/usr/share/hol88-2.02.19940316/contrib/convert/unwind.ml is in hol88-contrib-source 2.02.19940316-19.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 | %<
---------------------------------
new-unwind library
unwind.ml
based on HOL88 unwind library
Rules for unwinding
this file uses mk_thm !!
---------------------------------
>%
let REWRITES_CONV net = \tm. FIRST_CONV (lookup_term net tm) tm;;
%< some useful conversions for getting things into right form for unwinding >%
%<
AND_FORALL_CONV -- move universal quantification out of a conjunction
"(!x. t1) /\ ... /\ (!x. tn)" --->
|- (!x. t1) /\ ... /\ (!x. tn) = !x. t1 /\ ... /\ tn
>%
%< now we remove the mk_thm ones and use binary conversions for left, right and both
conversions as in exists_and (?) ones >%
let AND_FORALL_LEFT_CONV t =
(let xt1,xt2 = dest_conj t
in
let x = fst(dest_forall xt1)
in
let (th1,th2) = CONJ_PAIR(ASSUME t)
in
let th3 = DISCH_ALL(GEN x (CONJ(SPEC x th1)th2))
in
let (th4,th5) =
CONJ_PAIR
(SPEC x
(ASSUME
(mk_forall(x,(mk_conj((snd o dest_forall o concl)th1,
concl th2))))))
in
let th6 = DISCH_ALL(CONJ(GEN x th4)th5)
in
IMP_ANTISYM_RULE th3 th6
) ? failwith `AND_FORALL_LEFT_CONV`;;
%( test AND_FORALL_LEFT_CONV "(! (x:*). T) /\ T";;)%
let AND_FORALL_RIGHT_CONV t =
(let xt1,xt2 = dest_conj t
in
let x = fst(dest_forall xt2)
in
let (th1,th2) = CONJ_PAIR(ASSUME t)
in
let th3 = DISCH_ALL(GEN x (CONJ th1(SPEC x th2)))
in
let (th4,th5) =
CONJ_PAIR
(SPEC x
(ASSUME
(mk_forall(x,(mk_conj(concl th1,
(snd o dest_forall o concl)th2))))))
in
let th6 = DISCH_ALL(CONJ th4(GEN x th5))
in
IMP_ANTISYM_RULE th3 th6
) ? failwith `AND_FORALL_RIGHT_CONV`;;
%( test AND_FORALL_RIGHT_CONV "T /\ (! (x:*). T)";;)%
let AND_FORALL_BOTH_CONV t =
(let xt1,xt2 = dest_conj t
in
let x = fst(dest_forall xt2)
in
let (th1,th2) = CONJ_PAIR(ASSUME t)
in
let th3 = DISCH_ALL(GEN x (CONJ (SPEC x th1)(SPEC x th2)))
in
let (th4,th5) =
CONJ_PAIR
(SPEC x
(ASSUME
(mk_forall(x,(mk_conj((snd o dest_forall o concl)th1,
(snd o dest_forall o concl)th2))))))
in
let th6 = DISCH_ALL(CONJ (GEN x th4)(GEN x th5))
in
IMP_ANTISYM_RULE th3 th6
) ? failwith `AND_FORALL_BOTH_CONV`;;
%( test
AND_FORALL_BOTH_CONV "(! (x:*). T) /\ (! (x:*). T)";;
)%
let AND_FORALL_CONV = AND_FORALL_BOTH_CONV ORELSEC
AND_FORALL_LEFT_CONV ORELSEC
AND_FORALL_RIGHT_CONV;;
%( test
AND_FORALL_CONV "(! (x:*). T) /\ (! (x:*). T)";;
)%
%< mk_thm version eliminated [DES] 31jul90
% "(!x. t1) /\ ... /\ (!x. tn)" ---> ("x", ["t1"; ... ;"tn"]) %
letrec dest_andl t =
((let x1,t1 = dest_forall t
in
(x1,[t1])
)
?
(let first,rest = dest_conj t
in
let x1,l1 = dest_andl first
and x2,l2 = dest_andl rest
in
if x1=x2 then (x1, l1@l2) else fail)
) ? failwith `dest_andl`;;
% Version of AND_FORALL_CONV below will pull quantifiers out and flatten an
arbitrary tree of /\s, not just a linear list. %
let AND_FORALL_CONV t =
(let x,l = dest_andl t
in
mk_thm([], mk_eq(t,mk_forall(x,list_mk_conj l)))
) ? failwith `AND_FORALL_CONV`;;
>%
%<
FORALL_AND_CONV -- inverse of above
"!x. t1 /\ ... /\ tn" --->
|- !x. t1 /\ ... /\ tn = (!x. t1) /\ ... /\ (!x. tn)
>%
%< superceded by mk_thm version
let FORALL_AND_CONV t =
(let x,l = ((I # conjuncts) o dest_forall) t
in
SYM(AND_FORALL_CONV(list_mk_conj(map(curry mk_forall x)l)))
) ? failwith `AND_FORALL_CONV`;;
>%
let FORALL_AND_CONV t =
(let x,l = ((I # conjuncts) o dest_forall) t
in
mk_thm([],mk_eq(t, list_mk_conj(map(curry mk_forall x)l)))
) ? failwith `FORALL_AND_CONV`;;
%< [DES] 27apr89
EXISTS_FORALL_CONV
? s . ! t . ....(s t).... = ! t . ? st . ....st....
used after unfolding to bring ! t's to outside
s and t and unprimed then reprimed to be unique in body
(avoids ?s'!t'.bdy ===> !t'?s't'.bdy problem as s't' not "legal" var name)
>%
let unprime s = implode(filter (\c.not(c=`'`)) (explode s));;
let EXISTS_FORALL_CONV t =
let ex,t0 = dest_exists t
in let un,t1 = dest_forall t0
in let unty = snd(dest_var un)
in let newname = mk_var(unprime(fst(dest_var ex))^unprime(fst(dest_var un)),type_of"^ex ^un")
in let new = variant (frees t1) newname
in let t2 = subst [new,"^ex ^un"] t1
in let t3 = mk_forall (un,mk_exists (new,t2))
in let t4 = mk_eq (t,t3)
in TAC_PROOF(([],t4),
EQ_TAC THEN REPEAT STRIP_TAC
THENL [ EXISTS_TAC "^ex ^un" THEN
POP_ASSUM (ACCEPT_TAC o SPEC "^un")
;EXISTS_TAC "\ ^un . @ ^new . ^t2"
THEN BETA_TAC
THEN POP_ASSUM (ACCEPT_TAC o (GEN "^un")
o SELECT_RULE o (SPEC "^un"))
]);;
% line_var "!v1 ... vn. f v1 ... vn = t" ====> "f" %
let line_var tm = fst(strip_comb(lhs(snd(strip_forall tm))));;
% var_name "var" ====> `var` %
let var_name = fst o dest_var;;
% line_name "!v1 ... vn. f v1 ... vn = t" ====> `f` %
let line_name = var_name o line_var;;
% UNWIND CONVERSIONS -------------------------------------------------- %
% UNWIND_ONCE_CONV - Basic conversion for parallel unwinding of lines. %
% %
% DESCRIPTION: tm should be a conjunction, t1 /\ t2 ... /\ tn. %
% p:term->bool is a function which is used to partition the%
% terms (ti) into two sets. Those ti which p is true of %
% are then used as a set of rewrite rules (thus they must %
% be equations) to do a top-down one-step parallel rewrite %
% of the conjunction of the remaining terms. I.e. %
% %
% t1 /\ ... /\ eqn1 /\ ... /\ eqni /\ ... /\ tn %
% --------------------------------------------- %
% |- t1 /\ ... /\ eqn1 /\ ... /\ eqni /\ ... /\ tn %
% = %
% eqn1 /\ ... /\ eqni /\ ... /\ t1' /\ ... /\ tn' %
% %
% where tj' is tj rewritten with the equations eqnx %
let UNWIND_ONCE_CONV p tm =
let eqns = conjuncts tm in
let eq1,eq2 = partition (\tm. ((p tm) ? false)) eqns in
if (null eq1) or (null eq2)
then REFL tm
else let thm = CONJ_DISCHL eq1
(ONCE_DEPTH_CONV
(REWRITES_CONV (mk_conv_net (map ASSUME eq1)))
(list_mk_conj eq2)) in
let re = CONJUNCTS_CONV(tm,(lhs(concl thm))) in
re TRANS thm;;
% Unwind until no change using equations selected by p. %
% WARNING -- MAY LOOP! %
letrec UNWIND_CONV p tm =
let th = UNWIND_ONCE_CONV p tm in
if lhs(concl th)=rhs(concl th)
then th
else th TRANS (UNWIND_CONV p (rhs(concl th)));;
%< [DES] 27apr89
UNWIND_EXISTS_ONCE_CONV and UNWIND_EXISTS_CONV
? l1 ... ln . eqn1 /\ ... /\ eqnm
----------------------------------------
|- (? l1 ... ln . eqn1 /\ ... /\ eqnm) =
(? l1 ... ln . eqn1'/\ ... /\ eqnm')
where any eqs (li = ti) are used as rewrites
>%
let UNWIND_EXISTS_ONCE_CONV t =
(let exs,bdy = strip_exists t in
let th1 = UNWIND_ONCE_CONV (\t.mem (line_var t) exs ? false) bdy in
LIST_MK_EXISTS exs th1) ? failwith `UNWIND_EXISTS_ONCE_CONV`;;
let UNWIND_EXISTS_CONV t =
(let exs,bdy = strip_exists t in
let th1 = UNWIND_CONV (\t.mem (line_var t) exs ? false) bdy in
LIST_MK_EXISTS exs th1) ? failwith `UNWIND_EXISTS_ONCE_CONV`;;
% UNWIND CONVERSIONS -------------------------------------------------- %
% One-step unwinding of device behaviour with hidden lines using line %
% equations selected by p. %
let UNWIND_ONCE_RULE p th =
let rhs_conv = \rhs. (let lines,eqs = strip_exists rhs in
LIST_MK_EXISTS lines (UNWIND_ONCE_CONV p eqs)) in
RIGHT_CONV_RULE rhs_conv th ? failwith `UNWIND_ONCE_RULE`;;
% Unwind device behaviour using line equations selected by p until no %
% change. WARNING --- MAY LOOP! %
let UNWIND_RULE p th =
let rhs_conv = \rhs. (let lines,eqs = strip_exists rhs in
LIST_MK_EXISTS lines (UNWIND_CONV p eqs)) in
RIGHT_CONV_RULE rhs_conv th ? failwith `UNWIND_RULE`;;
% Unwind all lines (except those in the list l) as much as possible. %
let UNWIND_ALL_RULE l th =
let rhs_conv =
\rh. (let lines,eqs = strip_exists rh in
let eqns = filter (can line_name) (conjuncts eqs) in
let line_names = subtract (map line_name eqns) l in
let p = \line. \tm. (line_name tm) = line in
let itfn = \line. \th. th TRANS
UNWIND_CONV (p line) (rhs(concl th)) in
LIST_MK_EXISTS lines (itlist itfn line_names (REFL eqs))) in
RIGHT_CONV_RULE rhs_conv th ? failwith `UNWIND_ALL_RULE`;;
|