This file is indexed.

/usr/share/gap/prim/primitiv.gd is in gap-prim-groups 4r6p5-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
#############################################################################
##
#W  primitiv.gd              GAP group library               Heiko Theißen
#W                                                           Alexander Hulpke
#W                                                          Colva Roney-Dougal
##
##
##
##


##  <#GAPDoc Label="[1]{primitiv}">
##  &GAP; contains a library of primitive permutation groups which includes,
##  up to permutation isomorphism (i.e., up to conjugacy in the corresponding
##  symmetric group),
##  all  primitive  permutation groups of  degree <M>&lt;&nbsp;2500</M>,
##  calculated in <Cite Key="RoneyDougal05"/>,
##  in particular,
##  <List>
##  <Item>
##    the primitive permutation groups up to degree&nbsp;50,
##    calculated by C.&nbsp;Sims,
##  </Item>
##  <Item>
##    the primitive groups with insoluble socles of degree
##    <M>&lt;&nbsp;1000</M> as calculated in <Cite Key="DixonMortimer88"/>,
##  </Item>
##  <Item>
##    the solvable (hence affine) primitive permutation groups of degree
##    <M>&lt;&nbsp;256</M> as calculated by M.&nbsp;Short <Cite Key="Sho92"/>,
##  </Item>
##  <Item>
##    some insolvable affine primitive permutation groups of degree
##    <M>&lt;&nbsp;256</M> as calculated in <Cite Key="Theissen97"/>.
##  </Item>
##  <Item>
##    The solvable primitive groups of degree up to <M>999</M> as calculated
##    in <Cite Key="EickHoefling02"/>.
##  </Item>
##  <Item>
##    The primitive groups of affine type of degree up to <M>999</M> as
##    calculated in <Cite Key="RoneyDougal02"/>.
##  </Item>
##  </List>
##  <P/>
##  Not all groups are named, those which do have names use ATLAS notation.
##  Not all names are necessary unique!
##  <P/>
##  The list given in <Cite Key="RoneyDougal05"/> is believed to be complete,
##  correcting various omissions in <Cite Key="DixonMortimer88"/>,
##  <Cite Key="Sho92"/> and <Cite Key="Theissen97"/>.
##  <P/>
##  In detail, we guarantee the following properties for this and further
##  versions (but <E>not</E> versions which came before &GAP;&nbsp;4.2)
##  of the library:
##  <P/>
##  <List>
##  <Item>
##    All groups in the library are primitive permutation groups
##    of the indicated degree.
##  </Item>
##  <Item>
##    The positions of the groups in the library are stable.
##    That is <C>PrimitiveGroup(<A>n</A>,<A>nr</A>)</C> will always give you
##    a permutation isomorphic group.
##    Note however that we do not guarantee to keep the chosen
##    <M>S_n</M>-representative, the generating set or the name for eternity.
##  </Item>
##  <Item>
##    Different groups in the library are not conjugate in <M>S_n</M>.
##  </Item>
##  <Item>
##    If a group in the library has a primitive subgroup with the same socle,
##    this group is in the library as well.
##  </Item>
##  </List>
##  <P/>
##  (Note that the arrangement of groups is not guaranteed to be in
##  increasing size, though it holds for many degrees.)
##  <#/GAPDoc>


#############################################################################
##
## tell GAP about the component
##
DeclareComponent("prim","2.1");


#############################################################################
##
#F  PrimitiveGroup(<deg>,<nr>)
##
##  <#GAPDoc Label="PrimitiveGroup">
##  <ManSection>
##  <Func Name="PrimitiveGroup" Arg='deg,nr'/>
##
##  <Description>
##  returns the primitive permutation  group of degree <A>deg</A> with number <A>nr</A>
##  from the list. 
##  <P/>
##  The arrangement of the groups differs from the arrangement of primitive
##  groups in the list of C.&nbsp;Sims, which was used in &GAP;&nbsp;3. See
##  <Ref Func="SimsNo"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
UnbindGlobal("PrimitiveGroup");
DeclareGlobalFunction( "PrimitiveGroup" );


#############################################################################
##
#F  NrPrimitiveGroups(<deg>)
##
##  <#GAPDoc Label="NrPrimitiveGroups">
##  <ManSection>
##  <Func Name="NrPrimitiveGroups" Arg='deg'/>
##
##  <Description>
##  returns the number of primitive permutation groups of degree <A>deg</A> in the
##  library.
##  <Example><![CDATA[
##  gap> NrPrimitiveGroups(25);
##  28
##  gap> PrimitiveGroup(25,19);
##  5^2:((Q(8):3)'4)
##  gap> PrimitiveGroup(25,20);
##  ASL(2, 5)
##  gap> PrimitiveGroup(25,22);
##  AGL(2, 5)
##  gap> PrimitiveGroup(25,23);
##  (A(5) x A(5)):2
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "NrPrimitiveGroups" );


##  <#GAPDoc Label="[2]{primitiv}">
##  The selection functions (see&nbsp;<Ref Sect="Selection Functions"/>) for
##  the primitive groups library are <C>AllPrimitiveGroups</C> and
##  <C>OnePrimitiveGroup</C>.
##  They obtain the following properties from the database without having to
##  compute them anew: 
##  <P/>
##  <Ref Attr="NrMovedPoints" Label="for a list or collection of permutations"/>,
##  <Ref Attr="Size"/>,
##  <Ref Attr="Transitivity" Label="for a group and an action domain"/>,
##  <Ref Attr="ONanScottType"/>,
##  <Ref Prop="IsSimpleGroup"/>,
##  <Ref Prop="IsSolvableGroup"/>,
##  and <Ref Attr="SocleTypePrimitiveGroup"/>.
##  <P/>
##  (Note, that for groups of degree up to 2499, O'Nan-Scott types 4a, 4b and
##  5 cannot occur.)
##  <#/GAPDoc>


#############################################################################
##
#F  PrimitiveGroupsIterator(<attr1>,<val1>,<attr2>,<val2>,...)
##
##  <#GAPDoc Label="PrimitiveGroupsIterator">
##  <ManSection>
##  <Func Name="PrimitiveGroupsIterator" Arg='attr1,val1,attr2,val2,...'/>
##
##  <Description>
##  returns an iterator through
##  <C>AllPrimitiveGroups(<A>attr1</A>,<A>val1</A>,<A>attr2</A>,<A>val2</A>,...)</C> without creating
##  all these groups at the same time.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "PrimitiveGroupsIterator" );

#############################################################################
##
#F  AllPrimitiveGroups(<attr1>,<val1>,<attr2>,<val2>,...)
##
##  <ManSection>
##  <Func Name="AllPrimitiveGroups" Arg='attr1,val1,attr2,val2,...'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "AllPrimitiveGroups" );

#############################################################################
##
#F  OnePrimitiveGroup(<attr1>,<val1>,<attr2>,<val2>,...)
##
##  <ManSection>
##  <Func Name="OnePrimitiveGroup" Arg='attr1,val1,attr2,val2,...'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "OnePrimitiveGroup" );


#############################################################################
##
#A  SimsNo(<G>)
##
##  <#GAPDoc Label="SimsNo">
##  <ManSection>
##  <Attr Name="SimsNo" Arg='G'/>
##
##  <Description>
##  If <A>G</A> is a primitive group obtained by <Ref Func="PrimitiveGroup"/>
##  (respectively one of the selection functions) this attribute contains the
##  number of the isomorphic group in the original list of C.&nbsp;Sims.
##  (This is the arrangement as it was used in &GAP;&nbsp;3.)
##  <P/>
##  <Example><![CDATA[
##  gap> g:=PrimitiveGroup(25,2);
##  5^2:S(3)
##  gap> SimsNo(g);
##  3
##  ]]></Example>
##  <P/>
##  As mentioned in the previous section, the index numbers of primitive
##  groups in &GAP; are guaranteed to remain stable. (Thus, missing groups
##  will be added to the library at the end of each degree.)
##  In particular, it is safe to refer to a primitive group of type
##  <A>deg</A>, <A>nr</A> in the &GAP; library.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "SimsNo", IsPermGroup );

#############################################################################
##
#V  PrimitiveIndexIrreducibleSolvableGroup
##
##  <#GAPDoc Label="PrimitiveIndexIrreducibleSolvableGroup">
##  <ManSection>
##  <Var Name="PrimitiveIndexIrreducibleSolvableGroup"/>
##
##  <Description>
##  This variable provides a way to get from irreducible solvable groups to
##  primitive groups and vice versa. For the group
##  <M>G</M> = <C>IrreducibleSolvableGroup( <A>n</A>, <A>p</A>, <A>k</A> )</C>
##  and <M>d = p^n</M>, the entry
##  <C>PrimitiveIndexIrreducibleSolvableGroup[d][i]</C> gives the index
##  number of the semidirect product <M>p^n:G</M> in the library of primitive
##  groups.
##  <P/>
##  Searching for an index in this list with <Ref Func="Position"/> gives the
##  translation in the other direction.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalVariable("PrimitiveIndexIrreducibleSolvableGroup");

#############################################################################
##
#F  MaximalSubgroupsSymmAlt( <grp> [,<onlyprimitive>] )
##
##  <ManSection>
##  <Func Name="MaximalSubgroupsSymmAlt" Arg='grp [,onlyprimitive]'/>
##
##  <Description>
##  For a symmetric or alternating group <A>grp</A>, this function returns
##  representatives of the classes of maximal subgroups.
##  <P/>
##  If the parameter <A>onlyprimitive</A> is given and set to <K>true</K> only the
##  primitive maximal subgroups are computed.
##  <P/>
##  No parameter test is performed. (The function relies on the primitive
##  groups library for its functionality.)
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("MaximalSubgroupsSymmAlt");


#############################################################################
##
#E