/usr/include/dune/istl/gsetc.hh is in libdune-istl-dev 2.2.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 | // -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_GSETC_HH
#define DUNE_GSETC_HH
#include<cmath>
#include<complex>
#include<iostream>
#include<iomanip>
#include<string>
#include "multitypeblockvector.hh"
#include "multitypeblockmatrix.hh"
#include "istlexception.hh"
/*! \file
\brief Simple iterative methods like Jacobi, Gauss-Seidel, SOR, SSOR, etc.
in a generic way
*/
namespace Dune {
/**
* @defgroup ISTL_Kernel Block Recursive Iterative Kernels
* @ingroup ISTL_SPMV
*
* Generic iterative kernels for the solvers which work on the block recursive
* structure of the matrices and vectors.
* @addtogroup ISTL_Kernel
* @{
*/
//============================================================
// parameter types
//============================================================
//! compile-time parameter for block recursion depth
template<int l>
struct BL {
enum {recursion_level = l};
};
enum WithDiagType {
withdiag=1,
nodiag=0
};
enum WithRelaxType {
withrelax=1,
norelax=0
};
//============================================================
// generic triangular solves
// consider block decomposition A = L + D + U
// we can invert L, L+D, U, U+D
// we can apply relaxation or not
// we can recurse over a fixed number of levels
//============================================================
// template meta program for triangular solves
template<int I, WithDiagType diag, WithRelaxType relax>
struct algmeta_btsolve {
template<class M, class X, class Y, class K>
static void bltsolve (const M& A, X& v, const Y& d, const K& w)
{
// iterator types
typedef typename M::ConstRowIterator rowiterator;
typedef typename M::ConstColIterator coliterator;
typedef typename Y::block_type bblock;
// local solve at each block and immediate update
rowiterator endi=A.end();
for (rowiterator i=A.begin(); i!=endi; ++i)
{
bblock rhs(d[i.index()]);
coliterator j;
for (j=(*i).begin(); j.index()<i.index(); ++j)
(*j).mmv(v[j.index()],rhs);
algmeta_btsolve<I-1,diag,relax>::bltsolve(*j,v[i.index()],rhs,w);
}
}
template<class M, class X, class Y, class K>
static void butsolve (const M& A, X& v, const Y& d, const K& w)
{
// iterator types
typedef typename M::ConstRowIterator rowiterator;
typedef typename M::ConstColIterator coliterator;
typedef typename Y::block_type bblock;
// local solve at each block and immediate update
rowiterator rendi=A.beforeBegin();
for (rowiterator i=A.beforeEnd(); i!=rendi; --i)
{
bblock rhs(d[i.index()]);
coliterator j;
for (j=(*i).beforeEnd(); j.index()>i.index(); --j)
(*j).mmv(v[j.index()],rhs);
algmeta_btsolve<I-1,diag,relax>::butsolve(*j,v[i.index()],rhs,w);
}
}
};
// recursion end ...
template<>
struct algmeta_btsolve<0,withdiag,withrelax> {
template<class M, class X, class Y, class K>
static void bltsolve (const M& A, X& v, const Y& d, const K& w)
{
A.solve(v,d);
v *= w;
}
template<class M, class X, class Y, class K>
static void butsolve (const M& A, X& v, const Y& d, const K& w)
{
A.solve(v,d);
v *= w;
}
};
template<>
struct algmeta_btsolve<0,withdiag,norelax> {
template<class M, class X, class Y, class K>
static void bltsolve (const M& A, X& v, const Y& d, const K& w)
{
A.solve(v,d);
}
template<class M, class X, class Y, class K>
static void butsolve (const M& A, X& v, const Y& d, const K& w)
{
A.solve(v,d);
}
};
template<>
struct algmeta_btsolve<0,nodiag,withrelax> {
template<class M, class X, class Y, class K>
static void bltsolve (const M& A, X& v, const Y& d, const K& w)
{
v = d;
v *= w;
}
template<class M, class X, class Y, class K>
static void butsolve (const M& A, X& v, const Y& d, const K& w)
{
v = d;
v *= w;
}
};
template<>
struct algmeta_btsolve<0,nodiag,norelax> {
template<class M, class X, class Y, class K>
static void bltsolve (const M& A, X& v, const Y& d, const K& w)
{
v = d;
}
template<class M, class X, class Y, class K>
static void butsolve (const M& A, X& v, const Y& d, const K& w)
{
v = d;
}
};
// user calls
// default block recursion level = 1
//! block lower triangular solve
template<class M, class X, class Y>
void bltsolve (const M& A, X& v, const Y& d)
{
typename X::field_type w=1;
algmeta_btsolve<1,withdiag,norelax>::bltsolve(A,v,d,w);
}
//! relaxed block lower triangular solve
template<class M, class X, class Y, class K>
void bltsolve (const M& A, X& v, const Y& d, const K& w)
{
algmeta_btsolve<1,withdiag,withrelax>::bltsolve(A,v,d,w);
}
//! unit block lower triangular solve
template<class M, class X, class Y>
void ubltsolve (const M& A, X& v, const Y& d)
{
typename X::field_type w=1;
algmeta_btsolve<1,nodiag,norelax>::bltsolve(A,v,d,w);
}
//! relaxed unit block lower triangular solve
template<class M, class X, class Y, class K>
void ubltsolve (const M& A, X& v, const Y& d, const K& w)
{
algmeta_btsolve<1,nodiag,withrelax>::bltsolve(A,v,d,w);
}
//! block upper triangular solve
template<class M, class X, class Y>
void butsolve (const M& A, X& v, const Y& d)
{
typename X::field_type w=1;
algmeta_btsolve<1,withdiag,norelax>::butsolve(A,v,d,w);
}
//! relaxed block upper triangular solve
template<class M, class X, class Y, class K>
void butsolve (const M& A, X& v, const Y& d, const K& w)
{
algmeta_btsolve<1,withdiag,withrelax>::butsolve(A,v,d,w);
}
//! unit block upper triangular solve
template<class M, class X, class Y>
void ubutsolve (const M& A, X& v, const Y& d)
{
typename X::field_type w=1;
algmeta_btsolve<1,nodiag,norelax>::butsolve(A,v,d,w);
}
//! relaxed unit block upper triangular solve
template<class M, class X, class Y, class K>
void ubutsolve (const M& A, X& v, const Y& d, const K& w)
{
algmeta_btsolve<1,nodiag,withrelax>::butsolve(A,v,d,w);
}
// general block recursion level >= 0
//! block lower triangular solve
template<class M, class X, class Y, int l>
void bltsolve (const M& A, X& v, const Y& d, BL<l> bl)
{
typename X::field_type w=1;
algmeta_btsolve<l,withdiag,norelax>::bltsolve(A,v,d,w);
}
//! relaxed block lower triangular solve
template<class M, class X, class Y, class K, int l>
void bltsolve (const M& A, X& v, const Y& d, const K& w, BL<l> bl)
{
algmeta_btsolve<l,withdiag,withrelax>::bltsolve(A,v,d,w);
}
//! unit block lower triangular solve
template<class M, class X, class Y, int l>
void ubltsolve (const M& A, X& v, const Y& d, BL<l> bl)
{
typename X::field_type w=1;
algmeta_btsolve<l,nodiag,norelax>::bltsolve(A,v,d,w);
}
//! relaxed unit block lower triangular solve
template<class M, class X, class Y, class K, int l>
void ubltsolve (const M& A, X& v, const Y& d, const K& w, BL<l> bl)
{
algmeta_btsolve<l,nodiag,withrelax>::bltsolve(A,v,d,w);
}
//! block upper triangular solve
template<class M, class X, class Y, int l>
void butsolve (const M& A, X& v, const Y& d, BL<l> bl)
{
typename X::field_type w=1;
algmeta_btsolve<l,withdiag,norelax>::butsolve(A,v,d,w);
}
//! relaxed block upper triangular solve
template<class M, class X, class Y, class K, int l>
void butsolve (const M& A, X& v, const Y& d, const K& w, BL<l> bl)
{
algmeta_btsolve<l,withdiag,withrelax>::butsolve(A,v,d,w);
}
//! unit block upper triangular solve
template<class M, class X, class Y, int l>
void ubutsolve (const M& A, X& v, const Y& d, BL<l> bl)
{
typename X::field_type w=1;
algmeta_btsolve<l,nodiag,norelax>::butsolve(A,v,d,w);
}
//! relaxed unit block upper triangular solve
template<class M, class X, class Y, class K, int l>
void ubutsolve (const M& A, X& v, const Y& d, const K& w, BL<l> bl)
{
algmeta_btsolve<l,nodiag,withrelax>::butsolve(A,v,d,w);
}
//============================================================
// generic block diagonal solves
// consider block decomposition A = L + D + U
// we can apply relaxation or not
// we can recurse over a fixed number of levels
//============================================================
// template meta program for diagonal solves
template<int I, WithRelaxType relax>
struct algmeta_bdsolve {
template<class M, class X, class Y, class K>
static void bdsolve (const M& A, X& v, const Y& d, const K& w)
{
// iterator types
typedef typename M::ConstRowIterator rowiterator;
typedef typename M::ConstColIterator coliterator;
// local solve at each block and immediate update
rowiterator rendi=A.beforeBegin();
for (rowiterator i=A.beforeEnd(); i!=rendi; --i)
{
coliterator ii=(*i).find(i.index());
algmeta_bdsolve<I-1,relax>::bdsolve(*ii,v[i.index()],d[i.index()],w);
}
}
};
// recursion end ...
template<>
struct algmeta_bdsolve<0,withrelax> {
template<class M, class X, class Y, class K>
static void bdsolve (const M& A, X& v, const Y& d, const K& w)
{
A.solve(v,d);
v *= w;
}
};
template<>
struct algmeta_bdsolve<0,norelax> {
template<class M, class X, class Y, class K>
static void bdsolve (const M& A, X& v, const Y& d, const K& w)
{
A.solve(v,d);
}
};
// user calls
// default block recursion level = 1
//! block diagonal solve, no relaxation
template<class M, class X, class Y>
void bdsolve (const M& A, X& v, const Y& d)
{
typename X::field_type w=1;
algmeta_bdsolve<1,norelax>::bdsolve(A,v,d,w);
}
//! block diagonal solve, with relaxation
template<class M, class X, class Y, class K>
void bdsolve (const M& A, X& v, const Y& d, const K& w)
{
algmeta_bdsolve<1,withrelax>::bdsolve(A,v,d,w);
}
// general block recursion level >= 0
//! block diagonal solve, no relaxation
template<class M, class X, class Y, int l>
void bdsolve (const M& A, X& v, const Y& d, BL<l> bl)
{
typename X::field_type w=1;
algmeta_bdsolve<l,norelax>::bdsolve(A,v,d,w);
}
//! block diagonal solve, with relaxation
template<class M, class X, class Y, class K, int l>
void bdsolve (const M& A, X& v, const Y& d, const K& w, BL<l> bl)
{
algmeta_bdsolve<l,withrelax>::bdsolve(A,v,d,w);
}
//============================================================
// generic steps of iteration methods
// Jacobi, Gauss-Seidel, SOR, SSOR
// work directly on Ax=b, ie solve M(x^{i+1}-x^i) = w (b-Ax^i)
// we can recurse over a fixed number of levels
//============================================================
// template meta program for iterative solver steps
template<int I>
struct algmeta_itsteps {
#if HAVE_BOOST
#ifdef HAVE_BOOST_FUSION
template<typename T11, typename T12, typename T13, typename T14,
typename T15, typename T16, typename T17, typename T18,
typename T19, typename T21, typename T22, typename T23,
typename T24, typename T25, typename T26, typename T27,
typename T28, typename T29, class K>
static void dbgs (const MultiTypeBlockMatrix<T11,T12,T13,T14,T15,T16,T17,T18,T19>& A,
MultiTypeBlockVector<T21,T22,T23,T24,T25,T26,T27,T28,T29>& x,
const MultiTypeBlockVector<T21,T22,T23,T24,T25,T26,T27,T28,T29>& b,
const K& w)
{
const int rowcount =
boost::mpl::size<MultiTypeBlockMatrix<T11,T12,T13,T14,T15,T16,T17,T18,T19> >::value;
Dune::MultiTypeBlockMatrix_Solver<I,0,rowcount>::dbgs(A, x, b, w);
}
#endif
#endif
template<class M, class X, class Y, class K>
static void dbgs (const M& A, X& x, const Y& b, const K& w)
{
typedef typename M::ConstRowIterator rowiterator;
typedef typename M::ConstColIterator coliterator;
typedef typename Y::block_type bblock;
typedef typename X::block_type xblock;
bblock rhs;
X xold(x); // remember old x
rowiterator endi=A.end();
for (rowiterator i=A.begin(); i!=endi; ++i)
{
rhs = b[i.index()]; // rhs = b_i
coliterator endj=(*i).end();
coliterator j=(*i).begin();
for (; j.index()<i.index(); ++j) // iterate over a_ij with j < i
(*j).mmv(x[j.index()],rhs); // rhs -= sum_{j<i} a_ij * xnew_j
coliterator diag=j++; // *diag = a_ii and increment coliterator j from a_ii to a_i+1,i to skip diagonal
for (; j != endj; ++j) // iterate over a_ij with j > i
(*j).mmv(x[j.index()],rhs); // rhs -= sum_{j>i} a_ij * xold_j
algmeta_itsteps<I-1>::dbgs(*diag,x[i.index()],rhs,w); // if I==1: xnew_i = rhs/a_ii
}
// next two lines: xnew_i = w / a_ii * (b_i - sum_{j<i} a_ij * xnew_j - sum_{j>=i} a_ij * xold_j) + (1-w)*xold;
x *= w;
x.axpy(K(1)-w,xold);
}
#if HAVE_BOOST
#ifdef HAVE_BOOST_FUSION
template<typename T11, typename T12, typename T13, typename T14,
typename T15, typename T16, typename T17, typename T18,
typename T19, typename T21, typename T22, typename T23,
typename T24, typename T25, typename T26, typename T27,
typename T28, typename T29, class K>
static void bsorf (const MultiTypeBlockMatrix<T11,T12,T13,T14,T15,T16,T17,T18,T19>& A,
MultiTypeBlockVector<T21,T22,T23,T24,T25,T26,T27,T28,T29>& x,
const MultiTypeBlockVector<T21,T22,T23,T24,T25,T26,T27,T28,T29>& b,
const K& w)
{
const int rowcount =
boost::mpl::size<MultiTypeBlockMatrix<T11,T12,T13,T14,T15,T16,T17,T18,T19> >::value;
Dune::MultiTypeBlockMatrix_Solver<I,0,rowcount>::bsorf(A, x, b, w);
}
#endif
#endif
template<class M, class X, class Y, class K>
static void bsorf (const M& A, X& x, const Y& b, const K& w)
{
typedef typename M::ConstRowIterator rowiterator;
typedef typename M::ConstColIterator coliterator;
typedef typename Y::block_type bblock;
typedef typename X::block_type xblock;
bblock rhs;
xblock v;
// Initialize nested data structure if there are entries
if(A.begin()!=A.end())
v=x[0];
rowiterator endi=A.end();
for (rowiterator i=A.begin(); i!=endi; ++i)
{
rhs = b[i.index()]; // rhs = b_i
coliterator endj=(*i).end(); // iterate over a_ij with j < i
coliterator j=(*i).begin();
for (; j.index()<i.index(); ++j)
(*j).mmv(x[j.index()],rhs); // rhs -= sum_{j<i} a_ij * xnew_j
coliterator diag=j; // *diag = a_ii
for (; j!=endj; ++j)
(*j).mmv(x[j.index()],rhs); // rhs -= sum_{j<i} a_ij * xnew_j
algmeta_itsteps<I-1>::bsorf(*diag,v,rhs,w); // if blocksize I==1: v = rhs/a_ii
x[i.index()].axpy(w,v); // x_i = w / a_ii * (b_i - sum_{j<i} a_ij * xnew_j - sum_{j>=i} a_ij * xold_j)
}
}
#if HAVE_BOOST
#ifdef HAVE_BOOST_FUSION
template<typename T11, typename T12, typename T13, typename T14,
typename T15, typename T16, typename T17, typename T18,
typename T19, typename T21, typename T22, typename T23,
typename T24, typename T25, typename T26, typename T27,
typename T28, typename T29, class K>
static void bsorb (const MultiTypeBlockMatrix<T11,T12,T13,T14,T15,T16,T17,T18,T19>& A,
MultiTypeBlockVector<T21,T22,T23,T24,T25,T26,T27,T28,T29>& x,
const MultiTypeBlockVector<T21,T22,T23,T24,T25,T26,T27,T28,T29>& b,
const K& w)
{
const int rowcount =
mpl::size<MultiTypeBlockMatrix<T11,T12,T13,T14,T15,T16,T17,T18,T19> >::value;
Dune::MultiTypeBlockMatrix_Solver<I,rowcount-1,rowcount>::bsorb(A, x, b, w);
}
#endif
#endif
template<class M, class X, class Y, class K>
static void bsorb (const M& A, X& x, const Y& b, const K& w)
{
typedef typename M::ConstRowIterator rowiterator;
typedef typename M::ConstColIterator coliterator;
typedef typename Y::block_type bblock;
typedef typename X::block_type xblock;
bblock rhs;
xblock v;
// Initialize nested data structure if there are entries
if(A.begin()!=A.end())
v=x[0];
rowiterator endi=A.beforeBegin();
for (rowiterator i=A.beforeEnd(); i!=endi; --i)
{
rhs = b[i.index()];
coliterator endj=(*i).end();
coliterator j=(*i).begin();
for (; j.index()<i.index(); ++j)
(*j).mmv(x[j.index()],rhs);
coliterator diag=j;
for (; j!=endj; ++j)
(*j).mmv(x[j.index()],rhs);
algmeta_itsteps<I-1>::bsorb(*diag,v,rhs,w);
x[i.index()].axpy(w,v);
}
}
#if HAVE_BOOST
#ifdef HAVE_BOOST_FUSION
template<typename T11, typename T12, typename T13, typename T14,
typename T15, typename T16, typename T17, typename T18,
typename T19, typename T21, typename T22, typename T23,
typename T24, typename T25, typename T26, typename T27,
typename T28, typename T29, class K>
static void dbjac (const MultiTypeBlockMatrix<T11,T12,T13,T14,T15,T16,T17,T18,T19>& A,
MultiTypeBlockVector<T21,T22,T23,T24,T25,T26,T27,T28,T29>& x,
const MultiTypeBlockVector<T21,T22,T23,T24,T25,T26,T27,T28,T29>& b,
const K& w)
{
const int rowcount =
boost::mpl::size<MultiTypeBlockMatrix<T11,T12,T13,T14,T15,T16,T17,T18,T19> >::value;
Dune::MultiTypeBlockMatrix_Solver<I,0,rowcount >::dbjac(A, x, b, w);
}
#endif
#endif
template<class M, class X, class Y, class K>
static void dbjac (const M& A, X& x, const Y& b, const K& w)
{
typedef typename M::ConstRowIterator rowiterator;
typedef typename M::ConstColIterator coliterator;
typedef typename Y::block_type bblock;
typedef typename X::block_type xblock;
bblock rhs;
X v(x); // allocate with same size
rowiterator endi=A.end();
for (rowiterator i=A.begin(); i!=endi; ++i)
{
rhs = b[i.index()];
coliterator endj=(*i).end();
coliterator j=(*i).begin();
for (; j.index()<i.index(); ++j)
(*j).mmv(x[j.index()],rhs);
coliterator diag=j;
for (; j!=endj; ++j)
(*j).mmv(x[j.index()],rhs);
algmeta_itsteps<I-1>::dbjac(*diag,v[i.index()],rhs,w);
}
x.axpy(w,v);
}
};
// end of recursion
template<>
struct algmeta_itsteps<0> {
template<class M, class X, class Y, class K>
static void dbgs (const M& A, X& x, const Y& b, const K& w)
{
A.solve(x,b);
}
template<class M, class X, class Y, class K>
static void bsorf (const M& A, X& x, const Y& b, const K& w)
{
A.solve(x,b);
}
template<class M, class X, class Y, class K>
static void bsorb (const M& A, X& x, const Y& b, const K& w)
{
A.solve(x,b);
}
template<class M, class X, class Y, class K>
static void dbjac (const M& A, X& x, const Y& b, const K& w)
{
A.solve(x,b);
}
};
// user calls
//! GS step
template<class M, class X, class Y, class K>
void dbgs (const M& A, X& x, const Y& b, const K& w)
{
algmeta_itsteps<1>::dbgs(A,x,b,w);
}
//! GS step
template<class M, class X, class Y, class K, int l>
void dbgs (const M& A, X& x, const Y& b, const K& w, BL<l> bl)
{
algmeta_itsteps<l>::dbgs(A,x,b,w);
}
//! SOR step
template<class M, class X, class Y, class K>
void bsorf (const M& A, X& x, const Y& b, const K& w)
{
algmeta_itsteps<1>::bsorf(A,x,b,w);
}
//! SOR step
template<class M, class X, class Y, class K, int l>
void bsorf (const M& A, X& x, const Y& b, const K& w, BL<l> bl)
{
algmeta_itsteps<l>::bsorf(A,x,b,w);
}
//! SSOR step
template<class M, class X, class Y, class K>
void bsorb (const M& A, X& x, const Y& b, const K& w)
{
algmeta_itsteps<1>::bsorb(A,x,b,w);
}
//! SSOR step
template<class M, class X, class Y, class K, int l>
void bsorb (const M& A, X& x, const Y& b, const K& w, BL<l> bl)
{
algmeta_itsteps<l>::bsorb(A,x,b,w);
}
//! Jacobi step
template<class M, class X, class Y, class K>
void dbjac (const M& A, X& x, const Y& b, const K& w)
{
algmeta_itsteps<1>::dbjac(A,x,b,w);
}
//! Jacobi step
template<class M, class X, class Y, class K, int l>
void dbjac (const M& A, X& x, const Y& b, const K& w, BL<l> bl)
{
algmeta_itsteps<l>::dbjac(A,x,b,w);
}
/** @} end documentation */
} // end namespace
#endif
|