/usr/share/hol88-2.02.19940316/contrib/convert/prune.ml is in hol88-contrib-source 2.02.19940316-19.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 | %<
---------------------------------
new-unwind library
prune.ml
based on HOL88 unwind library
Rules for unwinding
this file uses mk_thm !!
---------------------------------
>%
%< useful conversions for getting things into a pruneable state >%
%< next bits subsidiary functions for EXISTS_AND >%
%<
EXISTS_AND_LEFT: term -> thm
"?x.t1/\t2"
| - ?x. t1 /\ t2 = t1 /\ (?x. t2)" (If x not free in t1)
>%
let EXISTS_AND_LEFT t =
(let x,t1,t2 = ((I # dest_conj) o dest_exists) t
in
let t1_frees, t2_frees = frees t1, frees t2
in
if (mem x t1_frees)
then fail
else
(let th1 = ASSUME "^t1 /\ ^t2"
and t' = "^t1 /\ (?^x.^t2)"
in
let th2 = ASSUME t'
in
let th3 = DISCH
t
(CHOOSE
(x, ASSUME t)
(CONJ(CONJUNCT1 th1)(EXISTS("?^x.^t2",x)(CONJUNCT2 th1))))
% th3 = |-"?x. t1 /\ t2 ==> t1 /\ (?x. t2)" %
and th4 = DISCH
t'
(CHOOSE
(x, CONJUNCT2 th2)
(EXISTS(t,x)(CONJ(CONJUNCT1 th2)(ASSUME t2))))
% th4 = |-"t1 /\ (?x. t2) ==> ?x. t1 /\ t2" %
in
IMP_ANTISYM_RULE th3 th4)
) ? failwith `EXISTS_AND_LEFT`;;
%<
EXISTS_AND_RIGHT: term -> thm
?x.t1/\t2
|- ?x. t1 /\ t2 = (?x. t1) /\ t2" (If x not free in t2)
>%
let EXISTS_AND_RIGHT t =
(let x,t1,t2 = ((I # dest_conj) o dest_exists) t
in
let t1_frees, t2_frees = frees t1, frees t2
and th1 = ASSUME "^t1 /\ ^t2"
in
if (mem x t2_frees)
then fail
else
(let t' = "(?^x.^t1) /\ ^t2"
in
let th2 = ASSUME t'
in
let th3 = DISCH
t
(CHOOSE
(x, ASSUME t)
(CONJ(EXISTS("?^x.^t1",x)(CONJUNCT1 th1))(CONJUNCT2 th1)))
% th3 = |-"?x. t1 /\ t2 ==> (?x.t1) /\ t2" %
and th4 = DISCH
t'
(CHOOSE
(x, CONJUNCT1 th2)
(EXISTS(t,x)(CONJ(ASSUME t1)(CONJUNCT2 th2))))
% th4 = |-"(?x.t1) /\ t2 ==> ?x. t1 /\ t2" %
in
IMP_ANTISYM_RULE th3 th4)
) ? failwith `EXISTS_AND_RIGHT`;;
%<
EXISTS_AND_BOTH: term -> thm
?x.t1/\t2
|- ?x. t1 /\ t2 = t1 /\ t2" (If x not free in t1 or t2)
>%
let EXISTS_AND_BOTH t =
(let x,t1,t2 = ((I # dest_conj) o dest_exists) t
in
let t1_frees, t2_frees = frees t1, frees t2
and th1 = ASSUME "^t1 /\ ^t2"
in
if (mem x t2_frees) or (mem x t1_frees)
then fail
else
(let t' = "^t1 /\ ^t2"
in
let th3 = DISCH
t
(CHOOSE
(x, ASSUME t)
(ASSUME t'))
% th3 = |-"?x. t1 /\ t2 ==> t1 /\ t2" %
and th4 = DISCH
t'
(EXISTS(t, x)(ASSUME t'))
% th4 = |-"t1 /\ t2 ==> ?x. t1 /\ t2" %
in IMP_ANTISYM_RULE th3 th4)
) ? failwith `EXISTS_AND_BOTH`;;
%<
EXISTS_AND: term -> thm
?x.t1/\t2
|- ?x. t1 /\ t2 = t1 /\ t2" (If x not free in t1 or t2)
|- ?x. t1 /\ t2 = t1 /\ (?x. t2)" (If x not free in t1)
|- ?x. t1 /\ t2 = (?x. t1) /\ t2" (If x not free in t2)
>%
let EXISTS_AND t =
EXISTS_AND_BOTH t ?
EXISTS_AND_LEFT t ?
EXISTS_AND_RIGHT t ?
failwith`EXISTS_AND`;;
%<
EXISTS_EQN
"?l. l x1 ... xn = t" --> |- (?l.l x1 ... xn = t) = T
(if l not free in t)
>%
let EXISTS_EQN t =
(let l,t1,t2 = ((I # dest_eq) o dest_exists) t
in
let l',xs = strip_comb t1
in
let t3 = list_mk_abs(xs,t2)
in
let th1 = RIGHT_CONV_RULE LIST_BETA_CONV (REFL(list_mk_comb(t3,xs)))
in
EQT_INTRO(EXISTS("?^l.^(list_mk_comb(l,xs))=^(rhs(concl th1))",t3)th1)
) ? failwith `EXISTS_EQN`;;
%<
EXISTS_EQNF
"?l. !x1 ... xn. l x1 ... xn = t" -->
|- (?l. !x1 ... xn. l x1 ... xn = t) = T
(if l not free in t)
>%
let EXISTS_EQNF t =
(let l,vars,t1,t2 =
((I # (I # dest_eq)) o (I # strip_forall) o dest_exists) t
in
let l',xs = strip_comb t1
in
let t3 = list_mk_abs(xs,t2)
in
let th1 =
GENL vars (RIGHT_CONV_RULE LIST_BETA_CONV (REFL(list_mk_comb(t3,xs))))
in
EQT_INTRO
(EXISTS
((mk_exists
(l,
list_mk_forall
(xs,
(mk_eq(list_mk_comb(l,xs), rhs(snd(strip_forall(concl th1)))))))),
t3)
th1)
) ? failwith `EXISTS_EQNF`;;
% |- (?x.t) = t if x not free in t
let EXISTS_DEL1 tm =
(let x,t = dest_exists tm
in
let th1 = DISCH tm (CHOOSE (x, ASSUME tm) (ASSUME t))
and th2 = DISCH t (EXISTS(tm,x)(ASSUME t))
in
IMP_ANTISYM_RULE th1 th2
) ? failwith `EXISTS_DEL`;;
%
% |- (?x1 ... xn.t) = t if x1,...,xn not free in t
letrec EXISTS_DEL tm =
(if is_exists tm
then
(let th1 = EXISTS_DEL1 tm
in
let th2 = EXISTS_DEL(rhs(concl th1))
in
th1 TRANS th2)
else REFL tm
) ? failwith`EXISTS_DEL`;;
%
let EXISTS_DEL1 tm = % delete one ? %
(let l,t = dest_exists tm
in
let l' = frees t % bug fix [DES] 24mar88 -- frees t NOT frees tm !!
so need an extra let %
in
if not(mem l l') then mk_thm([], mk_eq(tm,t)) else fail
) ? failwith`EXISTS_DEL`;;
let EXISTS_DEL tm =
(let l,t = strip_exists tm
in
let l' = frees t % bug fix [DES] 24mar88 -- frees t NOT frees tm !!
so need an extra let %
in
if intersect l l' = [] then mk_thm([], mk_eq(tm,t)) else fail
) ? failwith`EXISTS_DEL`;;
%< [DES] 27apr89
PRUNE_ONCE_CONV
(? x . eqn1 /\ .... /\ x=t /\ ... /\ eqnn)
----------------------------------------------
|- (? x . eqn1 /\ ... /\ x=t /\ ... /\ eqnn) =
(? x . eqn1[t/x] /\ ... /\ eqnn[t/x])
>%
let AND_CLAUSE1 = GEN "t:bool" (CONJUNCT1 (SPEC "t:bool" AND_CLAUSES));;
let PRUNE_ONCE_CONV t =
(let bv,bdy = dest_exists t in
let conjs = conjuncts bdy in
let bvas = filter (\t.lhs t=bv?false) conjs in
if bvas=[] % case where no assignment to bv %
then EXISTS_DEL1 t % can just attempt to delete it %
else
let bveq = rhs(hd bvas) in % the value to equate it to %
let nbdy = subst[bveq,bv]bdy in
let th1 = DISCH nbdy(EXISTS (t,bveq) (ASSUME nbdy)) in
let lem = hd(filter(\th.lhs(concl th)=bv?false)(CONJUNCTS(ASSUME bdy))) in
let lem1 = SUBST [lem,bv] bdy (ASSUME bdy) in
let th2 = DISCH t(CHOOSE (bv,ASSUME t) (lem1)) in
let th3 = IMP_ANTISYM_RULE th2 th1 in
let nvar = genvar ":bool" in
let th4 = SUBST[EQT_INTRO(REFL bveq),nvar](mk_eq(nbdy,subst[nvar,mk_eq(bveq,bveq)]nbdy))
(REFL(nbdy)) in
let nconjs = filter(\t.not t="T")(conjuncts(rhs(concl th4))) in
let th5 = CONJUNCTS_CONV(rhs(concl th4),list_mk_conj ("T".nconjs)) in
if nconjs=[] then th3 TRANS th4 TRANS th5
else
let th6 = SUBST [SPEC(list_mk_conj nconjs)AND_CLAUSE1,nvar](mk_eq(lhs(concl th5),nvar))th5 in
th3 TRANS th4 TRANS th6) ? failwith `PRUNE_ONCE_CONV`;;
letrec PRUNE_CONV t =
letrec f t = % local function -- does ? x1 ... xn . b --> ? x2 .. xn x1 . b
then PRUNES ? x1 . b %
((SWAP_EXISTS_CONV THENC (SUB_CONV(SUB_CONV f)))
ORELSEC PRUNE_ONCE_CONV)t
in
if (is_exists t)
then ((SUB_CONV(SUB_CONV PRUNE_CONV))THENC(f ORELSEC ALL_CONV))t
else (ALL_CONV t);;
let PRUNE_RULE th = RIGHT_CONV_RULE PRUNE_CONV th ? failwith `PRUNE_RULE`;;
|