/usr/share/hol88-2.02.19940316/contrib/knuth-bendix/lib.ml is in hol88-contrib-source 2.02.19940316-19.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 | % lib.ml --- Some utility functions
%
let merge_sort p =
letrec merge list1 list2 =
if (null list1)
then list2
else if (null list2)
then list1
else if p (hd list1) (hd list2)
then (hd list1) . (merge (tl list1) list2)
else (hd list2) . (merge list1 (tl list2))
in
letrec pass alist =
if (length alist < 2)
then alist
else (merge (hd alist) (hd (tl alist))) . (pass (tl (tl alist)))
in
letrec sort alist =
if (null alist)
then []
else if (length alist = 1)
then (hd alist)
else sort (pass alist)
in
sort o (map (\x . [x]));;
% Split around a predicate.
Example.
kb_split (curry $= 3) [1;2;3;4;5;4;3;2;1;3];;
([3; 3; 3], [1; 2; 4; 5; 4; 2; 1]) : (int list # int list)
%
letrec kb_split p alist =
let cons = curry $.
in
if (null alist)
then ([],[])
else let (a,rst) = ((hd alist),tl alist)
in
(if (p a) then ((cons a)#I) else (I#(cons a)))
(kb_split p rst);;
let is_subset s1 s2 = forall (\i. mem i s2) s1;;
letrec op_mem eq_func i = fun [] . false |
(a . b) . if (eq_func i a)
then true
else (op_mem eq_func i b);;
letrec op_union eq_func list1 list2 =
if (null list1)
then list2
else if (null list2)
then list1
else let a = hd list1
and rst = tl list1
in
if (op_mem eq_func a list2)
then (op_union eq_func rst list2)
else a . (op_union eq_func rst list2);;
let op_U eq_func set_o_sets = itlist (op_union eq_func) set_o_sets [];;
letrec iota bot top =
if (bot > top)
then []
else bot . (iota (bot+1) top);;
letrec rev_itlist2 f list1 list2 base =
if ((null list1) & (null list2))
then base
else if ((null list1) or (null list2))
then failwith `different length lists to rev_itlist2`
else let a = hd list1
and b = hd list2
and rst1 = tl list1
and rst2 = tl list2
in
rev_itlist2 f rst1 rst2 (f a b base);;
letrec kb_map2 f list1 list2 =
if (null list1) & (null list2)
then []
else (f (hd list1) (hd list2)) . (kb_map2 f (tl list1) (tl list2));;
letrec forall2 p list1 list2 =
(null list1 & null list2) or
((p (hd list1) (hd list2)) &
(forall2 p (tl list1) (tl list2)));;
let rotate alist =
letrec rot n alist =
if (n=0)
then []
else if (null alist)
then failwith `rotate`
else alist . (rot (n-1) ((tl alist)@[hd alist]))
in
rot (length alist) alist;;
% Generate all n! permutations of a list with permute. %
letrec perm alist =
if (null alist)
then []
else if (null (tl alist))
then [alist]
else map (curry $. (hd alist)) (permute (tl alist))
and
permute al = flat (map perm (rotate al));;
let remove_once item alist = snd (remove (curry $= item) alist);;
letrec multiset_diff m1 m2 =
if (null m1)
then []
else if (null m2)
then m1
else let a = hd m1
and rst = tl m1
in
if (mem a m2)
then multiset_diff rst (remove_once a m2)
else a . (multiset_diff rst m2);;
let multiset_gt order m1 m2 =
let m1' = multiset_diff m1 m2
and m2' = multiset_diff m2 m1
in
if (null m1')
then false
else if (null m2')
then true
else exists (\x. forall (order x) m2') m1';;
% Extends an ordering on elements of a type to a lexicographic ordering on
lists of elements of that type.
%
letrec lex_gt order list1 list2 =
if (null list1 & null list2)
then false
else let item1 = hd list1
and rst1 = tl list1
and item2 = hd list2
and rst2 = tl list2
in
if (order item1 item2)
then true
else if (item1 = item2)
then lex_gt order rst1 rst2
else false;;
|