )
local V;
# Check whether this method is the right one.
if not IsIdenticalObj( FamilyObj( F ), FamilyObj( zero ) ) then
TryNextMethod();
fi;
#T explicit 2nd argument above!
V:= Objectify( NewType( CollectionsFamily( FamilyObj( F ) ),
IsGaussianRowSpace
and IsAttributeStoringRep ),
rec() );
SetLeftActingDomain( V, F );
SetGeneratorsOfLeftModule( V, empty );
SetZero( V, zero );
SetDimensionOfVectors( V, Length( zero ) );
return V;
end );
InstallMethod( LeftModuleByGenerators,
"for division ring, matrix over it, and row vector",
[ IsDivisionRing, IsMatrix, IsRowVector ],
function( F, mat, zero )
local V;
# Check whether this method is the right one.
if not IsElmsColls( FamilyObj( F ), FamilyObj( mat ) ) then
TryNextMethod();
fi;
#T explicit 2nd argument above!
if ForAll( mat, row -> IsSubset( F, row ) ) then
V:= Objectify( NewType( FamilyObj( mat ),
IsGaussianRowSpace
and IsAttributeStoringRep ),
rec() );
else
V:= Objectify( NewType( FamilyObj( mat ),
IsVectorSpace
and IsNonGaussianRowSpace
and IsRowModule
and IsAttributeStoringRep ),
rec() );
fi;
SetLeftActingDomain( V, F );
SetGeneratorsOfLeftModule( V, AsList( mat ) );
SetZero( V, zero );
SetDimensionOfVectors( V, Length( mat[1] ) );
return V;
end );
#############################################################################
##
## 2. Methods for bases of non-Gaussian row spaces
##
#############################################################################
##
#M NiceFreeLeftModuleInfo( <V> )
#M NiceVector( <V>, <v> )
#M UglyVector( <V>, <r> )
##
## The purpose of the check is twofold.
##
## First, we check whether <V> is a non-Gaussian row space.
## If yes then it gets the filter `IsNonGaussianRowSpace' that indicates
## that it is handled via the mechanism of nice bases.
##
## Second, we set the filter `IsRowModule' if <V> consists of row vectors.
## If additionally <V> turns out to be Gaussian then we set also the filter
## `IsGaussianSpace'.
##
InstallHandlingByNiceBasis( "IsNonGaussianRowSpace", rec(
detect:= function( R, mat, V, zero )
if IsEmpty( mat ) then
if IsRowVector( zero )
and IsIdenticalObj( FamilyObj( R ), FamilyObj( zero ) ) then
SetFilterObj( V, IsRowModule );
if IsDivisionRing( R ) then
SetFilterObj( V, IsGaussianRowSpace );
return fail;
fi;
fi;
return false;
fi;
if not IsMatrix( mat )
or not IsElmsColls( FamilyObj( R ), FamilyObj( mat ) ) then
return false;
fi;
SetFilterObj( V, IsRowModule );
if ForAll( mat, row -> IsSubset( R, row ) ) then
if IsDivisionRing( R ) then
SetFilterObj( V, IsGaussianRowSpace );
fi;
return fail;
fi;
return true;
end,
NiceFreeLeftModuleInfo := function( V )
local vgens, # vector space generators of `V'
F, # left acting domain of `V'
K; # field generated by entries in elements of `V'
vgens:= GeneratorsOfLeftModule( V );
F:= LeftActingDomain( V );
if not IsEmpty( vgens ) then
K:= ClosureField( F, Concatenation( vgens ) );
#T cheaper way?
return Basis( AsField( Intersection( K, F ), K ) );
fi;
end,
NiceVector := function( V, v )
local list, entry, new;
list:= [];
for entry in v do
new:= Coefficients( NiceFreeLeftModuleInfo( V ), entry );
if new = fail then
return fail;
fi;
Append( list, new );
od;
return list;
end,
UglyVector := function( V, v )
local FB, # basis vectors of the basis of the field extension
n, # degree of the field extension
w, # associated vector, result
i; # loop variable
FB:= BasisVectors( NiceFreeLeftModuleInfo( V ) );
n:= Length( FB );
w:= [];
for i in [ 1 .. Length( v ) / n ] do
w[i]:= v{ [ n*(i-1)+1 .. n*i ] } * FB;
od;
return w;
end ) );
#############################################################################
##
## 3. Methods for semi-echelonized bases of Gaussian row spaces
##
#############################################################################
##
#R IsSemiEchelonBasisOfGaussianRowSpaceRep( <B> )
##
## A basis of a Gaussian row space is either semi-echelonized or it is a
## relative basis.
## (So there is no need for `IsBasisGaussianRowSpace').
##
## If basis vectors are known and if the space is nontrivial
## then the component `heads' is bound.
##
DeclareRepresentation( "IsSemiEchelonBasisOfGaussianRowSpaceRep",
IsAttributeStoringRep,
[ "heads" ] );
InstallTrueMethod( IsSmallList,
IsList and IsSemiEchelonBasisOfGaussianRowSpaceRep );
#############################################################################
##
#M LinearCombination( <B>, <coeff> )
##
InstallMethod( LinearCombination, IsCollsElms,
[ IsBasis and IsSemiEchelonBasisOfGaussianRowSpaceRep, IsRowVector ],
function( B, coeff )
if Length(coeff) = 0 then
TryNextMethod();
fi;
return coeff * BasisVectors( B );
end );
#############################################################################
##
#M Coefficients( <B>, <v> ) . method for semi-ech. basis of Gaussian space
##
InstallMethod( Coefficients,
"for semi-ech. basis of a Gaussian row space, and a row vector",
IsCollsElms,
[ IsBasis and IsSemiEchelonBasisOfGaussianRowSpaceRep, IsRowVector ],
function( B, v )
local vectors, # basis vectors of `B'
heads, # heads info of `B'
len, # length of `v'
zero, # zero of the field
coeff, # coefficients list, result
i, # loop over `v'
pos; # heads position
# Check whether the vector has the right length.
# (The heads info is not stored before the basis vectors are known.)
vectors:= BasisVectors( B );
if IsEmpty( vectors ) then
return [];
fi;
heads:= B!.heads;
len:= Length( v );
if len <> Length( heads ) then
return fail;
fi;
# Preset the coefficients list with zeroes.
zero:= Zero( v[1] );
coeff:= List( vectors, x -> zero );
# Compute the coefficients of the base vectors.
v:= ShallowCopy( v );
i:= PositionNot( v, zero );
while i <= len do
pos:= heads[i];
if pos <> 0 then
coeff[ pos ]:= v[i];
AddRowVector( v, vectors[ pos ], - v[i] );
else
return fail;
fi;
i:= PositionNot( v, zero );
od;
# Return the coefficients.
return coeff;
end );
#############################################################################
##
#F SiftedVectorForGaussianRowSpace( <F>, <vectors>, <heads>, <v> )
##
## is the remainder of the row vector <v> after sifting through the
## (mutable) <F>-basis with besis vectors <vectors> and heads information
## <heads>.
##
BindGlobal( "SiftedVectorForGaussianRowSpace",
function( F, vectors, heads, v )
local zero, # zero of the field
i; # loop over basis vectors
if Length( heads ) <> Length( v ) or not IsSubset( F, v ) then
return fail;
fi;
zero:= Zero( v[1] );
# Compute the coefficients of the `B' vectors.
v:= ShallowCopy( v );
for i in [ 1 .. Length( heads ) ] do
if heads[i] <> 0 and v[i] <> zero then
AddRowVector( v, vectors[ heads[i] ], - v[i] );
fi;
od;
# Return the remainder.
return v;
end );
#############################################################################
##
#M SiftedVector( <B>, <v> )
##
## If `<B>!.heads[<i>]' is nonzero this means that the <i>-th column is
## leading column of the row `<B>!.heads[<i>]'.
##
InstallMethod( SiftedVector,
"for semi-ech. basis of Gaussian row space, and row vector",
IsCollsElms,
[ IsBasis and IsSemiEchelonBasisOfGaussianRowSpaceRep, IsRowVector ],
function( B, v )
return SiftedVectorForGaussianRowSpace(
LeftActingDomain( UnderlyingLeftModule( B ) ),
BasisVectors( B ), B!.heads, v );
end );
#############################################################################
##
#F HeadsInfoOfSemiEchelonizedMat( <mat>, <dim> )
##
## is the `heads' information of the matrix <mat> with <dim> columns
## if <mat> can be viewed as a semi-echelonized basis
## of a Gaussian row space, and `fail' otherwise.
#T into `matrix.gi' ?
##
HeadsInfoOfSemiEchelonizedMat := function( mat, dim )
local zero, # zero of the field
one, # one of the field
nrows, # number of rows
heads, # list of pivot rows
i, # loop over rows
j, # pivot column
k; # loop over lower rows
nrows:= Length( mat );
heads:= ListWithIdenticalEntries( dim, 0 );
if 0 < nrows then
zero := Zero( mat[1][1] );
one := One( zero );
# Loop over the columns.
for i in [ 1 .. nrows ] do
j:= PositionNot( mat[i], zero );
if dim < j or mat[i][j] <> one then
return fail;
fi;
for k in [ i+1 .. nrows ] do
if mat[k][j] <> zero then
return fail;
fi;
od;
heads[j]:= i;
od;
fi;
return heads;
end;
#############################################################################
##
#M IsSemiEchelonized( <B> )
##
## A basis of a Gaussian row space over a division ring with identity
## element $e$ is in semi-echelon form if the leading entry of every row is
## equal to $e$, and all entries exactly below that position are zero.
##
## (This form is obtained on application of `SemiEchelonMat' to a matrix.)
##
InstallMethod( IsSemiEchelonized,
"for basis of a Gaussian row space",
[ IsBasis ],
function( B )
local V;
V:= UnderlyingLeftModule( B );
if not ( IsRowSpace( V ) and IsGaussianRowSpace( V ) ) then
#T The basis does not know whether it is a basis of a row space at all.
TryNextMethod();
else
return HeadsInfoOfSemiEchelonizedMat( BasisVectors( B ),
DimensionOfVectors( V ) ) <> fail;
#T change the basis from relative to seb ?
fi;
end );
#############################################################################
##
## 4. Methods for row spaces
##
#############################################################################
##
#M \*( <V>, <mat> ) . . . . . . . . . . . . . action of matrix on row spaces
#M \^( <V>, <mat> ) . . . . . . . . . . . . . action of matrix on row spaces
##
InstallOtherMethod( \*, IsIdenticalObj, [ IsRowSpace, IsMatrix ],
function( V, mat )
return LeftModuleByGenerators( LeftActingDomain( V ),
List( GeneratorsOfLeftModule( V ),
v -> v * mat ) );
end );
InstallOtherMethod( \^, IsIdenticalObj, [ IsRowSpace, IsMatrix ],
function( V, mat )
return LeftModuleByGenerators( LeftActingDomain( V ),
List( GeneratorsOfLeftModule( V ),
v -> v * mat ) );
end );
#############################################################################
##
#M \in( <v>, <V> ) . . . . . . . . . . for row vector and Gaussian row space
##
InstallMethod( \in,
"for row vector and Gaussian row space",
IsElmsColls,
[ IsRowVector, IsGaussianRowSpace ],
function( v, V )
if IsEmpty( v ) then
return DimensionOfVectors( V ) = 0;
elif DimensionOfVectors( V ) <> Length( v ) then
return false;
else
v:= SiftedVector( Basis( V ), v );
#T any basis supports sifting?
return v <> fail and DimensionOfVectors( V ) < PositionNonZero( v );
fi;
end );
#############################################################################
##
#M Basis( <V> ) . . . . . . . . . . . . . . . . . . for Gaussian row space
#M Basis( <V>, <vectors> ) . . . . . . . . . . . . . for Gaussian row space
#M BasisNC( <V>, <vectors> ) . . . . . . . . . . . . for Gaussian row space
##
## Distinguish the cases whether the space <V> is a *Gaussian* row vector
## space or not.
##
## If the coefficients field is big enough then either a semi-echelonized or
## a relative basis is constructed.
##
## Otherwise the mechanism of associated nice bases is used.
## In this case the default methods have been installed by
## `InstallHandlingByNiceBasis'.
##
InstallMethod( Basis,
"for Gaussian row space (construct a semi-echelonized basis)",
[ IsGaussianRowSpace ],
SemiEchelonBasis );
InstallMethod( Basis,
"for Gaussian row space and matrix (try semi-echelonized)",
IsIdenticalObj,
[ IsGaussianRowSpace, IsMatrix ],
function( V, gens )
local heads, B, v;
# Test whether the vectors form a semi-echelonized basis.
# (If not then give up.)
heads:= HeadsInfoOfSemiEchelonizedMat( gens, DimensionOfVectors( V ) );
if heads = fail then
TryNextMethod();
fi;
# Construct the basis.
B:= Objectify( NewType( FamilyObj( gens ),
IsFiniteBasisDefault
and IsSemiEchelonized
and IsSemiEchelonBasisOfGaussianRowSpaceRep ),
rec() );
SetUnderlyingLeftModule( B, V );
SetBasisVectors( B, gens );
if IsEmpty( gens ) then
SetIsEmpty( B, true );
else
SetIsRectangularTable( B, true );
fi;
B!.heads:= heads;
# The basis vectors are linearly independent since they form
# a semi-echelonized matrix.
# Hence it is sufficient to check whether they generate the space.
for v in GeneratorsOfLeftModule( V ) do
if Coefficients( B, v ) = fail then
return fail;
fi;
od;
# Return the basis.
return B;
end );
InstallMethod( BasisNC,
"for Gaussian row space and matrix (try semi-echelonized)",
IsIdenticalObj,
[ IsGaussianRowSpace, IsMatrix ],
function( V, gens )
local heads, B;
# Test whether the vectors form a semi-echelonized basis.
# (If not then give up.)
heads:= HeadsInfoOfSemiEchelonizedMat( gens, DimensionOfVectors( V ) );
if heads = fail then
TryNextMethod();
fi;
# Construct the basis.
B:= Objectify( NewType( FamilyObj( gens ),
IsFiniteBasisDefault
and IsSemiEchelonized
and IsSemiEchelonBasisOfGaussianRowSpaceRep ),
rec() );
SetUnderlyingLeftModule( B, V );
SetBasisVectors( B, gens );
if IsEmpty( gens ) then
SetIsEmpty( B, true );
else
SetIsRectangularTable( B, true );
fi;
B!.heads:= heads;
# Return the basis.
return B;
end );
#############################################################################
##
#M SemiEchelonBasis( <V> )
#M SemiEchelonBasis( <V>, <vectors> )
#M SemiEchelonBasisNC( <V>, <vectors> )
##
InstallImmediateMethod( SemiEchelonBasis,
IsGaussianRowSpace and HasCanonicalBasis and IsAttributeStoringRep, 20,
CanonicalBasis );
InstallMethod( SemiEchelonBasis,
"for Gaussian row space",
[ IsGaussianRowSpace ],
function( V )
local B, gens;
B:= Objectify( NewType( FamilyObj( V ),
IsFiniteBasisDefault
and IsSemiEchelonized
and IsSemiEchelonBasisOfGaussianRowSpaceRep ),
rec() );
gens:= GeneratorsOfLeftModule( V );
if ForAll( gens, IsZero ) then
SetIsEmpty( B, true );
else
SetIsRectangularTable( B, true );
fi;
SetUnderlyingLeftModule( B, V );
return B;
end );
InstallMethod( SemiEchelonBasis,
"for Gaussian row space and matrix",
IsIdenticalObj,
[ IsGaussianRowSpace, IsMatrix ],
function( V, gens )
local heads, # heads info for the basis
B, # the basis, result
gensi, # immutable copy
v; # loop over vector space generators
# Check that the vectors form a semi-echelonized basis.
heads:= HeadsInfoOfSemiEchelonizedMat( gens, DimensionOfVectors( V ) );
if heads = fail then
return fail;
fi;
# Construct the basis.
B:= Objectify( NewType( FamilyObj( gens ),
IsFiniteBasisDefault
and IsSemiEchelonized
and IsSemiEchelonBasisOfGaussianRowSpaceRep ),
rec() );
if IsEmpty( gens ) then
SetIsEmpty( B, true );
else
SetIsRectangularTable( B, true );
fi;
SetUnderlyingLeftModule( B, V );
gensi := Immutable(gens);
ConvertToMatrixRep(gensi, LeftActingDomain(V));
SetBasisVectors( B, gensi );
B!.heads:= heads;
# The basis vectors are linearly independent since they form
# a semi-echelonized list of matrices.
# Hence it is sufficient to check whether they generate the space.
for v in GeneratorsOfLeftModule( V ) do
if Coefficients( B, v ) = fail then
return fail;
fi;
od;
return B;
end );
InstallMethod( SemiEchelonBasisNC,
"for Gaussian row space and matrix",
IsIdenticalObj,
[ IsGaussianRowSpace, IsMatrix ],
function( V, gens )
local B, # the basis, result
gensi; # immutable copy
B:= Objectify( NewType( FamilyObj( gens ),
IsFiniteBasisDefault
and IsSemiEchelonized
and IsSemiEchelonBasisOfGaussianRowSpaceRep ),
rec() );
if IsEmpty( gens ) then
SetIsEmpty( B, true );
else
SetIsRectangularTable( B, true );
fi;
SetUnderlyingLeftModule( B, V );
gensi := Immutable(gens);
ConvertToMatrixRep(gensi, LeftActingDomain(V));
SetBasisVectors( B, gens );
# Provide the `heads' information.
B!.heads:= HeadsInfoOfSemiEchelonizedMat( gens, DimensionOfVectors( V ) );
# Return the basis.
return B;
end );
#############################################################################
##
#M BasisVectors( <B> ) . . . . . . for semi-ech. basis of Gaussian row space
##
InstallMethod( BasisVectors,
"for semi-ech. basis of a Gaussian row space",
[ IsBasis and IsSemiEchelonBasisOfGaussianRowSpaceRep ],
function( B )
local V, gens, vectors;
# Check that the basis is not a canonical basis;
# in this case we need another method.
if HasIsCanonicalBasis( B ) and IsCanonicalBasis( B ) then
TryNextMethod();
fi;
V:= UnderlyingLeftModule( B );
# Note that we must not ask for the dimension here \ldots
gens:= GeneratorsOfLeftModule( V );
if IsEmpty( gens ) then
B!.heads:= 0 * [ 1 .. DimensionOfVectors( V ) ];
SetIsEmpty( B, true );
vectors:= [];
else
gens:= SemiEchelonMat( gens );
B!.heads:= gens.heads;
vectors:= gens.vectors;
fi;
return vectors;
end );
#############################################################################
##
#M Zero( <V> ) . . . . . . . . . . . . . . . . . . . . . . . for a row space
##
InstallOtherMethod( Zero,
"for a row space",
[ IsRowSpace ],
function(V)
local d,z;
d:=LeftActingDomain(V);
z:=Zero( d ) * [ 1 .. DimensionOfVectors( V ) ];
if IsField(d) and IsFinite(d) and Size(d)<=256 then
ConvertToVectorRep(z,d);
fi;
return z;
end);
#############################################################################
##
#M IsZero( <v> )
##
InstallMethod( IsZero,
"for a row vector",
[ IsRowVector ],
v -> IsEmpty( v ) or Length( v ) < PositionNot( v, Zero( v[1] ) ) );
#############################################################################
##
#M AsLeftModule( <F>, <rows> ) . . . . . . . . for division ring and matrix
##
InstallMethod( AsLeftModule,
"for division ring and matrix",
IsElmsColls,
[ IsDivisionRing, IsMatrix ],
function( F, vectors )
local m;
if not IsPrimePowerInt( Length( vectors ) ) then
return fail;
elif ForAll( vectors, v -> IsSubset( F, v ) ) then
#T other check!
# All vector entries lie in `F'.
# (We work destructively.)
m:= SemiEchelonMatDestructive( List( vectors, ShallowCopy ) ).vectors;
if IsEmpty( m ) then
m:= LeftModuleByGenerators( F, [], vectors[1] );
else
m:= FreeLeftModule( F, m, "basis" );
fi;
else
# We have at most a non-Gaussian row space.
m:= LeftModuleByGenerators( F, vectors );
fi;
# Check that the space equals the list of vectors.
if Size( m ) <> Length( vectors ) then
return fail;
fi;
# Return the space.
return m;
end );
#############################################################################
##
#M \+( <U1>, <U2> ) . . . . . . . . . . . . sum of two Gaussian row spaces
##
InstallOtherMethod( \+,
"for two Gaussian row spaces",
IsIdenticalObj,
[ IsGaussianRowSpace, IsGaussianRowSpace ],
function( V, W )
local S, # sum of <V> and <W>, result
mat; # basis vectors of the sum
if DimensionOfVectors( V ) <> DimensionOfVectors( W ) then
Error( "vectors in <V> and <W> have different dimension" );
elif Dimension( V ) = 0 then
S:= W;
elif Dimension( W ) = 0 then
S:= V;
elif LeftActingDomain( V ) <> LeftActingDomain( W ) then
S:= Intersection2( LeftActingDomain( V ), LeftActingDomain( W ) );
S:= \+( AsVectorSpace( S, V ), AsVectorSpace( S, W ) );
else
mat:= SumIntersectionMat( GeneratorsOfLeftModule( V ),
GeneratorsOfLeftModule( W ) )[1];
if IsEmpty( mat ) then
S:= TrivialSubspace( V );
else
S:= LeftModuleByGenerators( LeftActingDomain( V ), mat );
UseBasis( S, mat );
fi;
fi;
return S;
end );
#############################################################################
##
#M Intersection2( <V>, <W> ) . . . . intersection of two Gaussian row spaces
##
InstallMethod( Intersection2,
"for two Gaussian row spaces",
IsIdenticalObj,
[ IsGaussianRowSpace, IsGaussianRowSpace ],
function( V, W )
local S, # intersection of `V' and `W', result
mat; # basis vectors of the intersection
if DimensionOfVectors( V ) <> DimensionOfVectors( W ) then
S:= [];
elif Dimension( V ) = 0 then
S:= V;
elif Dimension( W ) = 0 then
S:= W;
elif LeftActingDomain( V ) <> LeftActingDomain( W ) then
S:= Intersection2( LeftActingDomain( V ), LeftActingDomain( W ) );
S:= Intersection2( AsVectorSpace( S, V ), AsVectorSpace( S, W ) );
else
# Compute the intersection of two spaces over the same field.
mat:= SumIntersectionMat( BasisVectors(SemiEchelonBasis( V )),
BasisVectors(SemiEchelonBasis( W )) )[2];
#T why not just the generators if no basis is known yet?
if IsEmpty( mat ) then
S:= TrivialSubspace( V );
else
S:= LeftModuleByGenerators( LeftActingDomain( V ), mat );
UseBasis( S, mat );
SetSemiEchelonBasis(S, SemiEchelonBasisNC(S,mat));
fi;
fi;
return S;
end );
#############################################################################
##
#M NormedRowVectors( <V> )
##
InstallMethod( NormedRowVectors,
"for Gaussian row space",
[ IsGaussianRowSpace ],
function( V )
local base, # basis vectors
elms, # element list, result
elms2, # intermediate element list
F, # `LeftActingDomain( V )'
q, # `Size( F )'
fieldelms, # elements of `F' (in other succession)
j, # loop over `base'
new, # intermediate element list
pos, # position in `new' to store the next element
len, # actual length of `elms2'
i, # loop over field elements
toadd, # vector to add to known vectors
k, # loop over `elms2'
v; # one normed row vector
if not IsFinite( V ) then
Error( "sorry, cannot compute normed vectors of infinite domain <V>" );
fi;
base:= Reversed( BasisVectors( CanonicalBasis( V ) ) );
if Length( base ) = 0 then
return [];
fi;
elms := [ base[1] ];
elms2 := [ base[1] ];
F := LeftActingDomain( V );
q := Size( F );
fieldelms := List( AsSSortedList( F ), x -> x - 1 );
for j in [ 1 .. Length( base ) - 1 ] do
# Here `elms2' has the form
# $b_i + M = b_i + \langle b_{i+1}, \ldots, b_n \rangle$.
# Compute $b_{i-1} + \bigcup_{\lambda\in F} \lambda b_i + ( b_i + M )$.
new:= [];
pos:= 0;
len:= Length( elms2 );
for i in fieldelms do
toadd:= base[j+1] + i * base[j];
for k in [ 1 .. len ] do
v:= elms2[k] + toadd;
ConvertToVectorRep( v, q );
new[ pos + k ]:= v;
od;
pos:= pos + len;
od;
elms2:= new;
# `elms2' is a set here.
Append( elms, elms2 );
od;
# The list is strictly sorted, so we store this.
MakeImmutable( elms );
Assert( 1, IsSSortedList( elms ) );
SetIsSSortedList( elms, true );
# Return the result.
return elms;
end );
#############################################################################
##
#M CanonicalBasis( <V> ) . . . . . . . . . . . . . . for Gaussian row space
##
## The canonical basis of a Gaussian row space is defined by applying
## a full Gauss algorithm to the generators of the space.
##
InstallMethod( CanonicalBasis,
"for Gaussian row space with known semi-ech. basis",
[ IsGaussianRowSpace and HasSemiEchelonBasis ],
function( V )
local base, # list of base vectors
heads, # list of numbers of leading columns
ech, # echelonized basis, if known
vectors, #
row, # one vector in `ech'
B, # basis record, result
n, # number of columns in generators
zero, # zero of the field
i, # loop over rows
k; # loop over columns
base := [];
zero := Zero( LeftActingDomain( V ) );
# We use the semi-echelonized basis.
# All we have to do is to sort the basis vectors such that the
# pivot elements are in increasing order, and to zeroize all
# elements in the pivot columns except the pivot itself.
ech:= SemiEchelonBasis( V );
vectors:= BasisVectors( ech );
if IsEmpty( vectors ) then
SetIsEmpty( ech, true );
SetIsCanonicalBasis( ech, true );
return ech;
fi;
heads := ShallowCopy( ech!.heads );
n:= Length( heads );
for i in [ 1 .. n ] do
if heads[i] <> 0 then
# Eliminate the `ech!.heads[i]'-th row with all those rows
# that are below this row and have a bigger pivot element.
row:= ShallowCopy( vectors[ ech!.heads[i] ] );
for k in [ i+1 .. n ] do
if heads[k] <> 0 and ech!.heads[k] > ech!.heads[i] then
AddRowVector( row, vectors[ ech!.heads[k] ], - row[k] );
fi;
od;
Add( base, row );
heads[i]:= Length( base );
fi;
od;
B:= Objectify( NewType( FamilyObj( V ),
IsFiniteBasisDefault
and IsSemiEchelonized
and IsSemiEchelonBasisOfGaussianRowSpaceRep
and IsCanonicalBasis ),
rec() );
SetIsRectangularTable( B, true );
SetUnderlyingLeftModule( B, V );
SetBasisVectors( B, base );
B!.heads:= heads;
# Return the basis.
return B;
end );
InstallMethod( CanonicalBasis,
"for Gaussian row space",
[ IsGaussianRowSpace ],
function( V )
local base, # list of base vectors
heads, # list of numbers of leading columns
B, # basis record, result
m, # number of rows in generators
n, # number of columns in generators
zero, # zero of the field
i, # loop over rows
k; # loop over columns
base := [];
heads := ListWithIdenticalEntries( DimensionOfVectors( V ), 0 );
zero := Zero( LeftActingDomain( V ) );
if not IsEmpty( GeneratorsOfLeftModule( V ) ) then
# Make a copy to avoid changing the original argument.
B:= List( GeneratorsOfLeftModule( V ), ShallowCopy );
m:= Length( B );
n:= Length( B[1] );
# Triangulize the matrix
TriangulizeMat( B );
# and keep only the nonzero rows of the triangular matrix.
i:= 1;
base := [];
for k in [ 1 .. n ] do
if i <= m and B[i][k] <> zero then
base[i]:= B[i];
heads[k]:= i;
i:= i + 1;
fi;
od;
fi;
B:= Objectify( NewType( FamilyObj( V ),
IsFiniteBasisDefault
and IsSemiEchelonized
and IsSemiEchelonBasisOfGaussianRowSpaceRep
and IsCanonicalBasis ),
rec() );
if IsEmpty( base ) then
SetIsEmpty( B, true );
else
SetIsRectangularTable( B, true );
fi;
SetUnderlyingLeftModule( B, V );
SetBasisVectors( B, base );
B!.heads:= heads;
# Return the basis.
return B;
end );
#############################################################################
##
## 5. Methods for full row spaces
##
#############################################################################
##
#M IsFullRowModule( V )
##
InstallMethod( IsFullRowModule,
"for Gaussian row space",
[ IsGaussianRowSpace ],
V -> Dimension( V ) = DimensionOfVectors( V ) );
InstallMethod( IsFullRowModule,
"for non-Gaussian row space",
[ IsVectorSpace and IsNonGaussianRowSpace ],
ReturnFalse );
InstallOtherMethod( IsFullRowModule,
"for arbitrary free left module",
[ IsLeftModule ],
function( V )
local gens, R;
# A full row module is a free left module.
if not IsFreeLeftModule( V ) then
return false;
fi;
# The elements of a full row module are row vectors over the
# left acting domain,
# and the dimension equals the length of the row vectors.
gens:= GeneratorsOfLeftModule( V );
if IsEmpty( gens ) then
gens:= [ Zero( V ) ];
fi;
R:= LeftActingDomain( V );
return ForAll( gens,
row -> IsRowVector( row ) and IsSubset( R, row ) )
and Dimension( V ) = Length( gens[1] );
end );
#############################################################################
##
#M CanonicalBasis( <V> )
##
InstallMethod( CanonicalBasis,
"for a full row space",
[ IsFullRowModule and IsVectorSpace ],
function( V )
local B;
B:= Objectify( NewType( FamilyObj( V ),
IsFiniteBasisDefault
and IsCanonicalBasis
and IsSemiEchelonized
and IsSemiEchelonBasisOfGaussianRowSpaceRep
and IsCanonicalBasisFullRowModule ),
rec() );
SetUnderlyingLeftModule( B, V );
B!.heads:= [ 1 .. DimensionOfVectors( V ) ];
if DimensionOfVectors( V ) = 0 then
SetIsEmpty( B, true );
else
SetIsRectangularTable( B, true );
fi;
return B;
end );
#############################################################################
##
## 6. Methods for collections of subspaces of full row spaces
##
#############################################################################
##
#R IsSubspacesFullRowSpaceDefaultRep
##
DeclareRepresentation( "IsSubspacesFullRowSpaceDefaultRep",
IsSubspacesVectorSpaceDefaultRep,
[] );
#############################################################################
##
#M Iterator( <subspaces> ) . . . . . for subspaces of finite full row module
##
BindGlobal( "IsDoneIterator_SubspacesDim",
iter -> IsDoneIterator( iter!.choiceiter )
and IsDoneIterator( iter!.spaceiter ) );
BindGlobal( "NextIterator_SubspacesDim", function( iter )
local dim,
vector,
pos,
base,
i,
j,
k,
n,
diff;
k:= iter!.k;
n:= iter!.n;
if IsDoneIterator( iter!.spaceiter ) then
# Get the next choice of pivot positions,
# and install an iterator for spaces with this choice.
iter!.actchoice:= ShallowCopy(NextIterator( iter!.choiceiter ));
dim:= n * k - k * (k - 1) / 2 - Sum( iter!.actchoice );
Add( iter!.actchoice, n + 1 );
iter!.spaceiter:= IteratorByBasis(
CanonicalBasis( FullRowSpace( iter!.field, dim ) ) );
fi;
# Construct the canonical basis of the space.
vector:= NextIterator( iter!.spaceiter );
pos:= 0;
base:= NullMat( k, n, iter!.field );
for i in [ 1 .. k ] do
base[i][ iter!.actchoice[i] ]:= One( iter!.field );
for j in [ i .. k ] do
diff:= iter!.actchoice[ j+1 ] - iter!.actchoice[j] - 1;
if diff > 0 then
base[i]{ [ iter!.actchoice[j]+1 .. iter!.actchoice[j+1]-1 ] }:=
vector{ [ pos + 1 .. pos + diff ] };
pos:= pos + diff;
fi;
od;
od;
return Subspace( iter!.V, base, "basis" );
end );
BindGlobal( "ShallowCopy_SubspacesDim",
iter -> rec( V := iter!.V,
field := iter!.field,
n := iter!.n,
k := iter!.k,
choiceiter := ShallowCopy( iter!.choiceiter ),
actchoice := iter!.actchoice,
spaceiter := ShallowCopy( iter!.spaceiter ) ) );
BindGlobal( "IsDoneIterator_SubspacesAll",
iter -> iter!.actdim = iter!.dim
and IsDoneIterator( iter!.actdimiter ) );
BindGlobal( "NextIterator_SubspacesAll", function( iter )
if IsDoneIterator( iter!.actdimiter ) then
iter!.actdim:= iter!.actdim + 1;
iter!.actdimiter:= Iterator(Subspaces( iter!.V, iter!.actdim));
fi;
return NextIterator( iter!.actdimiter );
end );
BindGlobal( "ShallowCopy_SubspacesAll",
iter -> rec( V := iter!.V,
dim := iter!.dim,
actdim := iter!.actdim,
actdimiter := ShallowCopy( iter!.actdimiter ) ) );
InstallMethod( Iterator,
"for subspaces collection of a (finite) full row module",
[ IsSubspacesVectorSpace and IsSubspacesFullRowSpaceDefaultRep ],
function( D )
local V, # the vector space
n, # dimension of `V'
k,
iter; # iterator, result
V:= D!.structure;
if not IsFinite( V ) then
TryNextMethod();
fi;
k:= D!.dimension;
n:= Dimension( V );
if IsInt( D!.dimension ) then
# Loop over subspaces of fixed dimension `k'.
# For that, loop over all possible choices of `k' ordered positions
# in `[ 1 .. n ]', and for every such choice, loop over all
# possibilities to fill the positions in the canonical basis
# that has these positions as pivot columns.
# If the choice is $[ a_1, a_2, \ldots, a_k ]$ then there are
# \[ (a_2-a_1-1)+2(a_3-a_2-1)+\cdots + (k-1)(a_k-a_{k-1}-1)+k(n-a_k)
# = \sum_{i=1}^{k-1} i(a_{i+1}-a_i-1) + k(n-a_k)
# = k n - \frac{1}{2}k(k-1) - \sum_{i=1}^k a_i \]
# positions that can be chosen arbitrarily, so we may loop over
# the elements of a space of this dimension.
iter:= IteratorByFunctions( rec(
IsDoneIterator := IsDoneIterator_SubspacesDim,
NextIterator := NextIterator_SubspacesDim,
ShallowCopy := ShallowCopy_SubspacesDim,
V := V,
field := LeftActingDomain( V ),
n := n,
k := k,
choiceiter := Iterator( Combinations( [ 1..n ],
D!.dimension ) ) ) );
#T better make this *really* clever!
# Initialize.
iter!.actchoice:= ShallowCopy(NextIterator( iter!.choiceiter ));
iter!.spaceiter:= IteratorByBasis( CanonicalBasis( FullRowSpace(
iter!.field, n * k - k * (k - 1) / 2
- Sum( iter!.actchoice ) ) ) );
Add( iter!.actchoice, n+1 );
else
# Loop over all subspaces of `V'.
# For that, use iterators for subspaces of fixed dimension,
# and loop over all dimensions.
iter:= IteratorByFunctions( rec(
IsDoneIterator := IsDoneIterator_SubspacesAll,
NextIterator := NextIterator_SubspacesAll,
ShallowCopy := ShallowCopy_SubspacesAll,
V := V,
dim := n,
actdim := 0,
actdimiter := Iterator( Subspaces( V, 0 ) ) ) );
fi;
# Return the iterator.
return iter;
end );
#############################################################################
##
#M Subspaces( <V>, <dim> )
##
InstallMethod( Subspaces,
"for (Gaussian) full row space",
[ IsFullRowModule and IsVectorSpace, IsInt ],
function( V, dim )
return Objectify( NewType( CollectionsFamily( FamilyObj( V ) ),
IsSubspacesVectorSpace
and IsSubspacesFullRowSpaceDefaultRep ),
rec(
structure := V,
dimension := dim
)
);
end );
InstallOtherMethod( Subspaces,
"for (Gaussian) full row space",
[ IsFullRowModule and IsVectorSpace, IsString ],
function( V, all )
return Subspaces( V );
end );
#############################################################################
##
#M Subspaces( <V> )
##
InstallMethod( Subspaces,
[ IsFullRowModule and IsVectorSpace ],
V -> Objectify( NewType( CollectionsFamily( FamilyObj( V ) ),
IsSubspacesVectorSpace
and IsSubspacesFullRowSpaceDefaultRep ),
rec(
structure := V,
dimension := "all"
)
) );
#############################################################################
##
## 7. Methods for mutable bases of Gaussian row spaces
##
#############################################################################
##
#R IsMutableBasisOfGaussianRowSpaceRep( <B> )
##
## The default mutable bases of Gaussian row spaces are semi-echelonized.
## Note that we switch to a mutable basis of representation
## `IsMutableBasisByImmutableBasisRep' if the mutable basis is closed by a
## vector that makes the space non-Gaussian.
##
DeclareRepresentation( "IsMutableBasisOfGaussianRowSpaceRep",
IsComponentObjectRep,
[ "heads", "basisVectors", "leftActingDomain", "zero" ] );
#############################################################################
##
#M MutableBasis( <R>, <vectors> ) . . . . . . . . . . . for matrix over <R>
#M MutableBasis( <R>, <vectors>, <zero> ) . . . . . . . for matrix over <R>
##
InstallMethod( MutableBasis,
"method to construct mutable bases of row spaces",
IsElmsColls,
[ IsRing, IsMatrix ],
function( R, vectors )
local B, newvectors;
if ForAny( vectors, v -> not IsSubset( R, v ) ) then
# If Gaussian elimination is not allowed,
# we construct a mutable basis that stores an immutable basis.
TryNextMethod();
else
# Note that `vectors' is not empty.
newvectors:= SemiEchelonMat( vectors );
B:= Objectify( NewType( FamilyObj( vectors ),
IsMutableBasis
and IsMutable
and IsMutableBasisOfGaussianRowSpaceRep ),
rec(
basisVectors:= ShallowCopy( newvectors.vectors ),
heads:= ShallowCopy( newvectors.heads ),
zero:= Zero( vectors[1] ),
leftActingDomain := R
) );
fi;
return B;
end );
InstallOtherMethod( MutableBasis,
"method to construct mutable bases of row spaces",
IsIdenticalObjObjXObj,
[ IsRing, IsList, IsRowVector ],
function( R, vectors, zero )
local B;
if ForAny( vectors, v -> not IsSubset( R, v ) ) then
# If Gaussian elimination is not allowed,
# we construct a mutable basis that stores an immutable basis.
TryNextMethod();
else
B:= Objectify( NewType( CollectionsFamily( FamilyObj( zero ) ),
IsMutableBasis
and IsMutable
and IsMutableBasisOfGaussianRowSpaceRep ),
rec(
zero:= zero,
leftActingDomain := R
) );
if IsEmpty( vectors ) then
B!.basisVectors:= [];
B!.heads:= ListWithIdenticalEntries( Length( zero ), 0 );
else
vectors:= SemiEchelonMat( vectors );
B!.basisVectors:= ShallowCopy( vectors.vectors );
B!.heads:= ShallowCopy( vectors.heads );
fi;
fi;
return B;
end );
#############################################################################
##
#M ViewObj( <MB> ) . . . . . . . view mutable basis of a Gaussian row space
##
InstallMethod( ViewObj,
"for a mutable basis of a Gaussian row space",
[ IsMutableBasis and IsMutableBasisOfGaussianRowSpaceRep ],
function( MB )
Print( "<mutable basis over ", MB!.leftActingDomain, ", ",
Length( MB!.basisVectors ), " vectors>" );
end );
#############################################################################
##
#M PrintObj( <MB> ) . . . . . . print mutable basis of a Gaussian row space
##
InstallMethod( PrintObj,
"for a mutable basis of a Gaussian row space",
[ IsMutableBasis and IsMutableBasisOfGaussianRowSpaceRep ],
function( MB )
Print( "MutableBasis( ", MB!.leftActingDomain, ", " );
if NrBasisVectors( MB ) = 0 then
Print( "[], ", Zero( MB!.leftActingDomain ), " )" );
else
Print( MB!.basisVectors, " )" );
fi;
end );
#############################################################################
##
#M BasisVectors( <MB> ) . . . . . for mutable basis of a Gaussian row space
##
InstallOtherMethod( BasisVectors,
"for a mutable basis of a Gaussian row space",
[ IsMutableBasis and IsMutableBasisOfGaussianRowSpaceRep ],
MB -> Immutable( MB!.basisVectors ) );
#############################################################################
##
#M CloseMutableBasis( <MB>, <v> ) . . for mut. basis of Gaussian row space
##
InstallMethod( CloseMutableBasis,
"for a mut. basis of a Gaussian row space, and a row vector",
IsCollsElms,
[ IsMutableBasis and IsMutable and IsMutableBasisOfGaussianRowSpaceRep,
IsRowVector ],
function( MB, v )
local V, # corresponding free left module
ncols, # dimension of the row vectors
zero, # zero scalar
heads, # heads info of the basis
basisvectors, # list of basis vectors of `MB'
j; # loop over `heads'
# Check whether the mutable basis belongs to a Gaussian row space
# after the closure.
if not IsSubset( MB!.leftActingDomain, v ) then
# Change the representation to a mutable basis by immutable basis.
#T better mechanism?
basisvectors:= Concatenation( MB!.basisVectors, [ v ] );
V:= LeftModuleByGenerators( MB!.leftActingDomain, basisvectors );
UseBasis( V, basisvectors );
SetFilterObj( MB, IsMutableBasisByImmutableBasisRep );
ResetFilterObj( MB, IsMutableBasisOfGaussianRowSpaceRep );
MB!.immutableBasis:= Basis( V );
else
# Reduce `v' with the known basis vectors.
v:= ShallowCopy( v );
ncols:= Length( v );
heads:= MB!.heads;
if ncols <> Length( MB!.heads ) then
Error( "<v> must have same length as `MB!.heads'" );
fi;
zero:= Zero( v[1] );
basisvectors:= MB!.basisVectors;
for j in [ 1 .. ncols ] do
if zero <> v[j] and heads[j] <> 0 then
#T better loop with `PositionNot'?
AddRowVector( v, basisvectors[ heads[j] ], - v[j] );
fi;
od;
# If necessary add the sifted vector, and update the basis info.
j := PositionNot( v, zero );
if j <= ncols then
MultRowVector( v, Inverse( v[j] ) );
Add( basisvectors, v );
heads[j]:= Length( basisvectors );
fi;
fi;
end );
#############################################################################
##
#M IsContainedInSpan( <MB>, <v> ) . . for mut. basis of Gaussian row space
##
InstallMethod( IsContainedInSpan,
"for a mut. basis of a Gaussian row space, and a row vector",
IsCollsElms,
[ IsMutableBasis and IsMutableBasisOfGaussianRowSpaceRep,
IsRowVector ],
function( MB, v )
local
ncols, # dimension of the row vectors
zero, # zero scalar
heads, # heads info of the basis
basisvectors, # list of basis vectors of `MB'
j; # loop over `heads'
if not IsSubset( MB!.leftActingDomain, v ) then
return false;
else
# Reduce `v' with the known basis vectors.
v:= ShallowCopy( v );
ncols:= Length( v );
heads:= MB!.heads;
if ncols <> Length( MB!.heads ) then
return false;
fi;
zero:= Zero( v[1] );
basisvectors:= MB!.basisVectors;
for j in [ 1 .. ncols ] do
if heads[j] <> 0 then
AddRowVector( v, basisvectors[ heads[j] ], - v[j] );
fi;
od;
# Check whether the sifted vector is zero.
return IsZero( v );
fi;
end );
#############################################################################
##
#M ImmutableBasis( <MB> ) . . . . for mutable basis of a Gaussian row space
##
InstallMethod( ImmutableBasis,
"for a mutable basis of a Gaussian row space",
[ IsMutableBasis and IsMutableBasisOfGaussianRowSpaceRep ],
function( MB )
local V;
V:= FreeLeftModule( MB!.leftActingDomain,
BasisVectors( MB ),
MB!.zero );
MB:= SemiEchelonBasisNC( V, BasisVectors( MB ) );
#T use known `heads' info !!
UseBasis( V, MB );
return MB;
end );
#############################################################################
##
#M SiftedVector( <MB>, <v> ) . . . for mutable basis of a Gaussian row space
##
## If `<MB>!.heads[<i>]' is nonzero this means that the <i>-th column is
## leading column of the row `<MB>!.heads[<i>]'.
##
InstallOtherMethod( SiftedVector,
"for mutable basis of Gaussian row space, and row vector",
IsCollsElms,
[ IsMutableBasis and IsMutableBasisOfGaussianRowSpaceRep, IsRowVector ],
function( MB, v )
return SiftedVectorForGaussianRowSpace(
MB!.leftActingDomain, MB!.basisVectors, MB!.heads, v );
end );
#############################################################################
##
#F OnLines( <vec>, <g> ) . . . . . . . . for operation on projective points
##
InstallGlobalFunction( OnLines, function( vec, g )
local c;
vec:= OnPoints( vec, g );
c:= PositionNonZero( vec ); # better than PositionNot, as no `Zero'
# element needs to be created
if c <= Length( vec ) then
# Normalize from the *left* if the matrices act from the right!
vec:= Inverse( vec[c] ) * vec;
fi;
return vec;
end );
#############################################################################
##
#M NormedRowVector( <v> )
##
InstallMethod( NormedRowVector,
"for a row vector of scalars",
[ IsRowVector and IsScalarCollection ],
function( v )
local depth;
if 0 < Length(v) then
depth:=PositionNonZero( v ); # better than PositionNot, as no `Zero'
# element needs to be created
if depth <= Length(v) then
return Inverse(v[depth]) * v;
else
return ShallowCopy(v);
fi;
else
return ShallowCopy(v);
fi;
end );
#T mutable bases for Gaussian row and matrix spaces are always semi-ech.
#T (note that we construct a mutable basis only if we want to do successive
#T closures)
#############################################################################
##
## 8. Methods installed by somebody else without documenting this ...
##
#############################################################################
##
#F ExtendedVectors( <V> ) . . . . . . . . . . . . . . . . . for a row space
##
BindGlobal( "ElementNumber_ExtendedVectors", function( enum, n )
if Length( enum ) < n then
Error( "<enum>[", n, "] must have an assigned value" );
fi;
n:= Concatenation( enum!.spaceEnumerator[n], [ enum!.one ] );
ConvertToVectorRepNC( n, enum!.q );
return Immutable( n );
end );
BindGlobal( "NumberElement_ExtendedVectors", function( enum, elm )
if not IsList( elm ) or Length( elm ) <> enum!.len
or elm[ enum!.len ] <> enum!.one then
return fail;
fi;
return Position( enum!.spaceEnumerator,
elm{ [ 1 .. Length( elm ) - 1 ] } );
end );
BindGlobal( "NumberElement_ExtendedVectorsFF", function( enum, elm )
# test whether the vector is indeed compact over the right finite field
if not IsDataObjectRep( elm ) then
if ConvertToVectorRepNC( elm, enum!.q ) = fail then
return NumberElement_ExtendedVectors( enum, elm );
fi;
fi;
# Problem with GF(4) vectors over GF(2)
if ( IsGF2VectorRep( elm ) and enum!.q <> 2 )
or ( Is8BitVectorRep( elm ) and enum!.q = 2 ) then
return NumberElement_ExtendedVectors( enum, elm );
fi;
# compute index via number
if not IsList( elm ) or Length( elm ) <> enum!.len
or elm[ enum!.len ] <> enum!.one then
return fail;
fi;
return QuoInt( NumberFFVector( elm, enum!.q ), enum!.q ) + 1;
end );
BindGlobal( "Length_ExtendedVectors", T -> Length( T!.spaceEnumerator ) );
BindGlobal( "PrintObj_ExtendedVectors", function( T )
Print( "A( ", UnderlyingCollection( T!.spaceEnumerator ), " )" );
end );
BindGlobal( "ExtendedVectors", function( V )
local enum;
enum:= EnumeratorByFunctions( FamilyObj( V ), rec(
ElementNumber := ElementNumber_ExtendedVectors,
NumberElement := NumberElement_ExtendedVectors,
Length := Length_ExtendedVectors,
PrintObj := PrintObj_ExtendedVectors,
spaceEnumerator := Enumerator( V ),
one := One( LeftActingDomain( V ) ),
len := Length( Zero( V ) ) + 1 ) );
if IsFinite( LeftActingDomain( V ) )
and IsPrimeInt( Size( LeftActingDomain( V ) ) )
and Size( LeftActingDomain( V ) ) < 256
and IsInternalRep( One( LeftActingDomain( V ) ) ) then
SetFilterObj( enum, IsQuickPositionList );
enum!.q:= enum!.spaceEnumerator!.q;
enum!.NumberElement:= NumberElement_ExtendedVectorsFF;
else
enum!.q:= Size( LeftActingDomain( V ) );
fi;
return enum;
end );
#############################################################################
##
#F EnumeratorOfNormedRowVectors( <V> ) . . . . . . for a Gaussian row space
##
## This had been called `OneDimSubspacesTransversal' in {\GAP}~4.3,
## and special code in `ActionHomomorphismConstructor' relied on the fact
## that one of its arguments was *not* an object returned by
## `OneDimSubspacesTransversal'.
## Now the result is just the ``sparse equivalent'' of `NormedRowVectors',
## it does not carry any nasty `PositionCanonical' magic.
##
BindGlobal( "ElementNumber_NormedRowVectors", function( T, num )
local f, v, q, n, nnum, i, l, L;
f := T!.enumeratorField;
q := Length( f );
n := T!.dimension;
v := ListWithIdenticalEntries( n, Zero( T!.one ) );
nnum:= num;
num := num - 1;
# Find the number of entries after the leading 1.
l := 0;
L := 1;
while num >= L do
l := l + 1;
L := L * q + 1;
od;
num := num - ( L - 1 ) / q;
if n <= l then
Error( "<T>[", nnum, "] must have an assigned value" );
fi;
v[ n - l ] := T!.one;
for i in [ n - l + 1 .. n ] do
v[ i ] := f[ num mod q + 1 ];
num := QuoInt( num, q );
od;
ConvertToVectorRepNC(v,q);
return Immutable( v );
end );
BindGlobal( "NumberElement_NormedRowVectors", function( T, elm )
local f, zero, q, n, l, num, val, i;
f := T!.enumeratorField;
zero := Zero( T!.one );
q := Length( f );
n := T!.dimension;
l := 1;
if not IsRowVector( elm )
or not IsCollsElms( FamilyObj( T ), FamilyObj( elm ) )
or Length( elm ) <> T!.dimension then
return fail;
fi;
# Find the first entry different from zero.
while elm[ l ] = zero do
l := l + 1;
od;
elm := elm / elm[ l ];
num := 1;
for i in [ 0 .. n - l - 1 ] do
num := num + q ^ i;
od;
val := 1;
for i in [ l + 1 .. n ] do
num := num + val * ( Position( f, elm[ i ] ) - 1 );
val := val * q;
od;
return num;
end );
BindGlobal( "Length_NormedRowVectors", function( T )
local q, d;
q := Length( T!.enumeratorField );
d := T!.dimension;
return ( q ^ d - 1 ) / ( q - 1 );
end );
BindGlobal( "PrintObj_NormedRowVectors", function( T )
Print( "EnumeratorOfNormedRowVectors( ", T!.domain, " )" );
end );
BindGlobal( "EnumeratorOfNormedRowVectors", function( V )
if not ( IsFullRowModule( V ) and IsFinite( V ) ) then
Error( "<V> must be a finite full row space" );
fi;
return EnumeratorByFunctions( FamilyObj( V ), rec(
ElementNumber := ElementNumber_NormedRowVectors,
NumberElement := NumberElement_NormedRowVectors,
Length := Length_NormedRowVectors,
PrintObj := PrintObj_NormedRowVectors,
enumeratorField := Enumerator( LeftActingDomain( V ) ),
domain := V,
dimension := Dimension( V ),
one := One( LeftActingDomain( V ) ) ) );
end );
#############################################################################
##
#F OrthogonalSpaceInFullRowSpace( U ) . . . . . . . . .compute the dual to U
##
InstallMethod( OrthogonalSpaceInFullRowSpace,
"dual space for Gaussian row space",
[ IsGaussianRowSpace ],
function( U )
local base, n, i, null;
base := ShallowCopy( Basis( U ) );
n := Length( Zero( U ) );
for i in [Length(base)+1..n] do
Add( base, Zero(U) );
od;
null := NullspaceMat( TransposedMat( base ) );
return VectorSpace( LeftActingDomain(U), null, Zero(U), "basis" );
end );
#############################################################################
##
#E
|