This file is indexed.

/usr/share/perl5/LaTeXML/Package/amssymb.sty.ltxml is in latexml 0.7.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
# -*- CPERL -*-
# /=====================================================================\ #
# |  amssymb                                                            | #
# | Implementation for LaTeXML                                          | #
# |=====================================================================| #
# | Part of LaTeXML:                                                    | #
# |  Public domain software, produced as part of work done by the       | #
# |  United States Government & not subject to copyright in the US.     | #
# |---------------------------------------------------------------------| #
# | Bruce Miller <bruce.miller@nist.gov>                        #_#     | #
# | http://dlmf.nist.gov/LaTeXML/                              (o o)    | #
# \=========================================================ooo==U==ooo=/ #
#
# See amsfndoc
# Compiled from tables in Section 7
#
use strict;
use LaTeXML::Package;

RequirePackage('amsfonts');

#======================================================================
# Lowercase Greek letters
DefMath('\digamma',            "\x{03DD}"); # GREEK SMALL LETTER DIGAMMA
DefMath('\varkappa',           "\x{03F0}"); # GREEK KAPPA SYMBOL

#======================================================================
# Hebrew
DefMath('\beth',               "\x{2136}"); # BET SYMBOL
DefMath('\daleth',             "\x{2138}"); # DALET SYMBOL
DefMath('\gimel',              "\x{2137}"); # GIMEL SYMBOL

#======================================================================
# Miscellaneous
# \hbar  in LaTeX
DefMath('\hslash',             "\x{210F}", role=>'ID', meaning=>'Planck-constant-over-2pi');
DefMath('\vartriangle',        "\x{25B3}");
DefMath('\triangledown',       "\x{25BD}");
# \square, \lozenge in amsfonts
DefMath('\circledS',           "\x{24C8}");
# \angle in tex
DefMath('\measuredangle',      "\x{2221}");
DefMath('\nexists',            "\x{2204}", role=>'FUNCTION', meaning=>'not-exists');
# \mho in latex
DefMath('\Finv',               "\x{2132}");
DefMath('\Game',               "\x{2141}");
DefMath('\Bbbk',              "\x{1D55C}");
DefMath('\backprime',          "\x{2035}");
DefMath('\varnothing',         "\x{2205}", role=>'ID', meaning=>'empty-set');
DefMath('\blacktriangle',      "\x{25B2}");
DefMath('\blacktriangledown',  "\x{25BC}");
DefMath('\blacksquare',        "\x{25A0}");
DefMath('\blacklozenge',       "\x{25C6}");
DefMath('\bigstar',            "\x{2605}");
DefMath('\sphericalangle',     "\x{2222}");
DefMath('\complement',         "\x{2201}", meaning=>'complement');
DefMath('\eth',                UTF(0xD0)); # LATIN CAPITAL LETTER ETH
DefMath('\diagup',             "\x{2571}");
DefMath('\diagdown',           "\x{2572}");

#======================================================================
# Binary operators
DefMath('\dotplus',            "\x{2214}", role=>'ADDOP'); # DOT PLUS
DefMath('\smallsetminus',      "\x{2216}", role=>'ADDOP', meaning=>'set-minus');
DefMath('\Cap',                "\x{22D2}", role=>'ADDOP', meaning=>'double-intersection');
DefMath('\doublecap',          "\x{22D2}", role=>'ADDOP', meaning=>'double-intersection');
DefMath('\Cup',                "\x{22D3}", role=>'ADDOP', meaning=>'double-union');
DefMath('\doublecup',          "\x{22D3}", role=>'ADDOP', meaning=>'double-union');
DefMath('\barwedge',           "\x{22BC}", role=>'ADDOP', meaning=>'not-and');
DefMath('\veebar',             "\x{22BB}", role=>'ADDOP', meaning=>'exclusive-or');
DefMath('\doublebarwedge',     "\x{2A5E}", role=>'ADDOP');
DefMath('\boxminus',           "\x{229F}", role=>'ADDOP'); # SQUARED MINUS
DefMath('\boxtimes',           "\x{22A0}", role=>'MULOP'); # SQUARED TIMES
DefMath('\boxdot',             "\x{22A1}", role=>'MULOP'); # SQUARED DOT OPERATOR
DefMath('\boxplus',            "\x{229E}", role=>'ADDOP'); # SQUARED PLUS
DefMath('\divideontimes',      "\x{22C7}", role=>'MULOP'); # DIVISION TIMES
DefMath('\ltimes',             "\x{22C9}", role=>'MULOP', meaning=>'left-normal-factor-semidirect-product');
DefMath('\rtimes',             "\x{22CA}", role=>'MULOP', meaning=>'right-normal-factor-semidirect-product');
DefMath('\leftthreetimes',     "\x{22CB}", role=>'MULOP', meaning=>'left-semidirect-product');
DefMath('\rightthreetimes',    "\x{22CC}", role=>'MULOP', meaning=>'right-semidirect-product');
DefMath('\curlywedge',         "\x{22CF}", role=>'ADDOP', meaning=>'and');
DefMath('\curlyvee',           "\x{22CE}", role=>'ADDOP', meaning=>'or');
DefMath('\circleddash',        "\x{229D}", role=>'ADDOP'); # CIRCLED DASH
DefMath('\circledast',         "\x{229B}", role=>'MULOP'); # CIRCLED ASTERISK OPERATOR
DefMath('\circledcirc',        "\x{229A}", role=>'MULOP'); # CIRCLED RING OPERATOR
DefMath('\centerdot',          "\x{2299}", role=>'MULOP'); # CIRCLED DOT OPERATOR
DefMath('\intercal',           "\x{22BA}", role=>'ADDOP'); # INTERCALATE

#======================================================================
# Binary relations
DefMath('\leqq',               "\x{2266}", role=>'RELOP',
	meaning=>'less-than-or-equals');
DefMath('\leqslant',           "\x{2A7D}", role=>'RELOP',
	meaning=>'less-than-or-equals');
DefMath('\eqslantless',        "\x{2A95}", role=>'RELOP',
	meaning=>'less-than-or-equals');
DefMath('\lesssim',            "\x{2272}", role=>'RELOP',
	meaning=>'less-than-or-similar-to');
DefMath('\lessapprox',         "\x{2A85}", role=>'RELOP',
	meaning=>'less-than-or-approximately-equals');
DefMath('\approxeq',           "\x{224A}", role=>'RELOP',
	meaning=>'approximately-equals');
DefMath('\lessdot',            "\x{22D6}", role=>'RELOP'); # LESS-THAN WITH DOT
DefMath('\lll',                "\x{22D8}", role=>'RELOP',
	meaning=>'very-much-less-than'); # VERY MUCH LESS-THAN
DefMath('\llless',             "\x{22D8}", role=>'RELOP',
	meaning=>'very-much-less-than'); # VERY MUCH LESS-THAN
DefMath('\lessgtr',            "\x{2276}", role=>'RELOP',
	meaning=>'less-than-or-greater-than');
DefMath('\lesseqgtr',          "\x{22DA}", role=>'RELOP',
	meaning=>'less-than-or-equals-or-greater-than');
DefMath('\lesseqqgtr',         "\x{2A8B}", role=>'RELOP',
	meaning=>'less-than-or-equals-or-greater-than');
DefMath('\doteqdot',           "\x{2251}", role=>'RELOP',
       meaning=>'geometrically-equals');
DefMath('\Doteq',              "\x{2251}", role=>'RELOP',
	meaning=>'geometrically-equals');
DefMath('\risingdotseq',       "\x{2253}", role=>'RELOP',
	meaning=>'image-of-or-approximately-equals');
DefMath('\fallingdotseq',      "\x{2252}", role=>'RELOP',
	meaning=>'approximately-equals-or-image-of');
DefMath('\backsim',            "\x{223D}", role=>'RELOP'); # REVERSED TILDE
DefMath('\backsimeq',          "\x{224C}", role=>'RELOP'); # ALL EQUAL TO; Note: this has double rather than single bar!!!
DefMath('\subseteqq',          "\x{2286}", role=>'RELOP',
	meaning=>'subset-of-or-equals');
DefMath('\Subset',             "\x{22D0}", role=>'RELOP',
	meaning=>'double-subset-of');
# \sqsubset in tex
DefMath('\preccurlyeq',        "\x{227C}", role=>'RELOP',
	meaning=>'precedes-or-equals');
DefMath('\curlyeqprec',        "\x{22DE}", role=>'RELOP',
	meaning=>'equals-or-preceeds');
DefMath('\precsim',            "\x{227E}", role=>'RELOP',
	meaning=>'precedes-or-equivalent-to');
DefMath('\precapprox',         "\x{2AB7}", role=>'RELOP',
	meaning=>'precedes-or-approximately-equals');
# \vartriangleleft, trianglelefteq in amsfonts
DefMath('\vDash',              "\x{22A8}", role=>'RELOP'); # TRUE
DefMath('\Vvdash',             "\x{22AA}", role=>'RELOP'); # TRIPLE VERTICAL BAR RIGHT TURNSTILE
DefMath('\smallsmile',         "\x{2323}", role=>'RELOP'); # SMILE (small ?)
DefMath('\smallfrown',         "\x{2322}", role=>'RELOP'); # FROWN (small ?)
DefMath('\bumpeq',             "\x{224F}", role=>'RELOP',
	meaning=>'difference-between');
DefMath('\Bumpeq',             "\x{224E}", role=>'RELOP',
	meaning=>'geometrically-equals');
DefMath('\geqq',               "\x{2267}", role=>'RELOP',
	meaning=>'greater-than-or-equals');
DefMath('\geqslant',           "\x{2A7E}", role=>'RELOP',
	meaning=>'greater-than-or-equals');
DefMath('\eqslantgtr',         "\x{2A96}", role=>'RELOP',
	meaning=>'greater-than-or-equals');
DefMath('\gtrsim',             "\x{2273}", role=>'RELOP',
	meaning=>'greater-than-or-equivalent-to');
DefMath('\gtrapprox',          "\x{2A86}", role=>'RELOP',
	meaning=>'greater-than-or-approximately-equals');
DefMath('\eqsim',              "\x{2242}", role=>'RELOP'); # MINUS TILDE
DefMath('\gtrdot',             "\x{22D7}", role=>'RELOP'); # GREATER-THAN WITH DOT
DefMath('\ggg',                "\x{22D9}", role=>'RELOP',
	meaning=>'very-much-greater-than');
DefMath('\gggtr',              "\x{22D9}", role=>'RELOP',
	meaning=>'very-much-greater-than');
DefMath('\gtrless',            "\x{2277}", role=>'RELOP',
	meaning=>'greater-than-or-less-than');
DefMath('\gtreqless',          "\x{22DB}", role=>'RELOP',
	meaning=>'greater-than-or-equals-or-less-than');
DefMath('\gtreqqless',         "\x{2A8C}", role=>'RELOP',
        meaning=>'greater-than-or-equals-or-less-than');
DefMath('\eqcirc',             "\x{2256}", role=>'RELOP'); # RING IN EQUAL TO
DefMath('\circeq',             "\x{2257}", role=>'RELOP'); # RING EQUAL TO
DefMath('\triangleq',          "\x{225C}", role=>'RELOP'); # DELTA EQUAL TO
DefMath('\thicksim',           "\x{223C}", role=>'RELOP'); # TILDE OPERATOR; Not thick!!!
DefMath('\thickapprox',        "\x{2248}", role=>'RELOP',
	meaning=>'almost-equals');
DefMath('\supseteqq',          "\x{2287}", role=>'RELOP',
	meaning=>'superset-of-or-equals');
DefMath('\Supset',             "\x{22D1}", role=>'RELOP',
	meaning=>'double-superset');
# \sqsupset in TeX
DefMath('\succcurlyeq',        "\x{227D}", role=>'RELOP',
	meaning=>'succeeds-or-equals');
DefMath('\curlyeqsucc',        "\x{22DF}", role=>'RELOP',
	meaning=>'equals-or-succeeds');
DefMath('\succsim',            "\x{227F}", role=>'RELOP',
	meaning=>'succeeds-or-equivalent-to');
DefMath('\succapprox',         "\x{2AB8}", role=>'RELOP',
	meaning=>'succeeds-or-almost-equals');
# \vartriangleright, \trianglerighteq in amsfonts
DefMath('\Vdash',              "\x{22A9}", role=>'RELOP',
	meaning=>'forces');
DefMath('\shortmid',           "\x{2223}", role=>'RELOP',
	meaning=>'divides');
DefMath('\shortparallel',      "\x{2225}", role=>'RELOP',
	meaning=>'parallel-to');
DefMath('\between',            "\x{226C}", role=>'RELOP',
	meaning=>'between');
DefMath('\pitchfork',          "\x{22D4}", role=>'RELOP',
	meaning=>'proper-intersection');
DefMath('\varpropto',          "\x{221D}", role=>'RELOP',
	meaning=>'proportional-to');
DefMath('\blacktriangleleft',  "\x{25C0}", role=>'RELOP'); # BLACK LEFT-POINTING TRIANGLE
DefMath('\therefore',          "\x{2234}", role=>'METARELOP',
	meaning=>'therefore');
DefMath('\backepsilon',        "\x{03F6}", role=>'RELOP'); # GREEK REVERSED LUNATE EPSILON SYMBOL
DefMath('\blacktriangleright', "\x{25B6}", role=>'RELOP'); # BLACK RIGHT-POINTING TRIANGLE
DefMath('\because',            "\x{2235}", role=>'METARELOP',
	meaning=>'because');

#======================================================================
# Negated relations
# NOTE: There are several here that I couldn't find, but all
# were negations of other symbols. I've used 0338 COMBINING LONG SOLIDUS OVERLAY
# to create them, but I don't know if that's right.

DefMath('\nless',              "\x{226E}", role=>'RELOP',
	meaning=>'not-less-than');
DefMath('\nleq',               "\x{2270}", role=>'RELOP',
	meaning=>'not-less-than-nor-greater-than');
DefMath('\nleqslant',          "\x{2A7D}\x{0338}", role=>'RELOP',
	meaning=>'not-less-than-nor-equals');
DefMath('\nleqq',              "\x{2266}\x{0338}", role=>'RELOP',
	meaning=>'not-less-than-nor-equals');
DefMath('\lneq',               "\x{2A87}", role=>'RELOP',
	meaning=>'less-than-and-not-equals');
DefMath('\lneqq',              "\x{2268}", role=>'RELOP',
	meaning=>'less-than-and-not-equals');
DefMath('\lvertneqq',          "\x{2268}", role=>'RELOP',
       meaning=>'less-than-and-not-equals');
DefMath('\lnsim',              "\x{22E6}", role=>'RELOP',
	meaning=>'less-than-and-not-equivalent-to');
DefMath('\lnapprox',           "\x{2A89}", role=>'RELOP',
	meaning=>'less-than-and-not-approximately-equals');
DefMath('\nprec',              "\x{2280}", role=>'RELOP',
	meaning=>'not-precedes');
DefMath('\npreceq',            "\x{22E0}", role=>'RELOP',
	meaning=>'not-precedes-nor-equals'); # Using slant equals?
DefMath('\precneqq',           "\x{2AB5}", role=>'RELOP',
	meaning=>'precedes-and-not-equals');
DefMath('\precnsim',           "\x{22E8}", role=>'RELOP',
	meaning=>'precedes-and-not-equivalent-to');
DefMath('\precnapprox',        "\x{2AB9}", role=>'RELOP',
	meaning=>'precedes-and-not-almost-equals');
DefMath('\nsim',               "\x{2241}", role=>'RELOP',
	meaning=>'not-similar-to'); # NOTE TILDE
DefMath('\nshortmid',          "\x{2224}", role=>'RELOP',
	meaning=>'not-divides'); # DOES NOT DIVIDE; Note: not short!
DefMath('\nmid',               "\x{2224}", role=>'RELOP',
	meaning=>'not-divides'); # DOES NOT DIVIDE
DefMath('\nvdash',             "\x{22AC}", role=>'RELOP',
	meaning=>'not-proves');
DefMath('\nVdash',             "\x{22AE}", role=>'RELOP',
	meaning=>'not-forces');
DefMath('\ntriangleleft',      "\x{22EA}", role=>'RELOP',
	meaning=>'not-subgroup-of');
DefMath('\ntrianglelefteq',    "\x{22EC}", role=>'RELOP',
	meaning=>'not-subgroup-of-nor-equals');
DefMath('\nsubseteq',          "\x{2288}", role=>'RELOP',
	meaning=>'not-subset-of-nor-equals');
DefMath('\nsubseteqq',         "\x{2286}\x{0338}", role=>'RELOP',
	meaning=>'not-subset-of-nor-equals');
DefMath('\subsetneq',          "\x{228A}", role=>'RELOP',
	meaning=>'subset-of-and-not-equals');
DefMath('\varsubsetneq',       "\x{228A}", role=>'RELOP',
	meaning=>'subset-of-and-not-equals');
DefMath('\subsetneqq',         "\x{2ACB}", role=>'RELOP',
	meaning=>'subset-of-and-not-equals');
DefMath('\varsubsetneqq',      "\x{2ACB}", role=>'RELOP',
	meaning=>'subset-of-and-not-equals');
DefMath('\supsetneq',         "\x{228B}", role=>'RELOP',
	meaning=>'superset-of-and-not-equals');
DefMath('\varsupsetneq',         "\x{228B}", role=>'RELOP',
	meaning=>'superset-of-and-not-equals');
DefMath('\supsetneqq',         "\x{2ACC}", role=>'RELOP',
	meaning=>'superset-of-and-not-equals');
DefMath('\varsupsetneqq',         "\x{2ACC}", role=>'RELOP',
	meaning=>'superset-of-and-not-equals');

DefMath('\ngtr',               "\x{226F}", role=>'RELOP',
	meaning=>'not-greater-than');
DefMath('\ngeq',               "\x{2271}", role=>'RELOP',
	meaning=>'not-greater-than-nor-equals');
DefMath('\ngeqslant',          "\x{2A7E}\x{0338}", role=>'RELOP',
	meaning=>'not-greater-than-nor-equals');
DefMath('\ngeqq',              "\x{2267}\x{0338}", role=>'RELOP',
	meaning=>'not-greater-than-nor-equals');
DefMath('\gneq',               "\x{2A88}", role=>'RELOP',
	meaning=>'greater-than-and-not-equals');
DefMath('\gneqq',              "\x{2269}", role=>'RELOP',
	meaning=>'greater-than-and-not-equals');
DefMath('\gvertneqq',          "\x{2269}", role=>'RELOP',
	meaning=>'greater-than-and-not-equals');
DefMath('\gnsim',              "\x{22E7}", role=>'RELOP',
	meaning=>'greater-than-and-not-equivalent-to');
DefMath('\gnapprox',           "\x{2A8A}", role=>'RELOP',
	meaning=>'greater-than-and-not-approximately-equals');
DefMath('\nsucc',              "\x{2281}", role=>'RELOP',
	meaning=>'not-succeeds');
DefMath('\nsucceq',            "\x{22E1}", role=>'RELOP',
	meaning=>'not-succeeds-nor-equals');
DefMath('\succneqq',           "\x{2AB6}", role=>'RELOP',
	meaning=>'succeeds-and-not-equals');
DefMath('\succnsim',            "\x{22E9}", role=>'RELOP',
	meaning=>'succeeds-and-not-equivalent-to');
DefMath('\succnapprox',        "\x{2ABA}", role=>'RELOP',
	meaning=>'succeeds-and-not-almost-equals');
DefMath('\ncong',              "\x{2247}", role=>'RELOP',
	meaning=>'not-approximately-equals');
DefMath('\nshortparallel',     "\x{2226}", role=>'RELOP',
	meaning=>'not-parallel-to');
DefMath('\nparallel',          "\x{2226}", role=>'RELOP',
	meaning=>'not-parallel-to');
DefMath('\nvDash',             "\x{22AD}", role=>'RELOP'); # NOT TRUE
DefMath('\nVDash',             "\x{22AF}", role=>'RELOP'); # NEGATED DOUBLE VERTICAL BAR DOUBLE RIGHT TURNSTILE
DefMath('\ntriangleright',     "\x{22EB}", role=>'RELOP',
	meaning=>'not-contains');
DefMath('\ntrianglerighteq',   "\x{22ED}", role=>'RELOP',
	meaning=>'not-contains-nor-equals');
DefMath('\nsupseteq',          "\x{2289}", role=>'RELOP',
	meaning=>'not-superset-of-nor-equals');
DefMath('\nsupseteqq',         "\x{2287}\x{0338}", role=>'RELOP',
	meaning=>'not-superset-of-nor-equals');

#======================================================================
# Arrows
DefMath('\leftleftarrows',     "\x{21C7}", role=>'ARROW'); # LEFTWARDS PAIRED ARROWS
DefMath('\leftrightarrows',    "\x{21C6}", role=>'ARROW'); # LEFTWARDS ARROW OVER RIGHTWARDS ARROW
DefMath('\Lleftarrow',         "\x{21DA}", role=>'ARROW'); # LEFTWARDS TRIPLE ARROW
DefMath('\twoheadleftarrow',   "\x{219E}", role=>'ARROW'); # LEFTWARDS TWHO HEADED ARROW
DefMath('\leftarrowtail',      "\x{21A2}", role=>'ARROW'); # LEFTWARDS ARROW WITH TAIL
DefMath('\looparrowleft',      "\x{21AB}", role=>'ARROW'); # leftwards arrow with loop
DefMath('\leftrightharpoons',  "\x{21CB}", role=>'ARROW'); # LEFTWARDS HARPOON OVER RIGHTWARDS HARPOON
DefMath('\curvearrowleft',     "\x{21B6}", role=>'ARROW'); # ANTICLOCKWISE TOP SEMICIRCLE ARROW
DefMath('\circlearrowleft',    "\x{21BA}", role=>'ARROW'); # ANTICLOCKWISE OPEN CIRCLE ARROW
DefMath('\Lsh',                "\x{21B0}", role=>'ARROW'); # UPWAARDS ARROW WITH TIP LEFTWARDS
DefMath('\upuparrows',         "\x{21C8}", role=>'ARROW'); # UPWARDS PAIRED ARROWS
DefMath('\upharpoonleft',      "\x{21BF}", role=>'ARROW'); # UPWARDS HARPOON WITH BARB LEFTWARDS
DefMath('\rightrightarrows',   "\x{21C9}", role=>'ARROW'); # RIGHTWARDS PAIRED ARROWS
DefMath('\rightleftarrows',    "\x{21C4}", role=>'ARROW'); # RIGHTWARDS ARROW OVER LEFTWARD ARROW
DefMath('\Rrightarrow',        "\x{21DB}", role=>'ARROW'); # RIGHTWARDS TRIPLE ARROW
DefMath('\twoheadrightarrow',  "\x{21A0}", role=>'ARROW'); # RIGHTWARDS TWO HEADED ARROW
DefMath('\rightarrowtail',     "\x{21A3}", role=>'ARROW'); # RIGHTWARDS ARROW WITH TAIL
DefMath('\looparrowright',     "\x{21AC}", role=>'ARROW'); # RIGHTWARDS ARROW WITH LOOP
# \rightleftharpoons  21CC # RIGHTWARDS HARPOON OVER LEFTWARDS HARPOON ; in amsfonts
DefMath('\curvearrowright',    "\x{21B7}", role=>'ARROW'); # CLOCKWISE TOP SEMICIRCLE ARROW
DefMath('\circlearrowright',   "\x{21BB}", role=>'ARROW'); # CLOCKWISE OPEN CIRCLE ARROW
DefMath('\Rsh',                "\x{21B1}", role=>'ARROW'); # UPWAARDS ARROW WITH TIP RIGHTWARDS
DefMath('\downdownarrows',     "\x{21CA}", role=>'ARROW'); # DOWNWARDS PAIRED ARROWS
DefMath('\upharpoonright',     "\x{21BE}", role=>'ARROW'); # UPWARDS HARPOON WITH BARB RIGHTWARDS
DefMath('\restriction',        "\x{21BE}", role=>'ARROW'); # UPWARDS HARPOON WITH BARB RIGHTWARDS 
				# (same as \upharpoonright)
DefMath('\downharpoonleft',    "\x{21C3}", role=>'ARROW'); # DOWNWARDS HARPOON WITH BARB LEFTWARDS
DefMath('\multimap',           "\x{22B8}", role=>'ARROW'); # MULTIMAP
DefMath('\leftrightsquigarrow', "\x{21AD}", role=>'ARROW'); # LEFT RIGHT WAVE ARROW
DefMath('\downharpoonright',   "\x{21C2}", role=>'ARROW'); # DOWNWARDS HARPOON WITH BARB RIGHTWARDS
# \rightsquigarrow amsfonts

#======================================================================
# Negated arrows
DefMath('\nleftarrow',         "\x{219A}", role=>'ARROW'); # LEFTWARDS ARROW WITH STROKE
DefMath('\nLeftarrow',         "\x{21CD}", role=>'ARROW'); # LEFTWARDS DOUBLE ARROW WITH STROKE
DefMath('\nleftrightarrow',    "\x{21AE}", role=>'ARROW'); # LEFT RIGHT ARROW WITH STROKE
DefMath('\nrightarrow',        "\x{219B}", role=>'ARROW'); # RIGHTWARDS ARROW WITH STROKE
DefMath('\nRightarrow',        "\x{21CF}", role=>'ARROW'); # LEFTWARDS DOUBLE ARROW WITH STROKE
DefMath('\nLeftrightarrow',    "\x{21CE}", role=>'ARROW'); # LEFT RIGHT DOUBLE ARROW WITH STROKE

#======================================================================
1;