This file is indexed.

/usr/share/gap/trans/trans.gi is in gap-trans-groups 4r6p5-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
#############################################################################
##
#W  trans.gi          GAP transitive groups library          Alexander Hulpke
##
##
#Y  Copyright (C) 2001, Alexander Hulpke, Colorado State University
##
##  This file contains methods that rely on the transitive groups library
##  being available.
##

# computes the perfect subgroups of S_n or A_n. Symconj indicates whether
# they are up to conjugacy in S_n.
BindGlobal("PerfectSubgroupsAlternatingGroup",function(g,symconj)
local dom,deg,S,p,ps,perm,startp,sdps,nsdps,i,j,k,l,m,n,part,
      sysdps,syj,nk,kno,nl,lno,khom,kim,lhom,lim,iso,au,ind1,ind2,dc,d,grp,
      knom,lnon;
  dom:=Set(MovedPoints(g));
  deg:=Length(dom);
  p:=[TrivialSubgroup(g)];
  if deg<5 then 
    return p;
  fi;

  if deg>TRANSDEGREES then
    TryNextMethod();
  fi;

  S:=SymmetricGroup(deg);

  # all partitions with (nontrivial) orbits of length 
  part:=Filtered(Partitions(deg),i->Length(i)<deg and
                                 ForAll(i,j->j=1 or j>4));

  # we shall use implicitly, that the partitions are ordered reversly. I.e.
  # all sdps constructed don't have any earlier fixpoints &c.
  for i in part do
    Info(InfoLattice,1,"Partition: ",i);
    # for each partition construct all subdirect products.
    sdps:=[];
    startp:=1; # point we start on
    for j in i do
      if j>4 then
	Info(InfoLattice,3,j,", ",Length(sdps)," products");
	perm:=MappingPermListList([1..j],[startp..startp+j-1]);
	# get the transitive ones of this degree.
	ps:=AllTransitiveGroups(NrMovedPoints,j,IsPerfectGroup,true);
	ps:=List(ps,i->i^perm);
	if Length(sdps)=0 then
	  sdps:=ps;
	else
	  nsdps:=[];
	  # now we must form spds: run through all pairs
	  sysdps:=SymmetricGroup(MovedPoints(sdps[1]));
	  syj:=SymmetricGroup(j);

	  for k in sdps do
	    nk:=NormalSubgroups(k);
	    kno:=Normalizer(sysdps,k);
	    for l in ps do
	      nl:=NormalSubgroups(l);
	      lno:=Normalizer(syj,k);
	      # run through all combinations of normal subgroups
	      for m in nk do
		knom:=Normalizer(kno,m);
	        for n in nl do
		  lnon:=Normalizer(lno,n);
		  if Index(k,m)=Index(l,n) then
		    # factor groups have the same order.
		    khom:=NaturalHomomorphismByNormalSubgroupNC(k,m);
		    kim:=Image(khom);
		    lhom:=NaturalHomomorphismByNormalSubgroupNC(l,n);
		    lim:=Image(lhom);
		    iso:=IsomorphismGroups(kim,lim);
		    if iso<>fail then
		      # they are isomorphic. So there are subdirect
		      # products. Classify them up to conjugacy (Satz (32)
		      # in my thesis)
		      au:=AutomorphismGroup(lim);

		      # those automorphisms induced by the normalizer of k
		      ind1:=List(GeneratorsOfGroup(knom),
      y->GroupHomomorphismByImagesNC(lim,lim,
	    GeneratorsOfGroup(lim),
	    List(GeneratorsOfGroup(lim),
	         z->Image(iso,
		   Image(khom,PreImagesRepresentative(khom,
		                PreImagesRepresentative(iso,z) )^y)
		         ))));
                      Assert(1,ForAll(ind1,IsBijective));

		      # those automorphisms induced by the normalizer of l
		      ind2:=List(GeneratorsOfGroup(lnon),
      y->GroupHomomorphismByImagesNC(lim,lim,
	    GeneratorsOfGroup(lim),
	    List(GeneratorsOfGroup(lim),
	         z->Image(lhom,PreImagesRepresentative(lhom,z)^y))));
                      Assert(1,ForAll(ind1,IsBijective));

		      dc:=DoubleCosetRepsAndSizes(au,SubgroupNC(au,ind1),
		                          SubgroupNC(au,ind2));
		      dc:=List(dc,i->i[1]); # only reps
		      for d in dc do
		        grp:=ClosureGroup(n,
			       List(GeneratorsOfGroup(k),i->i*
			         PreImagesRepresentative(lhom,
				   Image(d,Image(iso,Image(khom,i)))
				                              ))
			                 );
		        Add(nsdps,grp);
		      od;

		    fi;
		  fi;
		od;
	      od;
	    od;
	  od;

	  sdps:=nsdps;
	fi;
      fi;
      startp:=startp+j;
    od;

    # S_n classes
    nsdps:=[];
    for j in sdps do
      if ForAll(nsdps,k->Size(k)<>Size(j) 
                      or Set(MovedPoints(k))<>Set(MovedPoints(l))
		      or RepresentativeAction(
			   # if they are conjugate in S_deg they are conjugate
			   # in the smaller S_n on their moved points
		           Stabilizer(S,Difference([1..deg],
			                           MovedPoints(k)),OnTuples),
			  j,k)=fail) then
        Add(nsdps,j);
      fi;
    od;

    Info(InfoLattice,2,j,", ",Length(sdps)," new perfect groups");
    if symconj then
      Append(p,nsdps);
    else
      for j in nsdps do
	n:=Normalizer(S,j);
	Add(p,j);
	if SignPermGroup(n)=1 then
	  Add(p,ConjugateGroup(j,(1,2))); # Normalizer in A_n: 2 orbits
	fi;
      od;
    fi;
  od;

  if dom<>[1..deg] then
    perm:=MappingPermListList([1..deg],dom);
    p:=List(p,i->i^perm);
  fi;

  return p;

end);

#############################################################################
##
#M  RepresentativesPerfectSubgroups
##
InstallMethod(RepresentativesPerfectSubgroups,"alternating",true,
    [ IsNaturalAlternatingGroup ], 0,
  G->PerfectSubgroupsAlternatingGroup(G,false));

InstallMethod(RepresentativesPerfectSubgroups,"symmetric",true,
    [ IsNaturalSymmetricGroup ], 0,
  G->PerfectSubgroupsAlternatingGroup(G,true));