/usr/share/hol88-2.02.19940316/contrib/cont/cont.ml is in hol88-contrib-source 2.02.19940316-19.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 | %=============================================================================
FILE: cont.ml
DESCIPTION: ML code for interactive theorem proving
with theorem continuation functions.
AUTHOR: Ching-Tsun Chou
LAST CHANGED: Tue Oct 6 14:29:49 PDT 1992
=============================================================================%
let f = expandf ;;
let f_ttac_tac (ttac_tac : thm_tactic -> tactic)
: void -> thm =
letref th = ARB_THM
in
let ttac : thm_tactic = ( \ th' . th := th' ; ALL_TAC )
in
( \ () . f (ttac_tac ttac) ; th )
;;
let f_DISCH_THEN = f_ttac_tac DISCH_THEN
and f_INDUCT_THEN (th : thm) = f_ttac_tac (INDUCT_THEN th)
and f_RES_THEN = f_ttac_tac RES_THEN
and f_STRIP_GOAL_THEN = f_ttac_tac STRIP_GOAL_THEN
and f_SUBGOAL_THEN (t : term) = f_ttac_tac (SUBGOAL_THEN t)
;;
let f_ttac_ttac (ttac_ttac : thm_tactic -> thm -> tactic)
: void -> thm -> thm =
letref th = ARB_THM
in
let ttac : thm_tactic = ( \ th' . th := th' ; ALL_TAC )
in
( \ () t . f (ttac_ttac ttac t) ; th )
;;
let f_ALL_THEN = f_ttac_ttac ALL_THEN
and f_ANTE_RES_THEN = f_ttac_ttac ANTE_RES_THEN
and f_CHOOSE_THEN = f_ttac_ttac CHOOSE_THEN
and f_CONJUNCTS_THEN = f_ttac_ttac CONJUNCTS_THEN
and f_DISJ_CASES_THEN = f_ttac_ttac DISJ_CASES_THEN
and f_FREEZE_THEN = f_ttac_ttac FREEZE_THEN
and f_IMP_RES_THEN = f_ttac_ttac IMP_RES_THEN
and f_NO_THEN = f_ttac_ttac NO_THEN
and f_STRIP_THM_THEN = f_ttac_ttac STRIP_THM_THEN
and f_X_CASES_THEN (xll: term list list) = f_ttac_ttac (X_CASES_THEN xll)
and f_X_CHOOSE_THEN (x : term) = f_ttac_ttac (X_CHOOSE_THEN x)
;;
let f_ttac_ftac (ttac_ftac : thm_tactic -> term -> tactic)
: void -> term -> thm =
letref th = ARB_THM
in
let ttac : thm_tactic = ( \ th' . th := th' ; ALL_TAC )
in
( \ () x . f (ttac_ftac ttac x) ; th )
;;
let f_FILTER_DISCH_THEN = f_ttac_ftac FILTER_DISCH_THEN
and f_FILTER_STRIP_THEN = f_ttac_ftac FILTER_STRIP_THEN
;;
let f_ttac_ttac_ttac (ttac_ttac_ttac : thm_tactic -> thm_tactic -> thm -> tactic)
: void -> void -> thm -> (thm # thm) =
letref th1 = ARB_THM and th2 = ARB_THM
in
let ttac1 : thm_tactic = ( \ th1' . th1 := th1' ; ALL_TAC )
and ttac2 : thm_tactic = ( \ th2' . th2 := th2' ; ALL_TAC )
in
( \ () () t . f (ttac_ttac_ttac ttac1 ttac2 t) ; (th1,th2) )
;;
let f_CONJUNCTS_THEN2 = f_ttac_ttac_ttac CONJUNCTS_THEN2
and f_DISJ_CASES_THEN2 = f_ttac_ttac_ttac DISJ_CASES_THEN2
;;
;;
let f_ttacl_ttac (ttacl_ttac : thm_tactic list -> thm -> tactic)
: void list -> thm -> thm list =
letref thl = [ ] : thm list
in
let ttacl : int -> thm_tactic list =
letrec ttacl' (m : int) =
if (m = 0) then [ ]
else ( \ th' . thl := thl @ [th'] ; ALL_TAC ).(ttacl' (m - 1))
in
( \ n . thl := [ ] ; ttacl' n)
in
( \ vl t . f (ttacl_ttac (ttacl (length vl)) t) ; thl )
;;
let f_CASES_THENL = f_ttacl_ttac CASES_THENL
and f_DISJ_CASES_THENL = f_ttacl_ttac DISJ_CASES_THENL
and f_X_CASES_THENL (xll: term list list) = f_ttacl_ttac (X_CASES_THENL xll)
;;
|