This file is indexed.

/usr/share/gap/prim/irredsol.gi is in gap-prim-groups 4r6p5-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
#############################################################################
##
#W  irredsol.gi                 GAP group library                  Mark Short
#W                                                           Burkhard Höfling
##
##
#Y  Copyright (C) 1993, Murdoch University, Perth, Australia
#Y  Copyright (C) 2001, Technische Universität, Braunschweig, Germany
##
##  This file contains the  functions and  data for the  irreducible solvable
##  matrix group library.  It contains  exactely one member  for each of  the
##  372  conjugacy  classes of  irreducible  solvable subgroups of  $GL(n,p)$
##  where $1 < n$, $p$ is a prime, and $p^n < 256$.  
##
##  By well known  theory, this data also  doubles as a  library of primitive
##  solvable permutation groups of non-prime degree <256. 
##
##  This file contains the data  from Mark Short's thesis,  plus  two  groups 
##  missing from that list, subsequently discovered by Alexander Hulpke.
##

#############################################################################
##
#F  IrreducibleSolvableGroup(<n>,<p>,<k>) . . . . . . old extraction function
##
InstallGlobalFunction( IrreducibleSolvableGroup, function ( n, p, k )

    Error ("This function is obsolete. Please see ",
        "`IrreducibleSolvableGroupMS' in the GAP manual");
end);

#############################################################################
##
#F  IrreducibleSolvableGroupMS(<n>,<p>,<k>) . . . . . extraction function
##
InstallGlobalFunction( IrreducibleSolvableGroupMS, function ( n, p, k )
    local
        desc,          # compact description of group
        guard,         # number of guardian of group
        gdgens,        # list of generators for that guardian
        len,           # length of this list
        numgen,        # number of generators of the group
        pos,           # marks position in desc where next normal form begins
        i, j,          # loop variables
        gens,          # the generators of the group
        idmat,         # the identity matrix of GL(n,p)
        mat,           # evolves from idmat into a generator of the group
        grp;           # group to be returned

    # Check for sensible input
    if not (n > 1 and p in Primes and p^n < 256) then
        Error( "n must be > 1, p must be prime, and p^n must be < 256" );
    fi;
    if k > Length( IrredSolGroupList[ n ][ p ] ) then
        Error( "there is no k-th group for this n and p" );
    fi;

    # Pick out a few important pieces of information
    desc  := IrredSolGroupList[ n ][ p ][ k ];
    gdgens := IrredSolJSGens[ n ][ p ][ desc[3] ];
    len := Length( gdgens );

    # Construct the generators
    gens := [ ];
    idmat := Immutable( IdentityMat( n, GF( p ) ) );
    for i in [1..(Length(desc)-3)/len] do
        mat := idmat;
        for j in [1..len] do
            mat := mat * ( gdgens[ j ] ^ desc[ 3 + len*(i-1) + j ] );
        od;
        gens[ i ] := mat;
    od;

    # Make the group and return it
    grp := GroupByGenerators( gens, idmat );
    SetSize( grp, desc[ 1 ] );
    if desc[ 2 ] = 0 then
        SetIsPrimitiveMatrixGroup (grp, true);
        SetMinimalBlockDimension (grp, n);
    else
        SetIsPrimitiveMatrixGroup (grp, false);
        SetMinimalBlockDimension (grp, desc[ 2 ]);
    fi;
    return grp;
end ); # IrreducibleSolvableGroupMS( n, p, k )


#############################################################################
##
#F  NumberIrreducibleSolvableGroups(<n>,<p>)
##
##  returns the number of conjugacy classes of irreducible solvable subgroups
##  of GL(n,p)
##
InstallGlobalFunction( NumberIrreducibleSolvableGroups, function ( n, p )
	return Length (IrredSolGroupList[ n ][ p ]);
end);
	
	

#############################################################################
##
#F  AllIrreducibleSolvableGroups(...)  
#F                                     select all irreducible solvable groups
##
InstallGlobalFunction (AllIrreducibleSolvableGroups, function ( arg )
    local
        dims,            # dimensions
        chars,           # characteristics
        sizes,           # sizes
        linprim,         # linearly primitive flag
        minblockdims,    # minimal block dimensions
        funs,            # other functions requested by caller
        vals,            # their values
        i,               # counter through arg
        nppairs,         # (n,p) pairs such that p^n < 256
        np,              # counter through nppairs
        n,               # n
        p,               # p
        grplist,         # list of groups to be returned
        k,               # counter through group descriptions for GL(n,p)
        desc,            # compact description of the kth group in GL(n,p)
        gp,              # the group itself
        passtest;        # boolean flag

    # Initialize a few things
    funs := [ ];
    vals := [ ];

    # Loop through the arguments
    for i in [1..Length(arg)/2] do

        # Special case for Dimension
        if arg[2*i-1] in [ Dimension, DimensionOfMatrixGroup, DegreeOfMatrixGroup] then
            if not IsList( arg[2*i] ) then
                arg[2*i] := [ arg[2*i] ];
            fi;
            dims := [ ];
            for n in arg[2*i] do
                if n in [ 2, 3, 4, 5, 6, 7 ] then
                    Add( dims, n );
                else
                    Print( "#W  AllIrreducibleSolvableGroups: ",
                           "n = ", n, " outside range of library\n" );
                fi;
            od;
            if dims = [ ] then
                Error( "all Dimension arguments outside range of library" );
            fi;

        # Special case for CharFFE
        elif arg[2*i-1] = Characteristic  then
            if not IsList( arg[2*i] ) then
                arg[2*i] := [ arg[2*i] ];
            fi;
            chars := [ ];
            for p in arg[2*i] do
                if p in [ 2, 3, 5, 7, 11, 13 ] then
                    Add( chars, p );
                else
                    Print( "#W  AllIrreducibleSolvableGroups: ",
                           "p = ", p, " outside range of library\n" );
                fi;
            od;
            if chars = [ ] then
                Error( "all Characteristic arguments outside range of library" );
            fi;

        # Special case for Size
        elif arg[2*i-1] = Size then
            if IsList( arg[2*i] ) then
                sizes := arg[2*i];
            else
                sizes := [ arg[2*i] ];
            fi;

        # Special case for IsPrimitiveMatrixGroup
        elif arg[2*i-1] in [ IsLinearlyPrimitive, IsPrimitiveMatrixGroup] then
            if IsBool( arg[2*i] ) then
                linprim := arg[2*i];
            else
                Error( "IsPrimitive argument must be boolean" );
            fi;

        # Special case for MinimalBlockDimension
        elif arg[2*i-1] = MinimalBlockDimension then
            if IsList( arg[2*i] ) then
                minblockdims := arg[2*i];
            else
                minblockdims := [ arg[2*i] ];
            fi;

        # General case
        elif IsFunction( arg[2*i-1] ) then
            Add( funs, arg[2*i-1] );
            Add( vals, arg[2*i] );
        else
            Error( "<fun",i,"> must be a function" );
        fi;
    od;

    # Find the allowable (n,p) pairs
    if not IsBound( dims ) and not IsBound( chars ) then
        nppairs := [ [2,2], [2,3], [2,5], [2,7], [2,11], [2,13],
                     [3,2], [3,3], [3,5],
                     [4,2], [4,3],
                     [5,2], [5,3],
                     [6,2],
                     [7,2] ];
    elif IsBound( dims ) and IsBound( chars ) then
        nppairs := [ ];
        for n in dims do
            for p in chars do
                if p^n < 256 then
                    Add( nppairs, [ n, p ] );
                else
                    Print( "#W  AllIrreducibleSolvableGroups: n = ", n,
                           ", p = ", p, " outside range of library\n" );
                fi;
            od;
        od;
        if nppairs = [ ] then
            Error( "none of the specified (n,p) pairs satisfy p^n < 256" );
        fi;
    else
        if not IsBound( dims ) then
            dims := [ 2, 3, 4, 5, 6, 7 ];
        else
            chars := [ 2, 3, 5, 7, 11, 13 ];
        fi;
        nppairs := [ ];
        for n in dims do
            for p in chars do
                if p^n < 256 then
                    Add( nppairs, [ n, p ] );
                fi;
            od;
        od;
    fi;

    # Make the list of groups
    grplist := [ ];

    # Loop through the allowable (n,p) pairs
    for np in nppairs do
        n := np[ 1 ];
        p := np[ 2 ];

        # Loop through the group descriptions
        for k in [1..Length( IrredSolGroupList[ n ][ p ] )] do
            gp := [ ];
            desc := IrredSolGroupList[ n ][ p ][ k ];

            # Check if the description satisfies the special case criteria.
            # If it does, create the group
            if     ( not IsBound( sizes ) or desc[1] in sizes )
               and ( not IsBound( linprim ) or (desc[2] = 0) = linprim )
               and ( not IsBound( minblockdims ) or desc[2] in minblockdims )
            then
                gp := IrreducibleSolvableGroupMS( n, p, k );
            fi;

            # Now see if the group (if created) satisfies the other criteria.
            # If it does, add it to the list
            if gp <> [ ] then
                passtest := true;
                i := 1;
                while passtest and i <= Length( funs ) do
                    passtest := funs[ i ]( gp ) = vals[ i ]
                                or ( IsList( vals[ i ] )
                                     and funs[ i ]( gp ) in vals[ i ] );
                    i := i + 1;
                od;
                if passtest then
                    Add( grplist, gp );
                fi;
            fi;
        od;
    od;

    return grplist;
end); # AllIrreducibleSolvableGroups( fun1, val1, fun2, val2, ... )
    

#############################################################################
##
#F  OneIrreducibleSolvableGroup(...)  
##                                     extract one irreducible solvable group
##
InstallGlobalFunction(OneIrreducibleSolvableGroup, function ( arg )
    local
        dims,            # dimensions
        chars,           # characteristics
        sizes,           # sizes
        linprim,         # linearly primitive flag
        minblockdims,    # minimal block dimensions
        funs,            # other functions requested by caller
        vals,            # their values
        i,               # counter through arg
        nppairs,         # (n,p) pairs such that p^n < 256
        np,              # counter through (n,p) pairs
        n,               # n
        p,               # p
        k,               # counter through group descriptions for GL(n,p)
        desc,            # compact description of the kth group in GL(n,p)
        gp,              # the group to be returned
        passtest;        # boolean flag

    # Initialize a few things
    funs := [ ];
    vals := [ ];

    # Loop through the arguments
    for i in [1..Length(arg)/2] do

        # Special case for Dimension
        if arg[2*i-1] in [ Dimension, DimensionOfMatrixGroup, DegreeOfMatrixGroup] then
            if not IsList( arg[2*i] ) then
                arg[2*i] := [ arg[2*i] ];
            fi;
            dims := [ ];
            for n in arg[2*i] do
                if n in [ 2, 3, 4, 5, 6, 7 ] then
                    Add( dims, n );
                else
                    Print( "#W  OneIrreducibleSolvableGroup: ",
                           "n = ", n, " outside range of library\n" );
                fi;
            od;
            if dims = [ ] then
                Error( "all Dimension arguments outside range of library" );
            fi;

        # Special case for CharFFE
        elif arg[2*i-1] = Characteristic  then
            if not IsList( arg[2*i] ) then
                arg[2*i] := [ arg[2*i] ];
            fi;
            chars := [ ];
            for p in arg[2*i] do
                if p in [ 2, 3, 5, 7, 11, 13 ] then
                    Add( chars, p );
                else
                    Print( "#W  OneIrreducibleSolvableGroup: ",
                           "p = ", p, " outside range of library\n" );
                fi;
            od;
            if chars = [ ] then
                Error( "all Characteristic arguments outside range of library" );
            fi;

        # Special case for Size
        elif arg[2*i-1] = Size then
            if IsList( arg[2*i] ) then
                sizes := arg[2*i];
            else
                sizes := [ arg[2*i] ];
            fi;

        # Special case for IsPrimitiveMatrixGroup
        elif arg[2*i-1] in [ IsLinearlyPrimitive, IsPrimitiveMatrixGroup] then
            if IsBool( arg[2*i] ) then
                linprim := arg[2*i];
            else
                Error( "IsPrimitiveMatrixGroup argument must be boolean" );
            fi;

        # Special case for MinimalBlockDimension
        elif arg[2*i-1] = MinimalBlockDimension then
            if IsList( arg[2*i] ) then
                minblockdims := arg[2*i];
            else
                minblockdims := [ arg[2*i] ];
            fi;

        # General case
        elif IsFunction( arg[2*i-1] ) then
            Add( funs, arg[2*i-1] );
            Add( vals, arg[2*i] );
        else
            Error( "<fun",i,"> must be a function" );
        fi;
    od;

    # Find the allowable (n,p) pairs
    if not IsBound( dims ) and not IsBound( chars ) then
        nppairs := [ [2,2], [2,3], [2,5], [2,7], [2,11], [2,13],
                     [3,2], [3,3], [3,5],
                     [4,2], [4,3],
                     [5,2], [5,3],
                     [6,2],
                     [7,2] ];
    elif IsBound( dims ) and IsBound( chars ) then
        nppairs := [ ];
        for n in dims do
            for p in chars do
                if p^n < 256 then
                    Add( nppairs, [ n, p ] );
                else
                    Print( "#W  OneIrreducibleSolvableGroup: n = ", n,
                           ", p = ", p, " outside range of library\n" );
                fi;
            od;
        od;
        if nppairs = [ ] then
            Error( "none of the specified (n,p) pairs satisfy p^n < 256" );
        fi;
    else
        if not IsBound( dims ) then
            dims := [ 2, 3, 4, 5, 6, 7 ];
        else
            chars := [ 2, 3, 5, 7, 11, 13 ];
        fi;
        nppairs := [ ];
        for n in dims do
            for p in chars do
                if p^n < 256 then
                    Add( nppairs, [ n, p ] );
                fi;
            od;
        od;
    fi;

    # Find the group.
    # Loop through the allowable (n,p) pairs
    for np in nppairs do
        n := np[ 1 ];
        p := np[ 2 ];

        # Loop through the group descriptions
        for k in [1..Length( IrredSolGroupList[ n ][ p ] )] do
            gp := [ ];
            desc := IrredSolGroupList[ n ][ p ][ k ];

            # Check if the description satisfies the special case criteria.
            # If it does, create the group
            if     ( not IsBound( sizes ) or desc[1] in sizes )
               and ( not IsBound( linprim ) or (desc[2] = 0) = linprim )
               and ( not IsBound( minblockdims ) or desc[2] in minblockdims )
            then
                gp := IrreducibleSolvableGroupMS( n, p, k );
            fi;

            # Now see if the group (if created) satisfies the other criteria.
            # If it does, return it
            if gp <> [ ] then
                passtest := true;
                i := 1;
                while passtest and i <= Length( funs ) do
                    passtest := funs[ i ]( gp ) = vals[ i ]
                                or ( IsList( vals[ i ] )
                                     and funs[ i ]( gp ) in vals[ i ] );
                    i := i + 1;
                od;
                if passtest then
                    return gp;
                fi;
            fi;
        od;
    od;

    return false;
end); # OneIrreducibleSolvableGroup( fun1, val1, fun2, val2, ... )

#############################################################################
##
#E
##