This file is indexed.

/usr/include/numrat_native.h is in libapron-dev 0.9.10-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
/* ********************************************************************** */
/* rational_native.h */
/* ********************************************************************** */

#ifndef _NUMRAT_NATIVE_H_
#define _NUMRAT_NATIVE_H_

#include <stdlib.h>
#include <stdio.h>
#include <limits.h>
#include <string.h>
#include <assert.h>
#include <math.h>
#include <stdint.h>
#include "gmp.h"
#include "mpfr.h"
#include "ap_scalar.h"

#include "num_config.h"

/* We assume that the basic NUMINT on which rational is built is properly
   defined */
#include "numint.h"

#ifndef NUMINT_NATIVE
#error "HERE"
#endif

#ifdef __cplusplus
extern "C" {
#endif

typedef struct _rat_t {
  numint_t n; /* numerator */
  numint_t d; /* denominator, >=0 */
} numrat_t[1];

/* ====================================================================== */
/* Rational operations */
/* ====================================================================== */

static inline void numrat_canonicalize(numrat_t r)
{
  if (r->d){
    numint_t pgcd;
    numint_gcd(pgcd,r->n,r->d);
    if (*pgcd==0 || (*pgcd==-1 && (*r->d==NUMINT_MIN || *r->n==NUMINT_MIN))) {
      fprintf(stderr,"overflow in numrat_canonicalize\n");
      return; 
    }
    *r->n /= *pgcd;
    *r->d /= *pgcd;
  }
  else {
    numint_set_int(r->n,1);
  }
}
#define numrat_numref(a) (a)->n
#define numrat_denref(a) (a)->d

static inline bool numrat_set_numint2(numrat_t a, numint_t b, numint_t c)
{
  numint_set(numrat_numref(a),b);
  numint_set(numrat_denref(a),c);
  numrat_canonicalize(a);
  return true;
}

/* ====================================================================== */
/* Assignement */
/* ====================================================================== */

static inline void numrat_set(numrat_t a, numrat_t b)
{ *a = *b; }
static inline void numrat_set_array(numrat_t* a, numrat_t* b, size_t size)
{ memcpy(a,b,size*sizeof(numrat_t)); }
static inline void numrat_set_int(numrat_t a, long int i)
{
  numint_set_int(a->n,i);
  numint_set_int(a->d,1);
}

/* ====================================================================== */
/* Constructors and Destructors */
/* ====================================================================== */

static inline void numrat_init(numrat_t a)
{ 
  numint_init(a->n);
  numint_init_set_int(a->d,1);
}
static inline void numrat_init_array(numrat_t* a, size_t size)
{
  size_t i;
  for (i=0; i<size; i++) numrat_init(a[i]);
}
static inline void numrat_init_set(numrat_t a, numrat_t b)
{ *a = *b; }
static inline void numrat_init_set_int(numrat_t a, long int i)
{ numint_set_int(a->n,i); numint_set_int(a->d,1); }

static inline void numrat_clear(numrat_t a)
{}
static inline void numrat_clear_array(numrat_t* a, size_t size)
{}


/* ====================================================================== */
/* Arithmetic Operations */
/* ====================================================================== */

static inline void numrat_neg(numrat_t a, numrat_t b)
{ numint_neg(a->n,b->n); numint_set(a->d,b->d); }
static inline void numrat_inv(numrat_t a, numrat_t b)
{ 
  if (a!=b)
    *a = *b;
  numint_swap(a->n,a->d);
  if (*a->d<0){
    numint_neg(a->n,a->n);
    numint_neg(a->d,a->d);
  }
}
static inline void numrat_abs(numrat_t a, numrat_t b)
{ numint_abs(a->n,b->n); numint_set(a->d,b->d); }
static inline void numrat_add(numrat_t a, numrat_t b, numrat_t c)
{ 
  numint_t d;
#if 0
  *d = *b->d * *c->d;
  *a->n = *b->n * *c->d + *b->d * *c->n; 
  *a->d = *d; 
#else /* more cost but less overflows */
  numint_lcm(d,b->d,c->d);
  *a->n = *b->n * (*d / *b->d) + (*d / *c->d) * *c->n; 
  *a->d = *d; 
#endif
  numrat_canonicalize(a); 
}
static inline void numrat_add_uint(numrat_t a, numrat_t b, unsigned long int c)
{ 
  *a->n = *b->n + (numint_native)c * (*b->d);
  *a->d = *b->d;
  numrat_canonicalize(a);
}
static inline void numrat_sub(numrat_t a, numrat_t b, numrat_t c)
{ 
  numint_t d;
#if 0
  *d = *b->d * *c->d;
  *a->n = *b->n * *c->d - *b->d * *c->n; 
  *a->d = *d; 
#else /* more cost but less overflows */
  numint_lcm(d,b->d,c->d);
  *a->n = *b->n * (*d / *b->d) - (*d / *c->d) * *c->n; 
  *a->d = *d; 
#endif
  numrat_canonicalize(a); 
}
static inline void numrat_sub_uint(numrat_t a, numrat_t b, unsigned long int c)
{ 
  *a->n = *b->n - (numint_native)c * (*b->d);
  *a->d = *b->d;
  numrat_canonicalize(a);
}
static inline void numrat_mul(numrat_t a, numrat_t b, numrat_t c)
{
  *a->n = *b->n * *c->n;
  *a->d = *b->d * *c->d;
  numrat_canonicalize(a);   
}
static inline void numrat_mul_2(numrat_t a, numrat_t b)
{
  if (*b->d % 2 == 0){
    *a->n = *b->n;
    *a->d = *b->d / 2;
  }
  else {
    *a->n = *b->n * 2;
    *a->d = *b->d;
  }
}
static inline void numrat_div(numrat_t a, numrat_t b, numrat_t c)
{
  numint_t d;
  *d = *b->d * *c->n;
  if (*d<0) {
    *a->n = - *b->n * *c->d;
    *a->d = - *d;
  }
  else {
    *a->n = *b->n * *c->d;
    *a->d = *d;
  }
  numrat_canonicalize(a);   
}
static inline void numrat_div_2(numrat_t a, numrat_t b)
{
  if (*b->n % 2 == 0){
    *a->n = *b->n / 2;
    *a->d = *b->d;
  }
  else {
    *a->n = *b->n;
    *a->d = *b->d * 2;
  }
}
static inline void numrat_floor(numrat_t a, numrat_t b)
{
  numint_fdiv_q(a->n, b->n, b->d);
  numint_set_int(a->d,1);
}
static inline void numrat_ceil(numrat_t a, numrat_t b)
{
  numint_cdiv_q(a->n, b->n, b->d);
  numint_set_int(a->d,1);
}
static inline void numrat_trunc(numrat_t a, numrat_t b)
{
  numint_tdiv_q(a->n, b->n, b->d);
  numint_set_int(a->d,1);
}
static inline void numrat_sqrt(numrat_t up, numrat_t down, numrat_t b)
{
  /* compute sqrt(p/q) as sqrt(p*q)/q */
  numint_t pq;
  assert(*b->n>=0);
  numint_mul(pq, numrat_numref(b), numrat_denref(b));
  numint_sqrt(numrat_numref(up), numrat_numref(down), pq);
  numint_set(numrat_denref(up),numrat_denref(b));
  numint_set(numrat_denref(down),numrat_denref(b));
  numrat_canonicalize(up);
  numrat_canonicalize(down);
}

static inline void numrat_mul_2exp(numrat_t a, numrat_t b, int c)
{
  if (c>=0) {
    *a->n = *b->n << c;
    *a->d = *b->d;
  }
  else {
    *a->n = *b->n;
    *a->d = *b->d << (-c);
  }
  numrat_canonicalize(a);
}

/* ====================================================================== */
/* Arithmetic Tests */
/* ====================================================================== */

static inline int numrat_sgn(numrat_t a)
{ return numint_sgn(a->n); }
static inline int numrat_cmp(numrat_t a, numrat_t b)
{ 
  numint_t aa,bb;
#if 0
  *aa = *a->n * *b->d;
  *bb = *a->d * *b->n;
#else /* more cost but less overflows */
  numint_t d;
  numint_lcm(d,a->d,b->d);
  *aa = *a->n * (*d / *a->d);
  *bb = (*d / *b->d) * *b->n;  
#endif
  return numint_cmp(aa,bb);
}
static inline int numrat_cmp_int(numrat_t a, long int b)
{ 
  numint_t aa,bb;
  *aa = *a->n;
  *bb = *a->d * b;
  return numint_cmp(aa,bb);
}
static inline bool numrat_equal(numrat_t a, numrat_t b)
{ return numint_equal(a->n,b->n) && numint_equal(a->d,b->d); }

static inline void numrat_min(numrat_t a, numrat_t b, numrat_t c)
{ numrat_set(a, numrat_cmp(b,c)<=0 ? b : c); }
static inline void numrat_max(numrat_t a, numrat_t b, numrat_t c)
{ numrat_set(a, numrat_cmp(b,c)>=0 ? b : c); }

static inline bool numrat_integer(numrat_t a)
{ return (*a->d==1); }

/* ====================================================================== */
/* Printing */
/* ====================================================================== */

static inline void numrat_fprint(FILE* stream, numrat_t a)
{ 
  if (*a->n==0)
    fprintf(stream,"0");
  else if (*a->d==1)
    numint_fprint(stream,a->n);
  else {
    numint_fprint(stream,a->n);
    fprintf(stream,"/");
    numint_fprint(stream,a->d);
  }
}
static inline void numrat_print(numrat_t a)
{ 
  numrat_fprint(stdout,a);
}
static inline int numrat_snprint(char* s, size_t size, numrat_t a)
{
  int res;
  if (*a->n==0)
    res = snprintf(s,size, "0");
  else if (*a->d==1)
    res = numint_snprint(s,size,a->n);
  else {
    res = numint_snprint(s,size,a->n);
    res += snprintf(s+res,size-res,"/");
    res += numint_snprint(s+res,size-res,a->n);
  }
  return res;
}

/* ====================================================================== */
/* Conversions */
/* ====================================================================== */

/* int2 -> numrat */
static inline bool numrat_set_int2(numrat_t a, long int i, long int j)
{ 
  assert(j>0);
  numint_set_int(a->n,i);
  numint_set_int(a->d,j);
  numrat_canonicalize(a);
  return true;
}

/* mpz -> numrat */
static inline bool numrat_set_mpz(numrat_t a, mpz_t b)
{ 
  numint_set_mpz(a->n,b);
  numint_set_int(a->d,1);
  return true;
}

/* mpq -> numrat */
static inline bool numrat_set_mpq(numrat_t a, mpq_t b)
{ 
  numint_set_mpz(a->n,mpq_numref(b));
  numint_set_mpz(a->d,mpq_denref(b));
  return true;
}

/* double -> numrat */
static inline bool numrat_set_double_tmp(numrat_t a, double k, mpq_t mpq)
{
  if (!isfinite(k)) { DEBUG_SPECIAL; numrat_set_int(a,0); return false; }
  mpq_set_d(mpq,k);
  numrat_set_mpq(a,mpq);
  return true;
}
static inline bool numrat_set_double(numrat_t a, double k)
{
  mpq_t mpq;
  mpq_init(mpq);
  numrat_set_double_tmp(a,k,mpq);
  mpq_clear(mpq);
  return true;
}
/* mpfr -> numrat */
static inline bool numrat_set_mpfr(numrat_t a, mpfr_t b)
{
  mpq_t q;
  mp_exp_t e;
  if (!mpfr_number_p(b)) { DEBUG_SPECIAL; numrat_set_int(a,0); return false; }
  mpq_init(q);
  /* XXX might fail if scaled exponent not representable in mp_exp_t */
  e = mpfr_get_z_exp(mpq_numref(q),b);
  mpz_set_si(mpq_denref(q),1);
  if (e>0) mpq_mul_2exp(q,q,e);
  if (e<0) mpq_div_2exp(q,q,-e);
  numrat_set_mpq(a,q);
  mpq_clear(q);
  return true;
}
/* numrat -> int */
static inline bool int_set_numrat(long int* a, numrat_t b)
{ 
  numint_t q,r;
  numint_cdiv_qr(q,r,b->n,b->d);
  *a = *q;
  return (*r==0);
}
static inline bool int_set_numrat_tmp(long int* a, numrat_t b, 
				      mpz_t q, mpz_t r)
{ return int_set_numrat(a,b); }

/* numrat -> mpz */
static inline bool mpz_set_numrat(mpz_t a, numrat_t b)
{
  numint_t q,r;
  numint_cdiv_qr(q,r,numrat_numref(b),numrat_denref(b));
  mpz_set_numint(a,q);
  return (numint_sgn(r)==0);
}
static inline bool mpz_set_numrat_tmp(mpz_t a, numrat_t b, mpz_t mpz)
{ return mpz_set_numrat(a,b); }

/* numrat -> mpq */
static inline bool mpq_set_numrat(mpq_t a, numrat_t b)
{
  mpz_set_numint(mpq_numref(a), numrat_numref(b));
  mpz_set_numint(mpq_denref(a), numrat_denref(b));
  return true;
}
/* numrat -> double */
/* mpfr should have exactly a precision of 53 bits */
static inline bool double_set_numrat_tmp(double* a, numrat_t b, 
					 mpq_t mpq, mpfr_t mpfr)
{
  mpq_set_numrat(mpq,b);
  int res = mpfr_set_q(mpfr,mpq,GMP_RNDU);
  *a = mpfr_get_d(mpfr,GMP_RNDU); /* should be exact */
  return (res==0);
}
static inline bool double_set_numrat(double* a, numrat_t b)
{
  mpq_t mpq;
  mpfr_t mpfr;
  mpq_init(mpq);
  mpfr_init2(mpfr,53);
  bool res = double_set_numrat_tmp(a,b,mpq,mpfr);
  mpq_clear(mpq);
  mpfr_clear(mpfr);
  return res;
}
/* numrat -> mpfr */
static inline bool mpfr_set_numrat(mpfr_t a, numrat_t b)
{ 
  int r = mpfr_set_si(a,*numrat_numref(b),GMP_RNDU);
  return !mpfr_div_si(a,a,*numrat_denref(b),GMP_RNDU) && !r;
}

static inline bool mpz_fits_numrat(mpz_t a)
{ return mpz_fits_numint(a); }
static inline bool mpq_fits_numrat(mpq_t a)
{ return mpz_fits_numint(mpq_numref(a)) && mpz_fits_numint(mpq_denref(a)); }
static inline bool double_fits_numrat_tmp(double k, mpq_t mpq)
{
  if (!isfinite(k)) return false;
  mpq_set_d(mpq,k);
  bool res = mpq_fits_numrat(mpq);
  return res;
}
static inline bool double_fits_numrat(double k)
{
  mpq_t mpq;
  mpq_init(mpq);
  bool res = double_fits_numrat_tmp(k,mpq);
  mpq_clear(mpq);
  return res;
}
static inline bool mpfr_fits_numrat(mpfr_t a)
{
  mpz_t z;
  mp_exp_t e;
  if (!mpfr_number_p(a)) return false;
  mpz_init(z);
  e = mpfr_get_z_exp(z,a);
  if (!mpz_fits_numrat(z)) {
    mpz_clear(z);
    return false;
  }
  mpz_clear(z);
  return e<(mp_exp_t)sizeof(numint_t)*8-1;
}
static inline bool numrat_fits_int(numrat_t a)
{
  numint_t b;
  numint_cdiv_q(b,a->n,a->d);
  return *b<=LONG_MAX && *b>=-LONG_MAX;
}
static inline bool numrat_fits_float(numrat_t a)
{ return true; }
static inline bool numrat_fits_double(numrat_t a)
{ return true; }
static inline bool numrat_fits_mpfr(numrat_t a)
{ return true; }



/* ====================================================================== */
/* Serialization */
/* ====================================================================== */

static inline unsigned char numrat_serialize_id(void)
{ return 0x10 + sizeof(numint_t)/4; }

static inline size_t numrat_serialize(void* dst, numrat_t src)
{
  size_t x = numint_serialize(dst,numrat_numref(src));
  return x + numint_serialize((char*)dst+x,numrat_denref(src));
}

static inline size_t numrat_deserialize(numrat_t dst, const void* src)
{
  size_t x = numint_deserialize(numrat_numref(dst),src);
  return x + numint_deserialize(numrat_denref(dst),(const char*)src+x);
}

static inline size_t numrat_serialized_size(numrat_t a)
{
  return numint_serialized_size(numrat_numref(a)) +
         numint_serialized_size(numrat_denref(a));
}

#ifdef __cplusplus
}
#endif

#endif