This file is indexed.

/usr/share/hol88-2.02.19940316/contrib/aci/aci.ml is in hol88-contrib-source 2.02.19940316-19.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
%=============================================================================
  FILE:         aci.ml
  
  DESCIPTION:   Generalizing an associative and commutative operation with
                identity to finite sets.

  AUTHOR:       Ching-Tsun Chou
  
  LAST CHANGED: Tue Oct  6 14:56:08 PDT 1992
=============================================================================%

new_theory `aci` ;;

%-----------------------------------------------------------------------------
  Need the new `pred_sets` library by Tom Melham.
-----------------------------------------------------------------------------%

load_library `pred_sets`  ;;

%-----------------------------------------------------------------------------
  Miscellaneous ML functions.
-----------------------------------------------------------------------------%

let sing x = [x] ;;

%-----------------------------------------------------------------------------
  (Stolen from Brian Graham.)
-----------------------------------------------------------------------------%

let SELECT_UNIQUE_RULE (x,y) th1 th2 =
  let Q = mk_abs (x, subst [x,y] (concl th1))
  in
  let th1' = SUBST [SYM (BETA_CONV "^Q ^y"), "b:bool"] "b:bool" th1
  in
  ( MP (SPECL ["$@ ^Q"; y] th2)
       (CONJ (CONV_RULE BETA_CONV (SELECT_INTRO th1')) th1) )
;;
        
let SELECT_UNIQUE_TAC:tactic (gl,g) =
  let Q,y = dest_eq g
  in
  let x,Qx = dest_select Q
  in
  let x' = variant (x.freesl(g.gl))x
  in
  let Qx' = subst [x', x] Qx
  in
  ([gl,subst [y,x]Qx;
    gl, "!^x ^x'. (^Qx /\ ^Qx') ==> (^x = ^x')"],
   (\thl. SELECT_UNIQUE_RULE (x,y) (hd thl) (hd (tl thl))))
;;

%-----------------------------------------------------------------------------
  "ASSOC_COMM_ID_DEF op id" holds iff "op" is an associative and commutative
  operation with identity "id".
-----------------------------------------------------------------------------%

let ASSOC_COMM_ID_DEF = new_definition(`ASSOC_COMM_ID_DEF`,
"
  ASSOC_COMM_ID (op : ** -> ** -> **) (id : **) =
    ( ! a b c . (op a (op b c)) = (op (op a b) c) ) /\
    ( ! a b .          (op a b) = (op b a) ) /\
    ( ! a .           (op a id) = a )
");;

%-----------------------------------------------------------------------------
  The following is based on ideas stolen from Tom Melham's definition
  of cardinality ("CARD") in the library "pred_sets".
-----------------------------------------------------------------------------%

let REL = " REL : (** -> ** -> **) -> ** -> (* -> **) -> (* -> bool) -> **
            -> num -> bool " ;;

%-----------------------------------------------------------------------------
  "REL op id f s a n" holds iff set s has cardinality n and doing
  operation op on f(x)'s with x ranging over s has result a, 
  where a = id if s = { }.
-----------------------------------------------------------------------------%

let ACI_REL_DEF =
"
  ( ! op id f s a .   ^REL op id f s a 0       = (s = { }) /\ (a = id) ) /\
  ( ! op id f s a n . ^REL op id f s a (SUC n) =
      ? x b . x IN s /\ ^REL op id f (s DELETE x) b n /\ (a = op (f x) b) )
" ;;

%-----------------------------------------------------------------------------
  Prove that relation "REL", as recursively defined above, exists.
-----------------------------------------------------------------------------%

let ACI_REL_EXISTS = prove_rec_fn_exists num_Axiom ACI_REL_DEF ;;

%-----------------------------------------------------------------------------
  All lemmas below about "REL" assume "ASSOC_COMM_ID op id".
-----------------------------------------------------------------------------%

%-----------------------------------------------------------------------------
  "REL op id f s a 1" holds iff s = {x} and a = f(x) for some x.
-----------------------------------------------------------------------------%

let ACI_REL_1_LEMMA = PROVE(
"
  ^ACI_REL_DEF ==>
    ! op id . ASSOC_COMM_ID op id ==>
      ! f s a . ^REL op id f s a (SUC 0) = ? x . (s = {x}) /\ (a = f x)
" , (
  DISCH_THEN \ ACI_REL_asm .
    REPEAT GEN_TAC THEN
    DISCH_THEN \ ASSOC_COMM_ID_asm .
      let [_; _; ID_asm] =
          (CONJUNCTS o PURE_ONCE_REWRITE_RULE [ASSOC_COMM_ID_DEF])
          ASSOC_COMM_ID_asm
      in
      REPEAT GEN_TAC THEN
      PURE_REWRITE_TAC [ACI_REL_asm] THEN
      EQ_TAC THEN
      REPEAT STRIP_TAC THEN
      EXISTS_TAC "x : *" THENL
      [ IMP_RES_TAC DELETE_EQ_SING THEN
        ASM_REWRITE_TAC [ID_asm]
        ;
        EXISTS_TAC "id : **" THEN
        ASM_REWRITE_TAC [ID_asm; IN_SING; SING_DELETE] ]
) ) ;;

%-----------------------------------------------------------------------------
  If "REL op id f s a (SUC n)" holds, then it does not matter which element
  of s to delete in the recursive definition of "REL".
-----------------------------------------------------------------------------%

let ACI_REL_SUC_LEMMA = PROVE(
"
  ^ACI_REL_DEF ==>
    ! op id . ASSOC_COMM_ID op id ==>
      ! n f s a . ^REL op id f s a (SUC n) ==>
        ! x . x IN s ==>
          ? b . ^REL op id f (s DELETE x) b n /\ (a = op (f x) b)
" , (
  DISCH_THEN \ ACI_REL_asm .
    REPEAT GEN_TAC THEN
    DISCH_THEN \ ASSOC_COMM_ID_asm .
      let [ASSOC_asm; COMM_asm; ID_asm] =
            (CONJUNCTS o PURE_ONCE_REWRITE_RULE [ASSOC_COMM_ID_DEF])
            ASSOC_COMM_ID_asm
      and SING_lemma =
            itlist (C MATCH_MP) [ASSOC_COMM_ID_asm; ACI_REL_asm]
            ACI_REL_1_LEMMA
      in
      INDUCT_TAC THENL
      [ PURE_REWRITE_TAC [SING_lemma; CONJUNCT1 ACI_REL_asm] THEN
        REPEAT (FILTER_STRIP_TAC "IN : * -> (* -> bool) -> bool") THEN
        ASM_REWRITE_TAC [IN_SING] THEN
        DISCH_TAC THEN
        EXISTS_TAC "id : **" THEN
        ASM_REWRITE_TAC [ID_asm; SING_DELETE]
        ;
        REPEAT GEN_TAC THEN
        GEN_REWRITE_TAC (RATOR_CONV o ONCE_DEPTH_CONV)
                        [ ] [ACI_REL_asm] THEN
        REPEAT STRIP_TAC THEN
        ASM_CASES_TAC "x' = x : *" THENL
        [ EXISTS_TAC "b : **" THEN
          ASM_REWRITE_TAC [ ]
          ;
          FIRST_ASSUM (ASSUME_TAC o NOT_EQ_SYM) THEN
          IMP_RES_TAC IN_DELETE THEN
          RES_TAC THEN
          EXISTS_TAC "(op : ** -> ** -> **) (f (x : *)) b'" THEN
          CONJ_TAC THENL
          [ PURE_REWRITE_TAC [ACI_REL_asm] THEN
            EXISTS_TAC "x : *" THEN
            EXISTS_TAC "b' : **" THEN
            PURE_ONCE_REWRITE_TAC [DELETE_COMM] THEN
            ASM_REWRITE_TAC [ ]
            ;
            ASM_REWRITE_TAC [ ] THEN
            CONV_TAC (AC_CONV (ASSOC_asm, COMM_asm)) ] ] ]
) ) ;;

%-----------------------------------------------------------------------------
  Therefore, for any (op, id, f, s), there is at most one pair (a, n)
  such that "REL op id f s a n" holds.
-----------------------------------------------------------------------------%

let ACI_REL_UNIQUE_LEMMA = PROVE(
"
  ^ACI_REL_DEF ==>
    ! op id . ASSOC_COMM_ID op id ==>
      ! n1 n2 f s a1 a2 . ^REL op id f s a1 n1 ==>
                          ^REL op id f s a2 n2 ==> (a1 = a2) /\ (n1 = n2)
" , (
  REPEAT (FILTER_STRIP_TAC "n1 : num") THEN
  INDUCT_TAC THEN
  INDUCT_TAC THENL
  [ PURE_ASM_REWRITE_TAC [ ] THEN REPEAT STRIP_TAC THEN
    ASM_REWRITE_TAC [ ]
    ;
    PURE_ASM_REWRITE_TAC [ ] THEN REPEAT STRIP_TAC THEN
    IMP_RES_TAC MEMBER_NOT_EMPTY
    ;
    PURE_ASM_REWRITE_TAC [ ] THEN REPEAT STRIP_TAC THEN
    IMP_RES_TAC MEMBER_NOT_EMPTY
    ;
    REPEAT GEN_TAC THEN
    DISCH_TAC THEN
    PURE_ASM_REWRITE_TAC [ ] THEN
    STRIP_TAC THEN
    IMP_RES_TAC ACI_REL_SUC_LEMMA THEN
    RES_TAC THEN
    FILTER_ASM_REWRITE_TAC
      ( let op = "op : ** -> ** -> **" and f  = "f : * -> **"
        in
        C mem ["a1 = ^op(^f x)b'"; "a2 = ^op(^f x)b";
               "b' = b : **"; "n1 = n2 : num"]
      ) [ ] ]
) ) ;;

%-----------------------------------------------------------------------------
  Furthermore, if s is finite, then there must exist a pair (a, n)
  such that "REL op id f s a n" holds.
-----------------------------------------------------------------------------%

let ACI_REL_EXISTS_LEMMA = PROVE(
"
  ^ACI_REL_DEF ==>
    ! op id . ASSOC_COMM_ID op id ==>
      ! f s . FINITE s ==>
        ? a n . ^REL op id f s a n
" , (
  REPEAT (FILTER_STRIP_TAC "s : * -> bool") THEN
  SET_INDUCT_TAC THENL
  [ EXISTS_TAC "id : **" THEN
    EXISTS_TAC "0" THEN
    ASM_REWRITE_TAC [ ]
    ;
    FIRST_ASSUM CHOOSE_TAC THEN
    FIRST_ASSUM CHOOSE_TAC THEN
    EXISTS_TAC "(op : ** -> ** -> **) (f (e : *)) a" THEN
    EXISTS_TAC "SUC n" THEN
    PURE_ASM_REWRITE_TAC [ ] THEN
    EXISTS_TAC "e : *" THEN
    EXISTS_TAC "a : **" THEN
    IMP_RES_TAC DELETE_NON_ELEMENT THEN
    ASM_REWRITE_TAC [IN_INSERT; DELETE_INSERT] ]
) ) ;;

%-----------------------------------------------------------------------------
  Hence, if s is finite, then "@ b . ? n . REL op id f s b n" does have
  the desired property of satisfying "\ a . ? n . REL op id f s a n".
-----------------------------------------------------------------------------%

let ACI_REL_SELECT_LEMMA = PROVE(
"
  ^ACI_REL_DEF ==>
    ! op id . ASSOC_COMM_ID op id ==>
      ! f s a . FINITE s ==>
        ( ( (@ b . ? n . ^REL op id f s b n) = a ) =
                 ( ? n . ^REL op id f s a n) )
" , (
  REPEAT STRIP_TAC THEN
  IMP_RES_TAC ACI_REL_EXISTS_LEMMA THEN
  EQ_TAC THENL
  [ DISCH_THEN (\asm. PURE_ONCE_REWRITE_TAC [SYM asm]) THEN
    CONV_TAC SELECT_CONV THEN
    ASM_REWRITE_TAC [ ]
    ;
    STRIP_TAC THEN
    SELECT_UNIQUE_TAC THENL
    [ EXISTS_TAC "n : num" THEN
      ASM_REWRITE_TAC [ ]
      ;
      REPEAT STRIP_TAC THEN
      IMP_RES_TAC ACI_REL_UNIQUE_LEMMA ] ]
) ) ;;

%-----------------------------------------------------------------------------
  Now, prove that "\ op id f s . @ b . ? n . REL op id f s b n" defines
  the function that performs op on f(x)'s with x ranging over s,
  for any op and id such that "ASSOC_COMM_ID op id".
-----------------------------------------------------------------------------%

let ACI_OP_EXISTS = PROVE(
"
  ? OP : (** -> ** -> **) -> ** -> (* -> **) -> (* -> bool) -> ** .
  ! op id . ASSOC_COMM_ID op id ==>
    ( ! f . OP op id f { } = id ) /\
    ( ! f s x . FINITE s ==>
      ( OP op id f (x INSERT s) = (x IN s) => (OP op id f s)
                                  | (op (f x) (OP op id f s)) ) )
" , (
  STRIP_ASSUME_TAC ACI_REL_EXISTS THEN
  EXISTS_TAC "\ op id f s . @ b . ? n . ^REL op id f s b n" THEN
  CONV_TAC (TOP_DEPTH_CONV BETA_CONV) THEN
  REPEAT STRIP_TAC THENL
  [ ASSUME_TAC (INST_TYPE [(":*", ":**")] FINITE_EMPTY) THEN
    IMP_RES_TAC ACI_REL_SELECT_LEMMA THEN
    PURE_ASM_REWRITE_TAC [ ] THEN
    EXISTS_TAC "0" THEN
    ASM_REWRITE_TAC [ ]
    ;
    IMP_RES_THEN (ASSUME_TAC o ISPEC "x : *") FINITE_INSERT THEN
    IMP_RES_TAC ACI_REL_SELECT_LEMMA THEN
    PURE_ASM_REWRITE_TAC [ ] THEN
    IMP_RES_TAC ACI_REL_EXISTS_LEMMA THEN
    ASM_CASES_TAC "(x : *) IN s" THEN
    ASM_REWRITE_TAC [ ] THENL
    [ IMP_RES_THEN (\th. REWRITE_TAC [th]) ABSORPTION THEN
      CONV_TAC SELECT_CONV THEN
      ASM_REWRITE_TAC [ ]
      ;
      FIRST_ASSUM (CHOOSE_TAC o SPEC_ALL) THEN
      FIRST_ASSUM CHOOSE_TAC THEN
      EXISTS_TAC "SUC n" THEN
      ASM_REWRITE_TAC [ ] THEN
      EXISTS_TAC "x : *" THEN
      EXISTS_TAC "a : **" THEN
      ASM_REWRITE_TAC [IN_INSERT; DELETE_INSERT] THEN
      IMP_RES_THEN (\th. ASM_REWRITE_TAC [th]) DELETE_NON_ELEMENT THEN
      AP_TERM_TAC THEN
      ASM_REWRITE_TAC [ ] ] ]
) ) ;;

%-----------------------------------------------------------------------------
  Finally, introduce a constant ACI_OP for OP via a constant specification.
-----------------------------------------------------------------------------%

let ACI_OP_DEF =
  new_specification `ACI_OP_DEF` [(`constant`, `ACI_OP`)] ACI_OP_EXISTS ;;

let ACI_OP =
  " ACI_OP : (** -> ** -> **) -> ** -> (* -> **) -> (* -> bool) -> ** " ;;

%-----------------------------------------------------------------------------
  ACI_OP on singletons.
-----------------------------------------------------------------------------%

let ACI_OP_SING = prove_thm(`ACI_OP_SING`,
"
  ! op id . ASSOC_COMM_ID op id ==>
    ! f x . ^ACI_OP op id f {x} = f x
", (
  REPEAT STRIP_TAC THEN
  ASSUME_TAC (INST_TYPE [(":*", ":**")] FINITE_EMPTY) THEN
  IMP_RES_TAC ACI_OP_DEF THEN
  FIRST_ASSUM (ASSUME_TAC o el 3 o CONJUNCTS o
               PURE_ONCE_REWRITE_RULE [ASSOC_COMM_ID_DEF]) THEN
  ASM_REWRITE_TAC [NOT_IN_EMPTY]
) ) ;;

%-----------------------------------------------------------------------------
  ACI_OP on unions.
-----------------------------------------------------------------------------%

let ACI_OP_UNION = prove_thm(`ACI_OP_UNION`,
"
  ! op id . ASSOC_COMM_ID op id ==>
    ! f s . FINITE s ==>
      ! t . FINITE t ==>
        ( op (^ACI_OP op id f (s UNION t))
             (^ACI_OP op id f (s INTER t))
        = op (^ACI_OP op id f s)
             (^ACI_OP op id f t) )
", (
  REPEAT GEN_TAC THEN
  DISCH_THEN \ ASSOC_COMM_ID_asm .
    let [ASSOC_asm; COMM_asm; _] =
          (CONJUNCTS o PURE_ONCE_REWRITE_RULE [ASSOC_COMM_ID_DEF])
          ASSOC_COMM_ID_asm
    in
    let AC_conv = AC_CONV (ASSOC_asm, COMM_asm)
    in
    let (LR_AC_TAC : thm_tactic) (th) (asl, g) =
          let th' = EQT_ELIM (AC_conv " ^(lhs g) = ^(lhs (concl th)) ")
                    TRANS th TRANS
                    EQT_ELIM (AC_conv " ^(rhs (concl th)) = ^(rhs g) ")
          in ACCEPT_TAC th' (asl, g)
    in
    let ACI_OP_asm = MATCH_MP ACI_OP_DEF ASSOC_COMM_ID_asm
    in
    GEN_TAC THEN
    SET_INDUCT_TAC THEN
    REPEAT STRIP_TAC THENL
    [ REWRITE_TAC [UNION_EMPTY; INTER_EMPTY; ACI_OP_asm] THEN
      CONV_TAC AC_conv
      ;
      RES_THEN (ASSUME_TAC o AP_TERM "(op : ** -> ** -> **) (f (e : *))") THEN
      REWRITE_TAC [INSERT_UNION; INSERT_INTER] THEN
      ASM_CASES_TAC "(e : *) IN t" THEN
      ASM_REWRITE_TAC [ ] THENL
      [ IMP_RES_THEN (ASSUME_TAC o ISPEC "t : * -> bool") INTER_FINITE THEN
        IMP_RES_THEN (ASM_REWRITE_TAC o append [IN_INTER] o sing) ACI_OP_asm
        ;
        IMP_RES_TAC FINITE_UNION THEN
        IMP_RES_THEN (ASM_REWRITE_TAC o append [IN_UNION] o sing) ACI_OP_asm
      ] THEN
      FIRST_ASSUM LR_AC_TAC ]
) ) ;;

let ACI_OP_DISJOINT = prove_thm(`ACI_OP_DISJOINT`,
"
  ! op id . ASSOC_COMM_ID op id ==>
    ! f s t . FINITE s /\ FINITE t /\ DISJOINT s t ==>
      ( (^ACI_OP op id f (s UNION t)) 
      = op (^ACI_OP op id f s) (^ACI_OP op id f t) )
", (
  PURE_ONCE_REWRITE_TAC [DISJOINT_DEF] THEN
  REPEAT STRIP_TAC THEN
  REPEAT_GTCL IMP_RES_THEN
    (PURE_ONCE_REWRITE_TAC o sing o SYM o SPEC_ALL) ACI_OP_UNION THEN
  IMP_RES_THEN (ASM_REWRITE_TAC o sing) ACI_OP_DEF THEN
  IMP_RES_THEN (REWRITE_TAC o sing o assert (mem "id : **" o vars o concl))
    ASSOC_COMM_ID_DEF
) ) ;;