/usr/share/hol88-2.02.19940316/contrib/SECD/when.ml is in hol88-contrib-source 2.02.19940316-19.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 | %------------------------------------------------------------------------
| FILE : when.ml
|
| DESCRIPTION : Defines the predicates `Next`, `Inf`, `IsTimeOf`
| and `TimeOf` and derives several major theorems
| which provide a basis for temporal abstraction.
|
| These predicates and theorems are taken from
| T.Melham's paper, "Abstraction Mechanisms for
| Hardware Verification", Hardware Verification
| Workshop, University of Calgary, January 1987.
|
| Modified:
| 06.08.91 - BtG - updated to HOL2
------------------------------------------------------------------------%
new_theory `when`;;
let Next = new_definition
(`Next`,
"Next t1 t2 f = (t1<t2) /\
( f t2) /\
!t. (t1<t ) /\ (t<t2) ==> ~f t"
);;
let IsTimeOf = new_prim_rec_definition
(`IsTimeOf`,
"(IsTimeOf 0 f t = f t /\ !t'. (t'<t) ==> ~f t') /\
(IsTimeOf (SUC n) f t = ?t'. IsTimeOf n f t' /\
Next t' t f )"
);;
let TimeOf = new_definition
(`TimeOf`,
"TimeOf f n = @t. IsTimeOf n f t"
);;
let when = new_infix_definition
(`when`,
"when (s:num->*) (p:num->bool) = \n. s (TimeOf p n)"
);;
let Inf = new_definition
(`Inf`,
"Inf f = !t. ?t'. (t<t') /\ (f t')"
);;
%------------------------------------------------------------------------
| Define "LEAST P" to represent that P has a smallest element.
------------------------------------------------------------------------%
let LEAST = new_definition
(`LEAST`,
"LEAST P = ?x. P x /\ (!y. y<x ==> ~P y)"
);;
close_theory();;
timer true;;
%------------------------------------------------------------------------
| The first assumption which matches the term tm is undischarged
| (c) ISD--Aug.1989.
------------------------------------------------------------------------%
let MATCH_UNDISCH_TAC tm =
(FIRST_ASSUM \th. UNDISCH_TAC (if (can (match tm) (concl th))
then (concl th)
else fail
) ? NO_TAC
)
ORELSE FAIL_TAC `MATCH_UNDISCH_TAC`;;
%------------------------------------------------------------------------
| wop = |- !P. (?n. P n) ==> LEAST P
------------------------------------------------------------------------%
let wop = prove_thm
(`wop`,
"!P. (?n. P n) ==> LEAST P",
REWRITE_TAC [WOP; LEAST]
);;
%------------------------------------------------------------------------
| Inf_EXISTS = |- !f. Inf f ==> ?n. f n
------------------------------------------------------------------------%
let Inf_EXISTS = prove_thm
(`Inf_EXISTS`,
"!f. Inf f ==> ?n. f n",
PURE_REWRITE_TAC [Inf]
THEN REPEAT STRIP_TAC
THEN FIRST_ASSUM (STRIP_ASSUME_TAC o (SPEC "t:num"))
THEN EXISTS_TAC "t':num"
THEN FIRST_ASSUM ACCEPT_TAC
);;
%------------------------------------------------------------------------
| Inf_LEAST = |- !f. Inf f ==> LEAST f
------------------------------------------------------------------------%
let Inf_LEAST = prove_thm
(`Inf_LEAST`,
"!f. Inf f ==> LEAST f",
REPEAT STRIP_TAC
THEN IMP_RES_TAC Inf_EXISTS
THEN IMP_RES_TAC wop
);;
%------------------------------------------------------------------------
| Inf_Next = |- !f. Inf f ==> !t. f t ==> ?t'. Next t t' f
------------------------------------------------------------------------%
let Inf_Next = prove_thm
(`Inf_Next`,
"!f. Inf f ==> !t. f t ==> ?t'. Next t t' f",
PURE_REWRITE_TAC [Inf; Next]
THEN GEN_TAC
THEN DISCH_THEN (\th0. X_GEN_TAC "v:num"
THEN STRIP_TAC
THEN X_CHOOSE_THEN "n:num" STRIP_ASSUME_TAC
(MATCH_MP wop' (SPEC "v:num" th0)))
THEN EXISTS_TAC "n:num"
THEN ASM_REWRITE_TAC []
THEN REPEAT STRIP_TAC
THEN RES_THEN (STRIP_ASSUME_TAC o (REWRITE_RULE[DE_MORGAN_THM]))
THEN RES_TAC
)
where wop' =
CONV_RULE (DEPTH_CONV BETA_CONV) (SPEC (( mk_abs
o dest_exists
o snd
o dest_forall
o rhs
o concl
o SPEC_ALL
) Inf)
WOP
);;
%------------------------------------------------------------------------
| Next_ADD1 = |- !f t. f (t+1) ==> Next t (t+1) f
------------------------------------------------------------------------%
let Next_ADD1 = prove_thm
(`Next_ADD1`,
"!f t. f (t+1) ==> Next t (t+1) f",
REWRITE_TAC [ Next
; SYM (SPEC_ALL ADD1)
; LESS_SUC_REFL
]
THEN REPEAT STRIP_TAC
THENL [ FIRST_ASSUM ACCEPT_TAC
; IMP_RES_THEN
(STRIP_ASSUME_TAC o (CONV_RULE (ONCE_DEPTH_CONV SYM_CONV)))
LESS_NOT_EQ
THEN IMP_RES_TAC LESS_SUC_IMP
THEN IMP_RES_TAC LESS_ANTISYM
]
);;
%------------------------------------------------------------------------
| Next_INCREAST = |- !f t1 t2. ~f(t1+1) ==>
| Next (t1+1) t2 f ==> Next t1 t2 f
------------------------------------------------------------------------%
let Next_INCREASE = prove_thm
(`Next_INCREASE`,
"!f t1 t2. ~f(t1+1) ==>
Next (t1+1) t2 f ==> Next t1 t2 f",
PURE_REWRITE_TAC [Next; SYM (SPEC_ALL ADD1)]
THEN REPEAT STRIP_TAC
THENL [ IMP_RES_TAC SUC_LESS
; FIRST_ASSUM ACCEPT_TAC
; MATCH_UNDISCH_TAC "~^(genvar":bool")"
THEN IMP_RES_TAC (PURE_REWRITE_RULE [LESS_OR_EQ] LESS_OR)
THEN RES_TAC
THEN ASM_REWRITE_TAC []
]
);;
%------------------------------------------------------------------------
| Next_IDENTITY = |- !t1 t2 f. Next t1 t2 f ==>
| !t3. Next t1 t3 f ==> (t2 = t3)
------------------------------------------------------------------------%
let Next_IDENTITY = prove_thm
(`Next_IDENTITY`,
"!t1 t2 f. Next t1 t2 f ==>
!t3. Next t1 t3 f ==> (t2 = t3)",
PURE_REWRITE_TAC [Next]
THEN REPEAT STRIP_TAC
THEN PURE_ONCE_REWRITE_TAC
[(SYM o SPEC_ALL o hd o CONJUNCTS) NOT_CLAUSES]
THEN DISCH_TAC
THEN STRIP_ASSUME_TAC
(SPECL ["t2:num"; "t3:num"]
(REWRITE_RULE [DE_MORGAN_THM] LESS_ANTISYM))
THENL [ ALL_TAC
; RULE_ASSUM_TAC (CONV_RULE (ONCE_DEPTH_CONV SYM_CONV))
]
THEN IMP_RES_TAC LESS_CASES_IMP
THEN RES_TAC
);;
%------------------------------------------------------------------------
| IsTimeOf_TRUE = |- !n f t. IsTimeOf n f t ==> f t
------------------------------------------------------------------------%
let IsTimeOf_TRUE = prove_thm
(`IsTimeOf_TRUE`,
"!n f t. IsTimeOf n f t ==> f t",
INDUCT_TAC
THEN REWRITE_TAC [IsTimeOf; Next]
THEN REPEAT STRIP_TAC
);;
%------------------------------------------------------------------------
| IsTimeOf_EXISTS = |- !f. Inf f ==> !n. ?t. IsTimeOf n f t
------------------------------------------------------------------------%
let IsTimeOf_EXISTS = prove_thm
(`IsTimeOf_EXISTS`,
"!f. Inf f ==> !n. ?t. IsTimeOf n f t",
GEN_TAC
THEN DISCH_TAC
THEN INDUCT_TAC
THENL [ IMP_RES_TAC Inf_EXISTS
THEN IMP_RES_THEN
(ASSUME_TAC o (PURE_REWRITE_RULE [LEAST]))
Inf_LEAST
THEN ASM_REWRITE_TAC [IsTimeOf]
; FIRST_ASSUM STRIP_ASSUME_TAC
THEN IMP_RES_TAC IsTimeOf_TRUE
THEN IMP_RES_TAC Inf_Next
THEN FIRST_ASSUM STRIP_ASSUME_TAC
THEN REWRITE_TAC [IsTimeOf]
THEN EXISTS_TAC "t':num"
THEN EXISTS_TAC "t:num"
THEN ASM_REWRITE_TAC []
]
);;
%------------------------------------------------------------------------
| TimeOf_DEFINED = |- !f. Inf f ==> (!n. IsTimeOf n f (TimeOf f n))
------------------------------------------------------------------------%
let TimeOf_DEFINED = save_thm
(`TimeOf_DEFINED`, ( GEN_ALL
o DISCH_ALL
o GEN_ALL
o (REWRITE_RULE [SYM(SPEC_ALL TimeOf)])
o CONV_RULE (DEPTH_CONV BETA_CONV)
o (REWRITE_RULE [EXISTS_DEF])
o SPEC_ALL
o UNDISCH_ALL
o SPEC_ALL
) IsTimeOf_EXISTS
);;
%------------------------------------------------------------------------
| TimeOf_TRUE = |- !f. Inf f ==> (!n. f (TimeOf f n))
------------------------------------------------------------------------%
let TimeOf_TRUE = save_thm
(`TimeOf_TRUE`, ( GEN_ALL
o DISCH_ALL
o GEN_ALL
o (MATCH_MP IsTimeOf_TRUE)
o SPEC_ALL
o UNDISCH_ALL
o SPEC_ALL
) TimeOf_DEFINED
);;
%------------------------------------------------------------------------
| IsTimeOf_IDENTITY =
| |- !n f t1 t2. IsTimeOf n f t1 /\ IsTimeOf n f t2 ==> (t1 = t2)
------------------------------------------------------------------------%
let IsTimeOf_IDENTITY = prove_thm
(`IsTimeOf_IDENTITY`,
"!n f t1 t2. IsTimeOf n f t1 /\ IsTimeOf n f t2 ==> (t1 = t2)",
INDUCT_TAC
THEN PURE_REWRITE_TAC [IsTimeOf; Next]
THEN X_GEN_TAC "f:num->bool"
THEN X_GEN_TAC "t1:num"
THEN X_GEN_TAC "t2:num"
THEN REPEAT STRIP_TAC
THENL [ ALL_TAC
; RES_THEN (TRY o IMP_RES_THEN
(\th. EVERY_ASSUM
(STRIP_ASSUME_TAC o (\thm. SUBS [th] thm? thm))))
]
THEN STRIP_ASSUME_TAC
(SPECL ["t2:num"; "t1:num"]
(REWRITE_RULE [LESS_OR_EQ] LESS_CASES))
THEN RES_TAC
);;
%-----------------------------------------------------------------------
| TimeOf_INCREASING =
| |- !f. Inf f ==> !n. (TimeOf f n) < (TimeOf f (n+1))
-----------------------------------------------------------------------%
let TimeOf_INCREASING = prove_thm
(`TimeOf_INCREASING`,
"!f. Inf f ==> (!n. (TimeOf f n) < (TimeOf f(n+1)))",
GEN_TAC
THEN DISCH_TAC
THEN X_GEN_TAC "n:num"
THEN IMP_RES_TAC Inf_Next
THEN IMP_RES_THEN (STRIP_ASSUME_TAC o (SPEC "n:num")) TimeOf_DEFINED
THEN IMP_RES_THEN
( CHOOSE_THEN ( STRIP_ASSUME_TAC
o (\thl. CONJ (el 1 thl) (el 2 thl))
o CONJUNCTS
)
o (REWRITE_RULE [IsTimeOf; Next])
o (SPEC "SUC n")
) TimeOf_DEFINED
THEN MATCH_UNDISCH_TAC "x<y"
THEN IMP_RES_TAC IsTimeOf_TRUE
THEN IMP_RES_n_THEN 2
(\th. ONCE_REWRITE_TAC[ADD1; th]) IsTimeOf_IDENTITY
);;
%-----------------------------------------------------------------------
| TimeOf_INTERVAL =
| |- !f. Inf f ==>
| !n t. (TimeOf f n)<t /\ t<(TimeOf f (n+1)) ==> ~f t
-----------------------------------------------------------------------%
let TimeOf_INTERVAL = prove_thm
(`TimeOf_INTERVAL`,
"!f. Inf f ==>
!n t. (TimeOf f n)<t /\ t<(TimeOf f (n+1)) ==> ~f t",
GEN_TAC
THEN DISCH_TAC
THEN X_GEN_TAC "n:num"
THEN X_GEN_TAC "t:num"
THEN IMP_RES_TAC Inf_Next
THEN IMP_RES_THEN (STRIP_ASSUME_TAC o (SPEC "n:num")) TimeOf_DEFINED
THEN IMP_RES_THEN
( CHOOSE_THEN ( STRIP_ASSUME_TAC
o (\thl. CONJ (el 1 thl) (SPEC "t:num" (el 4 thl)))
o CONJUNCTS
)
o (REWRITE_RULE [IsTimeOf; Next])
o (SPEC "SUC n")
) TimeOf_DEFINED
THEN FIRST_ASSUM (UNDISCH_TAC o concl)
THEN IMP_RES_TAC IsTimeOf_TRUE
THEN IMP_RES_n_THEN 2 (\th. ONCE_REWRITE_TAC[ADD1; th]) IsTimeOf_IDENTITY
);;
%-----------------------------------------------------------------------
| TimeOf_Next = |- !f. Inf f ==> !n. Next (TimeOf f n) (TimeOf f (n+1)) f
-----------------------------------------------------------------------%
let TimeOf_Next = prove_thm
(`TimeOf_Next`,
"!f. Inf f ==> !n. Next (TimeOf f n) (TimeOf f (n+1)) f",
PURE_REWRITE_TAC [Next]
THEN REPEAT STRIP_TAC
THENL [ IMP_RES_THEN (\th. REWRITE_TAC [th]) TimeOf_INCREASING
; IMP_RES_THEN (\th. REWRITE_TAC [th]) TimeOf_TRUE
; IMP_RES_TAC TimeOf_INTERVAL THEN RES_TAC
]
);;
% ================================================================= %
% by BtG: %
% a useful form of lemma once the definition of Next is %
% proven satisfied by the lower level definition. %
% ================================================================= %
let TimeOf_Next_lemma = prove_thm
(`TimeOf_Next_lemma`,
"Inf f ==>
(!t. (Next (TimeOf f t) ((TimeOf f t) + x) f) ==>
(TimeOf f (SUC t) = ((TimeOf f t) + x)))",
STRIP_TAC
THEN GEN_TAC
THEN IMP_RES_THEN (ASSUME_TAC o (SPEC "t:num")) TimeOf_Next
THEN STRIP_TAC
THEN IMP_RES_TAC Next_IDENTITY
THEN PURE_ONCE_REWRITE_TAC[ADD1]
THEN FIRST_ASSUM ACCEPT_TAC
);;
timer false;;
print_theory `when`;;
%<----------------------------------------------------------------------
The Theory when
Parents -- HOL wop
Constants --
Next ":num -> (num -> ((num -> bool) -> bool))"
IsTimeOf ":num -> ((num -> bool) -> (num -> bool))"
TimeOf ":(num -> bool) -> (num -> num)"
Inf ":(num -> bool) -> bool"
Curried Infixes --
when ":(num -> *) -> ((num -> bool) -> (num -> *))"
Definitions --
Next
|- !t1 t2 f.
Next t1 t2 f =
t1 < t2 /\ f t2 /\ (!t. t1 < t /\ t < t2 ==> ~f t)
IsTimeOf_DEF
|- IsTimeOf =
PRIM_REC
(\f t. f t /\ (!t'. t' < t ==> ~f t'))
(\g00004 n f t. ?t'. g00004 f t' /\ Next t' t f)
TimeOf |- !f n. TimeOf f n = (@t. IsTimeOf n f t)
when |- !s p. s when p = (\n. s(TimeOf p n))
Inf |- !f. Inf f = (!t. ?t'. t < t' /\ f t')
Theorems --
IsTimeOf
|- (! f t. IsTimeOf 0 f t = f t /\ (!t'. t' < t ==> ~f t')) /\
(!n f t. IsTimeOf(SUC n)f t = (?t'. IsTimeOf n f t' /\ Next t' t f))
Inf_EXISTS |- !f. Inf f ==> (?n. f n)
Inf_LEAST |- !f. Inf f ==> LEAST f
Inf_Next |- !f. Inf f ==> (!t. f t ==> (?t'. Next t t' f))
Next_ADD1 |- !f t. f(t + 1) ==> Next t(t + 1)f
Next_INCREASE
|- !f t1 t2. ~f(t1 + 1) ==> Next(t1 + 1)t2 f ==> Next t1 t2 f
Next_IDENTITY
|- !t1 t2 f. Next t1 t2 f ==> (!t3. Next t1 t3 f ==> (t2 = t3))
IsTimeOf_TRUE |- !n f t. IsTimeOf n f t ==> f t
IsTimeOf_EXISTS |- !f. Inf f ==> (!n. ?t. IsTimeOf n f t)
TimeOf_DEFINED |- !f. Inf f ==> (!n. IsTimeOf n f(TimeOf f n))
TimeOf_TRUE |- !f. Inf f ==> (!n. f(TimeOf f n))
IsTimeOf_IDENTITY
|- !n f t1 t2. IsTimeOf n f t1 /\ IsTimeOf n f t2 ==> (t1 = t2)
TimeOf_INCREASING
|- !f. Inf f ==> (!n. (TimeOf f n) < (TimeOf f(n + 1)))
TimeOf_INTERVAL
|- !f. Inf f ==>
(!n t. (TimeOf f n) < t /\ t < (TimeOf f(n + 1)) ==> ~f t)
TimeOf_Next |- !f. Inf f ==> (!n. Next(TimeOf f n)(TimeOf f(n + 1))f)
*************************************--------------------------------->%
|