/usr/share/gap/prim/primitiv.gd is in gap-prim-groups 4r6p5-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 | #############################################################################
##
#W primitiv.gd GAP group library Heiko Theißen
#W Alexander Hulpke
#W Colva Roney-Dougal
##
##
##
##
## <#GAPDoc Label="[1]{primitiv}">
## &GAP; contains a library of primitive permutation groups which includes,
## up to permutation isomorphism (i.e., up to conjugacy in the corresponding
## symmetric group),
## all primitive permutation groups of degree <M>< 2500</M>,
## calculated in <Cite Key="RoneyDougal05"/>,
## in particular,
## <List>
## <Item>
## the primitive permutation groups up to degree 50,
## calculated by C. Sims,
## </Item>
## <Item>
## the primitive groups with insoluble socles of degree
## <M>< 1000</M> as calculated in <Cite Key="DixonMortimer88"/>,
## </Item>
## <Item>
## the solvable (hence affine) primitive permutation groups of degree
## <M>< 256</M> as calculated by M. Short <Cite Key="Sho92"/>,
## </Item>
## <Item>
## some insolvable affine primitive permutation groups of degree
## <M>< 256</M> as calculated in <Cite Key="Theissen97"/>.
## </Item>
## <Item>
## The solvable primitive groups of degree up to <M>999</M> as calculated
## in <Cite Key="EickHoefling02"/>.
## </Item>
## <Item>
## The primitive groups of affine type of degree up to <M>999</M> as
## calculated in <Cite Key="RoneyDougal02"/>.
## </Item>
## </List>
## <P/>
## Not all groups are named, those which do have names use ATLAS notation.
## Not all names are necessary unique!
## <P/>
## The list given in <Cite Key="RoneyDougal05"/> is believed to be complete,
## correcting various omissions in <Cite Key="DixonMortimer88"/>,
## <Cite Key="Sho92"/> and <Cite Key="Theissen97"/>.
## <P/>
## In detail, we guarantee the following properties for this and further
## versions (but <E>not</E> versions which came before &GAP; 4.2)
## of the library:
## <P/>
## <List>
## <Item>
## All groups in the library are primitive permutation groups
## of the indicated degree.
## </Item>
## <Item>
## The positions of the groups in the library are stable.
## That is <C>PrimitiveGroup(<A>n</A>,<A>nr</A>)</C> will always give you
## a permutation isomorphic group.
## Note however that we do not guarantee to keep the chosen
## <M>S_n</M>-representative, the generating set or the name for eternity.
## </Item>
## <Item>
## Different groups in the library are not conjugate in <M>S_n</M>.
## </Item>
## <Item>
## If a group in the library has a primitive subgroup with the same socle,
## this group is in the library as well.
## </Item>
## </List>
## <P/>
## (Note that the arrangement of groups is not guaranteed to be in
## increasing size, though it holds for many degrees.)
## <#/GAPDoc>
#############################################################################
##
## tell GAP about the component
##
DeclareComponent("prim","2.1");
#############################################################################
##
#F PrimitiveGroup(<deg>,<nr>)
##
## <#GAPDoc Label="PrimitiveGroup">
## <ManSection>
## <Func Name="PrimitiveGroup" Arg='deg,nr'/>
##
## <Description>
## returns the primitive permutation group of degree <A>deg</A> with number <A>nr</A>
## from the list.
## <P/>
## The arrangement of the groups differs from the arrangement of primitive
## groups in the list of C. Sims, which was used in &GAP; 3. See
## <Ref Func="SimsNo"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
UnbindGlobal("PrimitiveGroup");
DeclareGlobalFunction( "PrimitiveGroup" );
#############################################################################
##
#F NrPrimitiveGroups(<deg>)
##
## <#GAPDoc Label="NrPrimitiveGroups">
## <ManSection>
## <Func Name="NrPrimitiveGroups" Arg='deg'/>
##
## <Description>
## returns the number of primitive permutation groups of degree <A>deg</A> in the
## library.
## <Example><![CDATA[
## gap> NrPrimitiveGroups(25);
## 28
## gap> PrimitiveGroup(25,19);
## 5^2:((Q(8):3)'4)
## gap> PrimitiveGroup(25,20);
## ASL(2, 5)
## gap> PrimitiveGroup(25,22);
## AGL(2, 5)
## gap> PrimitiveGroup(25,23);
## (A(5) x A(5)):2
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "NrPrimitiveGroups" );
## <#GAPDoc Label="[2]{primitiv}">
## The selection functions (see <Ref Sect="Selection Functions"/>) for
## the primitive groups library are <C>AllPrimitiveGroups</C> and
## <C>OnePrimitiveGroup</C>.
## They obtain the following properties from the database without having to
## compute them anew:
## <P/>
## <Ref Attr="NrMovedPoints" Label="for a list or collection of permutations"/>,
## <Ref Attr="Size"/>,
## <Ref Attr="Transitivity" Label="for a group and an action domain"/>,
## <Ref Attr="ONanScottType"/>,
## <Ref Prop="IsSimpleGroup"/>,
## <Ref Prop="IsSolvableGroup"/>,
## and <Ref Attr="SocleTypePrimitiveGroup"/>.
## <P/>
## (Note, that for groups of degree up to 2499, O'Nan-Scott types 4a, 4b and
## 5 cannot occur.)
## <#/GAPDoc>
#############################################################################
##
#F PrimitiveGroupsIterator(<attr1>,<val1>,<attr2>,<val2>,...)
##
## <#GAPDoc Label="PrimitiveGroupsIterator">
## <ManSection>
## <Func Name="PrimitiveGroupsIterator" Arg='attr1,val1,attr2,val2,...'/>
##
## <Description>
## returns an iterator through
## <C>AllPrimitiveGroups(<A>attr1</A>,<A>val1</A>,<A>attr2</A>,<A>val2</A>,...)</C> without creating
## all these groups at the same time.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "PrimitiveGroupsIterator" );
#############################################################################
##
#F AllPrimitiveGroups(<attr1>,<val1>,<attr2>,<val2>,...)
##
## <ManSection>
## <Func Name="AllPrimitiveGroups" Arg='attr1,val1,attr2,val2,...'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "AllPrimitiveGroups" );
#############################################################################
##
#F OnePrimitiveGroup(<attr1>,<val1>,<attr2>,<val2>,...)
##
## <ManSection>
## <Func Name="OnePrimitiveGroup" Arg='attr1,val1,attr2,val2,...'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "OnePrimitiveGroup" );
#############################################################################
##
#A SimsNo(<G>)
##
## <#GAPDoc Label="SimsNo">
## <ManSection>
## <Attr Name="SimsNo" Arg='G'/>
##
## <Description>
## If <A>G</A> is a primitive group obtained by <Ref Func="PrimitiveGroup"/>
## (respectively one of the selection functions) this attribute contains the
## number of the isomorphic group in the original list of C. Sims.
## (This is the arrangement as it was used in &GAP; 3.)
## <P/>
## <Example><![CDATA[
## gap> g:=PrimitiveGroup(25,2);
## 5^2:S(3)
## gap> SimsNo(g);
## 3
## ]]></Example>
## <P/>
## As mentioned in the previous section, the index numbers of primitive
## groups in &GAP; are guaranteed to remain stable. (Thus, missing groups
## will be added to the library at the end of each degree.)
## In particular, it is safe to refer to a primitive group of type
## <A>deg</A>, <A>nr</A> in the &GAP; library.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "SimsNo", IsPermGroup );
#############################################################################
##
#V PrimitiveIndexIrreducibleSolvableGroup
##
## <#GAPDoc Label="PrimitiveIndexIrreducibleSolvableGroup">
## <ManSection>
## <Var Name="PrimitiveIndexIrreducibleSolvableGroup"/>
##
## <Description>
## This variable provides a way to get from irreducible solvable groups to
## primitive groups and vice versa. For the group
## <M>G</M> = <C>IrreducibleSolvableGroup( <A>n</A>, <A>p</A>, <A>k</A> )</C>
## and <M>d = p^n</M>, the entry
## <C>PrimitiveIndexIrreducibleSolvableGroup[d][i]</C> gives the index
## number of the semidirect product <M>p^n:G</M> in the library of primitive
## groups.
## <P/>
## Searching for an index in this list with <Ref Func="Position"/> gives the
## translation in the other direction.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalVariable("PrimitiveIndexIrreducibleSolvableGroup");
#############################################################################
##
#F MaximalSubgroupsSymmAlt( <grp> [,<onlyprimitive>] )
##
## <ManSection>
## <Func Name="MaximalSubgroupsSymmAlt" Arg='grp [,onlyprimitive]'/>
##
## <Description>
## For a symmetric or alternating group <A>grp</A>, this function returns
## representatives of the classes of maximal subgroups.
## <P/>
## If the parameter <A>onlyprimitive</A> is given and set to <K>true</K> only the
## primitive maximal subgroups are computed.
## <P/>
## No parameter test is performed. (The function relies on the primitive
## groups library for its functionality.)
## </Description>
## </ManSection>
##
DeclareGlobalFunction("MaximalSubgroupsSymmAlt");
#############################################################################
##
#E
|