/usr/share/hol88-2.02.19940316/contrib/rewriting/half.ml is in hol88-contrib-source 2.02.19940316-19.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 | %
Author: R. A. Fleming
Affiliation: Hewlett Packard Laboratories, Bristol
Address: Hewlett Packard Laboratories,
Filton Road,
Stoke Gifford
Bristol BS12 6QZ
U.K.
Tel: +44 272 799910
Fax: +44 272 890554
Email: ..!mcvax!ukc!hplb!raf
raf@hplb.hpl.hp.com
File: "Half rewriting" tactics for HOL
Date: 16/11/90
25/2/91 Modifications made to make compatible
with HOL version 12
14/5/91 Modified to abandon restrictions on what
variables can be rewritten, and adding
1/4 rewrites
This file contains the tactics for "half rewriting". The idea is to be
able to do re-writing in some restricted form, when the rewriting laws are
implications rather than equations.
In the conversions, if C[...] is a monotonically increasing context, then
given a term C[A] and a rewrite law A==>B, the theorem C[A] ==> C[B]
results. If C[...] is a decreasing context, given a term C[B], the theorem
C[A] ==> C[B] is returned.
Some contexts are neither monotonically increasing or decreasing. No
rewriting can be done in these contexts.
The following describes the contexts that are encoded in these converions.
+ means an increasing context, - a decreasing one, and 0 means neither.
+ \/ + + /\ +
?x. + !x. +
~ -
- ==> +
0 => + | +
0 = 0 0 <=> 0
Considering just implications for the moment, theorems of the form A ==> B
are transformed into A' ==> B' where A' and B' are rewrites of A and B, and
where A' ==> A and B ==> B'. (I.e. A' ==> A ==> B ==> B'.) In other
words, "strengthening" of the theorem results.
Things happen conversely in backwards proof. Goals of the form A ==> B are
transformed into A' ==> B' where A' and B' are rewrites of A and B, and
where A ==> A' and B' ==> B. (I.e. A ==> A' ==> B' ==> B.) This results
in the left hand and right hand sides becoming "closer together". In other
words, "weakening" of the goal results.
Equalities are also handled as laws. These are rewritten in a left to right
manner in all contexts. (Thus the rules and tactics can perform the standard
simplifications.)
There is now the addition of two more classes of half rewriting conversions,
rules and tactics.
LR_...
versions just do rewriting of implicational laws from left to right, and
RL_...
versions write from right to left.
The basic rewrites in RL_... versions are retained, so simplification works
as usual. However, all user-supplied equalities
x = y
(where "x" and "y" are boolean) are written from right to left, as the name
implies.
%
% The analogy of THENC for half rewriting conversions. %
begin_section half;;
let THENHC thm h_cnv sng (tm:term) =
if sng then IMP_TRANS thm (h_cnv sng (snd (dest_imp (concl thm))))
else IMP_TRANS (h_cnv sng (fst (dest_imp (concl thm)))) thm;;
ml_curried_infix `HALF_THEN`;;
let h_cnv1 HALF_THEN h_cnv2 sng tm =
THENHC (h_cnv1 sng tm) h_cnv2 sng tm;;
% h_cnv1 HALF_THENTRY h_cnv2 tries applying h_cnv1, and if that succeeds,
it tries applying h_cnv2. %
ml_curried_infix `HALF_THENTRY`;;
let h_cnv1 HALF_THENTRY h_cnv2 sng tm =
let thm = h_cnv1 sng tm in
((THENHC thm h_cnv2 sng tm) ? thm);;
% ALL_HCONV tm always works. It just returns tm ==> tm. %
let ALL_HCONV sng tm = DISCH tm (ASSUME tm);;
let NO_HCONV sng tm = failwith `NO_HCONV`;;
%
HALF_TRY_BOTH h_cnv1 h_cnv2 tries applying h_cnv1 and then h_cnv2. If
the attempt to apply h_cnv1 fails, h_cnv2 is applied. It only fails if
both h_cnv1 and h_cnv2 fail.
%
let HALF_TRY_BOTH h_cnv1 h_cnv2 sng tm =
((h_cnv1 HALF_THENTRY h_cnv2) sng tm) ? (h_cnv2 sng tm);;
% The analogy of REPEATC. %
letrec REPEATHC h_cnv sng t =
(h_cnv HALF_THENTRY (REPEATHC h_cnv)) sng t;;
% This deals with half-rewriting conversions on terms of the form ~t. %
let NEG_HCONV h_cnv sng tm = CONTRAPOS (h_cnv (not sng) (dest_neg tm));;
%
tm is assumed to have the form a/\b. The half conversion h_cnv sng is
applied to a to produce a theorem x ==> y. (Typically this theorem has
the form a ==> c or else c ==> a, but this is not required.) The result is
a theorem x /\ b ==> y /\ b
%
let CONJ1_HCONV h_cnv sng tm =
let a,b = dest_conj tm
in let thm = h_cnv sng a
in let ab = ASSUME (mk_conj (fst (dest_imp (concl thm)), b))
in let a,b = CONJUNCT1 ab, CONJUNCT2 ab
in DISCH (concl ab) (CONJ (MP thm a) b);;
% Below, CONJ2_HCONV is like CONJ1_HCONV but works on the second
conjunct. %
let CONJ2_HCONV h_cnv sng tm =
let a,b = dest_conj tm
in let thm = h_cnv sng b
in let ab = ASSUME (mk_conj (a, fst (dest_imp (concl thm))))
in let a,b = CONJUNCT1 ab, CONJUNCT2 ab
in DISCH (concl ab) (CONJ a (MP thm b));;
%
tm is assumed to have the form a\/b. The half conversion h_cnv sng is
applied to a to produce a theorem x ==> y. (Typically this theorem has
the form a ==> c or else c ==> a, but this is not required.) The result is
a theorem x \/ b ==> y \/ b
%
let DISJ1_HCONV h_cnv sng tm =
let a,b = dest_disj tm
in let thm = h_cnv sng a
in let x,y = dest_imp (concl thm)
in let ass = mk_disj (x,b)
in DISCH ass
(DISJ_CASES (ASSUME ass) (DISJ1 (MP thm (ASSUME x)) b)
(DISJ2 y (ASSUME b)));;
let DISJ2_HCONV h_cnv sng tm =
let a,b = dest_disj tm
in let thm = h_cnv sng b
in let x,y = dest_imp (concl thm)
in let ass = mk_disj (a,x)
in DISCH ass
(DISJ_CASES (ASSUME ass) (DISJ1 (ASSUME a) y)
(DISJ2 a (MP thm (ASSUME x))));;
let IMP1_HCONV h_cnv sng tm =
let a,b = dest_imp tm
in let thm = h_cnv (not sng) a
in let x,y = dest_imp (concl thm)
in let yb = mk_imp(y,b)
in DISCH yb (IMP_TRANS thm (ASSUME yb));;
let IMP2_HCONV h_cnv sng tm =
let a,b = dest_imp tm
in let thm = h_cnv sng b
in let x,y = dest_imp (concl thm)
in let ax = mk_imp(a,x)
in DISCH ax (IMP_TRANS (ASSUME ax) thm);;
let COND_THM1 = PROVE ("!a b b' c. (b ==> b') ==> (a => b | c) ==> (a => b' | c)",
REPEAT GEN_TAC THEN DISCH_TAC THEN
DISJ_CASES_THEN (\x. REWRITE_TAC [x]) (SPEC "a:bool" BOOL_CASES_AX) THEN
POP_ASSUM ACCEPT_TAC);;
let COND1_HCONV h_cnv sng tm =
let a,b,c = dest_cond tm
in if type_of b = ":bool"
then let thm = h_cnv sng b
in let b' = snd (dest_imp (concl thm))
in MP (SPECL [a;b;b';c] COND_THM1) thm
else failwith `COND1_HCONV`;;
let COND_THM2 = PROVE ("!a b c c'. (c ==> c') ==> (a => b | c) ==> (a => b | c')",
REPEAT GEN_TAC THEN DISCH_TAC THEN
DISJ_CASES_THEN (\x. REWRITE_TAC [x]) (SPEC "a:bool" BOOL_CASES_AX) THEN
POP_ASSUM ACCEPT_TAC);;
let COND2_HCONV h_cnv sng tm =
let a,b,c = dest_cond tm
in if type_of b = ":bool"
then let thm = h_cnv sng b
in let c' = snd (dest_imp (concl thm))
in MP (SPECL [a;b;c;c'] COND_THM2) thm
else failwith `COND2_HCONV`;;
let FORALL_HCONV h_cnv sng tm =
let v,a = dest_forall tm
in let thm = h_cnv sng a
in let x,y = dest_imp (concl thm)
in let h = mk_forall (v,x)
in DISCH h (GEN v (MP thm (SPEC v (ASSUME h))));;
let EXISTS_HCONV h_cnv sng tm =
let v,a = dest_exists tm
in let thm = h_cnv sng a
in let x,y = dest_imp (concl thm)
in let h = mk_exists (v,x)
in DISCH h (CHOOSE (v, ASSUME h)
(EXISTS (mk_exists(v,y), v)
(MP thm (ASSUME x))));;
let is_implies tm = (rator (rator tm) = "==>")?false;;
%
Note that this conversion does not always yield rewrites when they are valid.
This is due to clashes of variables in hypotheses with bound variables in the
term being rewritten. No attempt has been made to fix this, as this is in
line with the standard rewriting tactics. (The alternative is also rather
inefficient.)
%
let SUBTERMS_HCONV h_cnv sng tm =
if is_neg tm
then NEG_HCONV h_cnv sng tm
else if is_conj tm
then (HALF_TRY_BOTH (CONJ1_HCONV h_cnv)
(CONJ2_HCONV h_cnv)) sng tm
else if is_disj tm
then (HALF_TRY_BOTH (DISJ1_HCONV h_cnv)
(DISJ2_HCONV h_cnv)) sng tm
else if is_implies tm
then (HALF_TRY_BOTH (IMP1_HCONV h_cnv)
(IMP2_HCONV h_cnv)) sng tm
else if is_cond tm
then (HALF_TRY_BOTH (COND1_HCONV h_cnv)
(COND2_HCONV h_cnv)) sng tm
else if is_forall tm
then FORALL_HCONV h_cnv sng tm
else if is_exists tm
then EXISTS_HCONV h_cnv sng tm
else failwith`SUBTERMS_HCONV`;;
% Does recursive rewriting in a single top-down pass through the term. %
letrec TOP_DOWN_HCONV h_cnv sng t =
((HALF_TRY_BOTH h_cnv
(SUBTERMS_HCONV (TOP_DOWN_HCONV h_cnv))) sng t)
? failwith `TOP_DOWN_HCONV`;;
letrec BOTTOM_UP_HCONV h_cnv sng t =
((HALF_TRY_BOTH (SUBTERMS_HCONV (BOTTOM_UP_HCONV h_cnv))
h_cnv) sng t)
? failwith `BOTTOM_UP_HCONV`;;
letrec ONCE_DEPTH_HCONV h_cnv sng t =
((h_cnv sng) ORELSEC
(SUBTERMS_HCONV (ONCE_DEPTH_HCONV h_cnv) sng)) t;;
let HALF_ONCE_OR_MORE c s = (c HALF_THENTRY (REPEATHC c)) s;;
% The analogue of TOP_DEPTH_CONV for half rewriting. %
letrec TOP_DEPTH_HCONV h_cnv sng t =
letrec aux1 sng = ((SUBTERMS_HCONV (TOP_DEPTH_HCONV h_cnv)) HALF_THENTRY aux2) sng
and aux2 sng = (HALF_ONCE_OR_MORE h_cnv HALF_THENTRY aux1) sng
in ((HALF_TRY_BOTH (HALF_ONCE_OR_MORE h_cnv) aux1) sng t)?failwith `TOP_DEPTH_HCONV`;;
%
Laws which is not implicational are transformed to A = T. (This is then
used to replace A by T in both +ve and -ve contexts.
%
let mk_HALF_imp_rewrite th =
letrec split_thm th =
let th = GSPEC th in
let c = concl th in
else if is_implies c then [th,th]
else if is_conj c then flat (map split_thm (CONJUNCTS th))
else if is_eq c then
([EQ_IMP_RULE th]
?split_thm (EQT_INTRO th))
else split_thm (EQT_INTRO th) in
split_thm th;;
let mk_LR_imp_rewrite th =
let th' = GSPEC th in
letrec pos_split_thm th =
let c = concl th in
else if is_implies c then [th]
else if is_conj c then flat (map pos_split_thm (CONJUNCTS th))
else if is_eq c then
([fst (EQ_IMP_RULE th)]
?pos_split_thm (EQT_INTRO th))
else pos_split_thm (EQT_INTRO th)
and neg_split_thm th =
let c = concl th in
else if is_implies c then []
else if is_conj c then flat (map neg_split_thm (CONJUNCTS th))
else if is_eq c then
([snd (EQ_IMP_RULE th)]
?neg_split_thm (EQT_INTRO th))
else neg_split_thm (EQT_INTRO th)
in pos_split_thm th', neg_split_thm th';;
let mk_LR_imp_rewrites thl = (flat#flat) (split (map mk_LR_imp_rewrite thl));;
let mk_RL_imp_rewrite th =
let th' = GSPEC th in
letrec pos_split_thm th =
let c = concl th in
else if is_implies c then []
else if is_conj c then flat (map pos_split_thm (CONJUNCTS th))
else if is_eq c then
([snd (EQ_IMP_RULE th)]
?pos_split_thm (EQT_INTRO th))
else pos_split_thm (EQT_INTRO th)
and neg_split_thm th =
let c = concl th in
else if is_implies c then [th]
else if is_conj c then flat (map neg_split_thm (CONJUNCTS th))
else if is_eq c then
([fst (EQ_IMP_RULE th)]
?neg_split_thm (EQT_INTRO th))
else neg_split_thm (EQT_INTRO th)
in pos_split_thm th', neg_split_thm th';;
let mk_RL_imp_rewrites thl = (flat#flat) (split (map mk_RL_imp_rewrite thl));;
let mk_HALF_imp_rewrite th =
letrec split_thm th =
let th = GSPEC th in
let c = concl th in
else if is_implies c then [th,th]
else if is_conj c then flat (map split_thm (CONJUNCTS th))
else if is_eq c then
([EQ_IMP_RULE th]
?split_thm (EQT_INTRO th))
else split_thm (EQT_INTRO th) in
split_thm th;;
let mk_HALF_imp_rewrites thml = split (flat (map mk_HALF_imp_rewrite thml));;
% The next set of stuff is just to generate new variables names.
They are the first of
newvar, newvar0, newvar1, ...
which do not already appear amoungst the variables in the argument list.
%
let newvar = explode `newvar`;;
letrec strip_list l l' =
if null l then l'
else if null l' then fail
else if hd l = hd l' then strip_list (tl l) (tl l') else fail;;
let newvar_numbers =
mapfilter (\x. let n = strip_list newvar (explode (fst (dest_var x)))
in if n = [] then 0 else (int_of_string (implode n))+1);;
letrec get_num nl n =
if mem n nl then get_num nl (n+1) else n;;
letrec get_new_numbered_vars nl l =
if null l then []
else let n = get_num nl 0 in
(mk_var (implode (if n = 0 then newvar
else newvar@(explode (string_of_int (n-1)))), type_of (hd l))).
(get_new_numbered_vars (n.nl) (tl l));;
let get_new_vars l l' =
get_new_numbered_vars (newvar_numbers l) l';;
%
let ALL_IMPLICANS_EXISTS_INTRO thm =
let newvars = let a,b = dest_imp (concl thm) in
subtract (frees a) (union (frees (concl thm)) (frees b)) in
let replvars = get_new_vars newvars
%
letrec CHOOSEL (tm,l) thm =
if null l then thm
else let tm' = mk_exists (hd l,tm) in
CHOOSEL (tm', tl l) (DISCH tm' (CHOOSE (hd l, ASSUME tm') (MP thm (ASSUME tm))));;
let IMPLICANS_EXISTS_INTRO thm =
let a,b = dest_imp (concl thm) in
let newvars = subtract (frees a) (union (frees b) (flat (map frees (hyp thm)))) in
let replvars = get_new_vars (union (flat (map frees (hyp thm))) (frees (concl thm))) newvars in
let s = combine (replvars,newvars) in
CHOOSEL (subst s a, rev replvars) (INST s thm);;
let IMPLICAND_FORALL_INTRO thm =
let a,b = dest_imp (concl thm) in
let newvars = subtract (frees b) (union (frees a) (flat (map frees (hyp thm)))) in
let replvars = get_new_vars (union (flat (map frees (hyp thm))) (frees (concl thm))) newvars in
((DISCH a (GENL replvars (INST (combine (replvars,newvars)) (MP thm (ASSUME a)))))?thm);;
let POS_REWRITE_HCONV th =
let mtch = match (rand (rator (concl th))) in
((\tm. let u = mtch tm in
let instth = INST_TY_TERM u th in
let l = rand (rator (concl instth)) in
let thm' = if (l = tm) then instth
else let B = genvar ":bool" in
SUBST [ALPHA l tm, B] (mk_imp (B,rand (concl instth))) instth
in IMPLICAND_FORALL_INTRO thm'))
? failwith `POS_REWRITE_HCONV: bad theorem argument (not an implication)`
and NEG_REWRITE_HCONV th =
let mtch = match (rand (concl th)) in
((\tm. let u = mtch tm in
let instth = INST_TY_TERM u th in
let r = rand (concl instth) in
let thm' = if (r = tm) then instth
else let B = genvar ":bool" in
SUBST [ALPHA r tm, B] (mk_imp (rand (rator (concl instth)),B)) instth
in IMPLICANS_EXISTS_INTRO thm'))
? failwith `NEG_REWRITE_HCONV: bad theorem argument (not an implication)`;;
let mk_LRCONV_nets thl =
let pos_rewrites,neg_rewrites = mk_LR_imp_rewrites thl in
itlist
enter_term
(map (\th. (rand (rator (concl th)),POS_REWRITE_HCONV th)) pos_rewrites)
nil_term_net,
itlist
enter_term
(map (\th. (rand(concl th),NEG_REWRITE_HCONV th)) neg_rewrites)
nil_term_net;;
let mk_RLCONV_nets thl =
let pos_rewrites,neg_rewrites = mk_RL_imp_rewrites thl in
itlist
enter_term
(map (\th. (rand (rator (concl th)),POS_REWRITE_HCONV th)) pos_rewrites)
nil_term_net,
itlist
enter_term
(map (\th. (rand(concl th),NEG_REWRITE_HCONV th)) neg_rewrites)
nil_term_net;;
let mk_HCONV_nets thl =
let pos_rewrites,neg_rewrites = mk_HALF_imp_rewrites thl in
itlist
enter_term
(map (\th. (rand (rator (concl th)),POS_REWRITE_HCONV th)) pos_rewrites)
nil_term_net,
itlist
enter_term
(map (\th. (rand(concl th),NEG_REWRITE_HCONV th)) neg_rewrites)
nil_term_net;;
let basic_SYM_rewrites = map (\x. CONV_RULE (ONCE_DEPTH_CONV SYM_CONV) x) basic_rewrites;;
let basic_hconv_nets = mk_HCONV_nets basic_rewrites
and basic_LRconv_nets = mk_LRCONV_nets basic_rewrites
and basic_RLconv_nets = mk_RLCONV_nets basic_SYM_rewrites
and nil_term_nets = nil_term_net, nil_term_net;;
letrec FIRST_HCONV h_cnvl t = ((hd h_cnvl) t)?(FIRST_HCONV (tl h_cnvl) t);;
let REWRITES_HCONV (posnet,negnet) sng tm =
if sng then FIRST_HCONV (lookup_term posnet tm) tm
else FIRST_HCONV (lookup_term negnet tm) tm;;
let GEN_REWRITE_HCONV mk_nets TERM_WALK_HCONV (basic_pos_net,basic_neg_net) thml =
let a,b = mk_nets thml in
TERM_WALK_HCONV (REWRITES_HCONV (merge_term_nets a basic_pos_net,
merge_term_nets b basic_neg_net));;
let REWRITE_HCONV = GEN_REWRITE_HCONV mk_HCONV_nets TOP_DEPTH_HCONV basic_hconv_nets
and PURE_REWRITE_HCONV = GEN_REWRITE_HCONV mk_HCONV_nets TOP_DEPTH_HCONV nil_term_nets
and ONCE_REWRITE_HCONV = GEN_REWRITE_HCONV mk_HCONV_nets ONCE_DEPTH_HCONV basic_hconv_nets
and PURE_ONCE_REWRITE_HCONV = GEN_REWRITE_HCONV mk_HCONV_nets ONCE_DEPTH_HCONV nil_term_nets
and REWRITE_LRCONV = GEN_REWRITE_HCONV mk_LRCONV_nets TOP_DEPTH_HCONV basic_LRconv_nets
and PURE_REWRITE_LRCONV = GEN_REWRITE_HCONV mk_LRCONV_nets TOP_DEPTH_HCONV nil_term_nets
and ONCE_REWRITE_LRCONV = GEN_REWRITE_HCONV mk_LRCONV_nets ONCE_DEPTH_HCONV basic_LRconv_nets
and PURE_ONCE_REWRITE_LRCONV = GEN_REWRITE_HCONV mk_LRCONV_nets ONCE_DEPTH_HCONV nil_term_nets
and REWRITE_RLCONV = GEN_REWRITE_HCONV mk_RLCONV_nets TOP_DEPTH_HCONV basic_RLconv_nets
and PURE_REWRITE_RLCONV = GEN_REWRITE_HCONV mk_RLCONV_nets TOP_DEPTH_HCONV nil_term_nets
and ONCE_REWRITE_RLCONV = GEN_REWRITE_HCONV mk_RLCONV_nets ONCE_DEPTH_HCONV basic_RLconv_nets
and PURE_ONCE_REWRITE_RLCONV = GEN_REWRITE_HCONV mk_RLCONV_nets ONCE_DEPTH_HCONV nil_term_nets;;
let HCONV_TAC h_cnv (gl, g) =
let thm = h_cnv false g in
if rand (rator (concl thm)) = "T"
then ([],\prf. MP thm TRUTH)
else MATCH_MP_TAC thm (gl, g);;
let HCONV_RULE h_cnv thm =
let thm' = h_cnv true (concl thm) in
MP thm' thm;;
%
These rewriting tactics all fail if no rewriting can be done. This allows
easy failure-driven flow control. If non-failing versions are required,
things like HALF_REWRITE_TAC [...] ORELSE ALL_TAC can be used.
%
let HALF_ONCE_REWRITE_TAC = HCONV_TAC o ONCE_REWRITE_HCONV
and HALF_REWRITE_TAC = HCONV_TAC o REWRITE_HCONV
and HALF_PURE_ONCE_REWRITE_TAC = HCONV_TAC o PURE_ONCE_REWRITE_HCONV
and HALF_PURE_REWRITE_TAC = HCONV_TAC o PURE_REWRITE_HCONV
and HALF_ONCE_REWRITE_RULE = HCONV_RULE o ONCE_REWRITE_HCONV
and HALF_REWRITE_RULE = HCONV_RULE o REWRITE_HCONV
and HALF_PURE_ONCE_REWRITE_RULE = HCONV_RULE o PURE_ONCE_REWRITE_HCONV
and HALF_PURE_REWRITE_RULE = HCONV_RULE o PURE_REWRITE_HCONV
and LR_ONCE_REWRITE_TAC = HCONV_TAC o ONCE_REWRITE_LRCONV
and LR_REWRITE_TAC = HCONV_TAC o REWRITE_LRCONV
and LR_PURE_ONCE_REWRITE_TAC = HCONV_TAC o PURE_ONCE_REWRITE_LRCONV
and LR_PURE_REWRITE_TAC = HCONV_TAC o PURE_REWRITE_LRCONV
and LR_ONCE_REWRITE_RULE = HCONV_RULE o ONCE_REWRITE_LRCONV
and LR_REWRITE_RULE = HCONV_RULE o REWRITE_LRCONV
and LR_PURE_ONCE_REWRITE_RULE = HCONV_RULE o PURE_ONCE_REWRITE_LRCONV
and LR_PURE_REWRITE_RULE = HCONV_RULE o PURE_REWRITE_LRCONV
and RL_ONCE_REWRITE_TAC = HCONV_TAC o ONCE_REWRITE_RLCONV
and RL_REWRITE_TAC = HCONV_TAC o REWRITE_RLCONV
and RL_PURE_ONCE_REWRITE_TAC = HCONV_TAC o PURE_ONCE_REWRITE_RLCONV
and RL_PURE_REWRITE_TAC = HCONV_TAC o PURE_REWRITE_RLCONV
and RL_ONCE_REWRITE_RULE = HCONV_RULE o ONCE_REWRITE_RLCONV
and RL_REWRITE_RULE = HCONV_RULE o REWRITE_RLCONV
and RL_PURE_ONCE_REWRITE_RULE = HCONV_RULE o PURE_ONCE_REWRITE_RLCONV
and RL_PURE_REWRITE_RULE = HCONV_RULE o PURE_REWRITE_RLCONV;;
let HALF_ONCE_ASM_REWRITE_TAC thml = ASSUM_LIST (\asl. HALF_ONCE_REWRITE_TAC (thml@asl))
and HALF_ASM_REWRITE_TAC thml = ASSUM_LIST (\asl. HALF_REWRITE_TAC (thml@asl))
and HALF_PURE_ONCE_ASM_REWRITE_TAC thml = ASSUM_LIST (\asl. HALF_PURE_ONCE_REWRITE_TAC (thml@asl))
and HALF_PURE_ASM_REWRITE_TAC thml = ASSUM_LIST (\asl. HALF_PURE_REWRITE_TAC (thml@asl))
and LR_ONCE_ASM_REWRITE_TAC thml = ASSUM_LIST (\asl. LR_ONCE_REWRITE_TAC (thml@asl))
and LR_ASM_REWRITE_TAC thml = ASSUM_LIST (\asl. LR_REWRITE_TAC (thml@asl))
and LR_PURE_ONCE_ASM_REWRITE_TAC thml = ASSUM_LIST (\asl. LR_PURE_ONCE_REWRITE_TAC (thml@asl))
and LR_PURE_ASM_REWRITE_TAC thml = ASSUM_LIST (\asl. LR_PURE_REWRITE_TAC (thml@asl))
and RL_ONCE_ASM_REWRITE_TAC thml = ASSUM_LIST (\asl. RL_ONCE_REWRITE_TAC (thml@asl))
and RL_ASM_REWRITE_TAC thml = ASSUM_LIST (\asl. RL_REWRITE_TAC (thml@asl))
and RL_PURE_ONCE_ASM_REWRITE_TAC thml = ASSUM_LIST (\asl. RL_PURE_ONCE_REWRITE_TAC (thml@asl))
and RL_PURE_ASM_REWRITE_TAC thml = ASSUM_LIST (\asl. RL_PURE_REWRITE_TAC (thml@asl));;
(THENHC,
HALF_THEN,
HALF_THENTRY,
ALL_HCONV,
NO_HCONV,
HALF_TRY_BOTH,
REPEATHC,
CONJ1_HCONV,
CONJ2_HCONV,
DISJ1_HCONV,
DISJ2_HCONV,
IMP1_HCONV,
IMP2_HCONV,
COND1_HCONV,
COND2_HCONV,
FORALL_HCONV,
EXISTS_HCONV,
NEG_HCONV,
SUBTERMS_HCONV,
TOP_DOWN_HCONV,
BOTTOM_UP_HCONV,
ONCE_DEPTH_HCONV,
HALF_ONCE_OR_MORE,
TOP_DEPTH_HCONV,
REWRITE_HCONV,
PURE_REWRITE_HCONV,
ONCE_REWRITE_HCONV,
PURE_ONCE_REWRITE_HCONV,
REWRITE_LRCONV,
PURE_REWRITE_LRCONV,
ONCE_REWRITE_LRCONV,
PURE_ONCE_REWRITE_LRCONV,
REWRITE_RLCONV,
PURE_REWRITE_RLCONV,
ONCE_REWRITE_RLCONV,
PURE_ONCE_REWRITE_RLCONV,
HCONV_TAC,
HCONV_RULE,
HALF_ONCE_REWRITE_TAC,
HALF_REWRITE_TAC,
HALF_PURE_ONCE_REWRITE_TAC,
HALF_PURE_REWRITE_TAC,
HALF_ONCE_REWRITE_RULE,
HALF_REWRITE_RULE,
HALF_PURE_ONCE_REWRITE_RULE,
HALF_PURE_REWRITE_RULE,
LR_ONCE_REWRITE_TAC,
LR_REWRITE_TAC,
LR_PURE_ONCE_REWRITE_TAC,
LR_PURE_REWRITE_TAC,
LR_ONCE_REWRITE_RULE,
LR_REWRITE_RULE,
LR_PURE_ONCE_REWRITE_RULE,
LR_PURE_REWRITE_RULE,
RL_ONCE_REWRITE_TAC,
RL_REWRITE_TAC,
RL_PURE_ONCE_REWRITE_TAC,
RL_PURE_REWRITE_TAC,
RL_ONCE_REWRITE_RULE,
RL_REWRITE_RULE,
RL_PURE_ONCE_REWRITE_RULE,
RL_PURE_REWRITE_RULE,
HALF_ONCE_ASM_REWRITE_TAC,
HALF_ASM_REWRITE_TAC,
HALF_PURE_ONCE_ASM_REWRITE_TAC,
HALF_PURE_ASM_REWRITE_TAC,
LR_ONCE_ASM_REWRITE_TAC,
LR_ASM_REWRITE_TAC,
LR_PURE_ONCE_ASM_REWRITE_TAC,
LR_PURE_ASM_REWRITE_TAC,
RL_ONCE_ASM_REWRITE_TAC,
RL_ASM_REWRITE_TAC,
RL_PURE_ONCE_ASM_REWRITE_TAC,
RL_PURE_ASM_REWRITE_TAC);;
end_section half;;
let (THENHC,
HALF_THEN,
HALF_THENTRY,
ALL_HCONV,
NO_HCONV,
HALF_TRY_BOTH,
REPEATHC,
CONJ1_HCONV,
CONJ2_HCONV,
DISJ1_HCONV,
DISJ2_HCONV,
IMP1_HCONV,
IMP2_HCONV,
COND1_HCONV,
COND2_HCONV,
FORALL_HCONV,
EXISTS_HCONV,
NEG_HCONV,
SUBTERMS_HCONV,
TOP_DOWN_HCONV,
BOTTOM_UP_HCONV,
ONCE_DEPTH_HCONV,
HALF_ONCE_OR_MORE,
TOP_DEPTH_HCONV,
REWRITE_HCONV,
PURE_REWRITE_HCONV,
ONCE_REWRITE_HCONV,
PURE_ONCE_REWRITE_HCONV,
REWRITE_LRCONV,
PURE_REWRITE_LRCONV,
ONCE_REWRITE_LRCONV,
PURE_ONCE_REWRITE_LRCONV,
REWRITE_RLCONV,
PURE_REWRITE_RLCONV,
ONCE_REWRITE_RLCONV,
PURE_ONCE_REWRITE_RLCONV,
HCONV_TAC,
HCONV_RULE,
HALF_ONCE_REWRITE_TAC,
HALF_REWRITE_TAC,
HALF_PURE_ONCE_REWRITE_TAC,
HALF_PURE_REWRITE_TAC,
HALF_ONCE_REWRITE_RULE,
HALF_REWRITE_RULE,
HALF_PURE_ONCE_REWRITE_RULE,
HALF_PURE_REWRITE_RULE,
LR_ONCE_REWRITE_TAC,
LR_REWRITE_TAC,
LR_PURE_ONCE_REWRITE_TAC,
LR_PURE_REWRITE_TAC,
LR_ONCE_REWRITE_RULE,
LR_REWRITE_RULE,
LR_PURE_ONCE_REWRITE_RULE,
LR_PURE_REWRITE_RULE,
RL_ONCE_REWRITE_TAC,
RL_REWRITE_TAC,
RL_PURE_ONCE_REWRITE_TAC,
RL_PURE_REWRITE_TAC,
RL_ONCE_REWRITE_RULE,
RL_REWRITE_RULE,
RL_PURE_ONCE_REWRITE_RULE,
RL_PURE_REWRITE_RULE,
HALF_ONCE_ASM_REWRITE_TAC,
HALF_ASM_REWRITE_TAC,
HALF_PURE_ONCE_ASM_REWRITE_TAC,
HALF_PURE_ASM_REWRITE_TAC,
LR_ONCE_ASM_REWRITE_TAC,
LR_ASM_REWRITE_TAC,
LR_PURE_ONCE_ASM_REWRITE_TAC,
LR_PURE_ASM_REWRITE_TAC,
RL_ONCE_ASM_REWRITE_TAC,
RL_ASM_REWRITE_TAC,
RL_PURE_ONCE_ASM_REWRITE_TAC,
RL_PURE_ASM_REWRITE_TAC) = it;;
let DRAW_IMP_RULE thm =
let thm' = SPEC_ALL thm in
let a = rand (rator (concl thm')) in
GEN_ALL (DISCH a (CONJ (ASSUME a) (MP thm' (ASSUME a))));;
|