/usr/include/dune/istl/overlappingschwarz.hh is in libdune-istl-dev 2.2.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 | // -*- tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=8 sw=2 sts=2:
#ifndef DUNE_OVERLAPPINGSCHWARZ_HH
#define DUNE_OVERLAPPINGSCHWARZ_HH
#include<cassert>
#include<algorithm>
#include<functional>
#include<vector>
#include<set>
#include<dune/common/dynmatrix.hh>
#include<dune/common/sllist.hh>
#include"preconditioners.hh"
#include"superlu.hh"
#include"bvector.hh"
#include"bcrsmatrix.hh"
#include"ilusubdomainsolver.hh"
namespace Dune
{
/**
* @addtogroup ISTL_Prec
*
* @{
*/
/**
* @file
* @author Markus Blatt
* @brief Contains one level overlapping Schwarz preconditioners
*/
template<class M, class X, class TM, class TD, class TA>
class SeqOverlappingSchwarz;
/**
* @brief Initializer for SuperLU Matrices representing the subdomains.
*/
template<class I, class S, class D>
class OverlappingSchwarzInitializer
{
public:
/** @brief The vector type containing the subdomain to row index mapping. */
typedef D subdomain_vector;
typedef I InitializerList;
typedef typename InitializerList::value_type AtomInitializer;
typedef typename AtomInitializer::Matrix Matrix;
typedef typename Matrix::const_iterator Iter;
typedef typename Matrix::row_type::const_iterator CIter;
typedef S IndexSet;
typedef typename IndexSet::size_type size_type;
OverlappingSchwarzInitializer(InitializerList& il,
const IndexSet& indices,
const subdomain_vector& domains);
void addRowNnz(const Iter& row);
void allocate();
void countEntries(const Iter& row, const CIter& col) const;
void calcColstart() const;
void copyValue(const Iter& row, const CIter& col) const;
void createMatrix() const;
private:
class IndexMap
{
public:
typedef typename S::size_type size_type;
typedef std::map<size_type,size_type> Map;
typedef typename Map::iterator iterator;
typedef typename Map::const_iterator const_iterator;
IndexMap();
void insert(size_type grow);
const_iterator find(size_type grow) const;
iterator find(size_type grow);
iterator begin();
const_iterator begin()const;
iterator end();
const_iterator end() const;
private:
std::map<size_type,size_type> map_;
size_type row;
};
typedef typename InitializerList::iterator InitIterator;
typedef typename IndexSet::const_iterator IndexIteratur;
InitializerList* initializers;
const IndexSet *indices;
mutable std::vector<IndexMap> indexMaps;
const subdomain_vector& domains;
};
/**
* @brief Tag that the tells the schwarz method to be additive.
*/
struct AdditiveSchwarzMode
{};
/**
* @brief Tag that tells the Schwarz method to be multiplicative.
*/
struct MultiplicativeSchwarzMode
{};
/**
* @brief Tag that tells the Schwarz method to be multiplicative
* and symmetric.
*/
struct SymmetricMultiplicativeSchwarzMode
{};
/**
* @brief Exact subdomain solver using Dune::DynamicMatrix<T>::solve
* @tparam M The type of the matrix.
*/
template<class M, class X, class Y>
class DynamicMatrixSubdomainSolver;
// Specialization for BCRSMatrix
template<class K, int n, class Al, class X, class Y>
class DynamicMatrixSubdomainSolver< BCRSMatrix< FieldMatrix<K,n,n>, Al>, X, Y >
{
typedef BCRSMatrix< FieldMatrix<K,n,n>, Al> M;
public:
//! \brief The matrix type the preconditioner is for.
typedef typename Dune::remove_const<M>::type matrix_type;
typedef K field_type;
typedef typename Dune::remove_const<M>::type rilu_type;
//! \brief The domain type of the preconditioner.
typedef X domain_type;
//! \brief The range type of the preconditioner.
typedef Y range_type;
/**
* @brief Apply the subdomain solver.
* @copydoc ILUSubdomainSolver::apply
*/
void apply (DynamicVector<field_type>& v, DynamicVector<field_type>& d)
{
assert(v.size() > 0);
assert(v.size() == d.size());
assert(A.rows() <= v.size());
assert(A.cols() <= v.size());
size_t sz = A.rows();
v.resize(sz);
d.resize(sz);
A.solve(v,d);
v.resize(v.capacity());
d.resize(d.capacity());
}
/**
* @brief Set the data of the local problem.
*
* @param BCRS The global matrix.
* @param rowset The global indices of the local problem.
* @tparam S The type of the set with the indices.
*/
template<class S>
void setSubMatrix(const M& BCRS, S& rowset)
{
size_t sz = rowset.size();
A.resize(sz*n,sz*n);
typename DynamicMatrix<K>::RowIterator rIt = A.begin();
typedef typename S::const_iterator SIter;
size_t r = 0, c = 0;
for(SIter rowIdx = rowset.begin(), rowEnd=rowset.end();
rowIdx!= rowEnd; ++rowIdx, r++)
{
c = 0;
for(SIter colIdx = rowset.begin(), colEnd=rowset.end();
colIdx!= colEnd; ++colIdx, c++)
{
if (BCRS[*rowIdx].find(*colIdx) == BCRS[*rowIdx].end())
continue;
for (size_t i=0; i<n; i++)
{
for (size_t j=0; j<n; j++)
{
A[r*n+i][c*n+j] = BCRS[*rowIdx][*colIdx][i][j];
}
}
}
}
}
private:
DynamicMatrix<K> A;
};
template<typename T>
struct OverlappingAssigner
{
};
// specialization for DynamicMatrix
template<class K, int n, class Al, class X, class Y>
class OverlappingAssigner< DynamicMatrixSubdomainSolver< BCRSMatrix< FieldMatrix<K,n,n>, Al>, X, Y > >
{
public:
typedef BCRSMatrix< FieldMatrix<K,n,n>, Al> matrix_type;
typedef K field_type;
typedef Y range_type;
typedef typename range_type::block_type block_type;
typedef typename matrix_type::size_type size_type;
/**
* @brief Constructor.
* @param maxlength The maximum entries over all subdomains.
* @param mat_ The global matrix.
* @param b_ the global right hand side.
* @param x_ the global left hand side.
*/
OverlappingAssigner(std::size_t maxlength, const BCRSMatrix<FieldMatrix<K,n,n>, Al>& mat_, const X& b_, Y& x_);
/**
* @brief Deallocates memory of the local vector.
*/
inline
void deallocate();
/**
* @brief Resets the local index to zero.
*/
inline
void resetIndexForNextDomain();
/**
* @brief Get the local left hand side.
* @return The local left hand side.
*/
inline
DynamicVector<K> & lhs();
/**
* @brief Get the local right hand side.
* @return The local right hand side.
*/
inline
DynamicVector<K> & rhs();
/**
* @brief relax the result.
* @param relax The relaxation parameter.
*/
inline
void relaxResult(field_type relax);
/**
* @brief calculate one entry of the local defect.
* @param domainIndex One index of the domain.
*/
void operator()(const size_type& domainIndex);
/**
* @brief Assigns the block to the current local
* index.
* At the same time the local defect is calculated
* for the index and stored in the rhs.
* Afterwards the is incremented for the next block.
*/
inline
void assignResult(block_type& res);
private:
/**
* @brief The global matrix for the defect calculation.
*/
const matrix_type* mat;
/** @brief The local right hand side. */
// we need a pointer, because we have to avoid deep copies
DynamicVector<field_type> * rhs_;
/** @brief The local left hand side. */
// we need a pointer, because we have to avoid deep copies
DynamicVector<field_type> * lhs_;
/** @brief The global right hand side for the defect calculation. */
const range_type* b;
/** @brief The global right hand side for adding the local update to. */
range_type* x;
/** @brief The current local index. */
std::size_t i;
/** @brief The maximum entries over all subdomains. */
std::size_t maxlength_;
};
#if HAVE_SUPERLU
template<typename T, typename A, int n, int m>
struct OverlappingAssigner<SuperLU<BCRSMatrix<FieldMatrix<T,n,m>,A> > >
{
typedef BCRSMatrix<FieldMatrix<T,n,m>,A> matrix_type;
typedef typename SuperLU<BCRSMatrix<FieldMatrix<T,n,m>,A> >::range_type range_type;
typedef typename range_type::field_type field_type;
typedef typename range_type::block_type block_type;
typedef typename matrix_type::size_type size_type;
/**
* @brief Constructor.
* @param maxlength The maximum entries over all subdomains.
* @param mat The global matrix.
* @param b the global right hand side.
* @param x the global left hand side.
*/
OverlappingAssigner(std::size_t maxlength, const BCRSMatrix<FieldMatrix<T,n,m>,A>& mat,
const range_type& b, range_type& x);
/**
* @brief Deallocates memory of the local vector.
* @warning memory is released by the destructor as this Functor
* is copied and the copy needs to still have the data.
*/
void deallocate();
/*
* @brief Resets the local index to zero.
*/
void resetIndexForNextDomain();
/**
* @brief Get the local left hand side.
* @return The local left hand side.
*/
field_type* lhs();
/**
* @brief Get the local right hand side.
* @return The local right hand side.
*/
field_type* rhs();
/**
* @brief relax the result.
* @param relax The relaxation parameter.
*/
void relaxResult(field_type relax);
/**
* @brief calculate one entry of the local defect.
* @param domain One index of the domain.
*/
void operator()(const size_type& domain);
/**
* @brief Assigns the block to the current local
* index.
* At the same time the local defect is calculated
* for the index and stored in the rhs.
* Afterwards the is incremented for the next block.
*/
void assignResult(block_type& res);
private:
/**
* @brief The global matrix for the defect calculation.
*/
const matrix_type* mat;
/** @brief The local right hand side. */
field_type* rhs_;
/** @brief The local left hand side. */
field_type* lhs_;
/** @brief The global right hand side for the defect calculation. */
const range_type* b;
/** @brief The global right hand side for adding the local update to. */
range_type* x;
/** @brief The current local index. */
std::size_t i;
/** @brief The maximum entries over all subdomains. */
std::size_t maxlength_;
};
#endif
template<class M, class X, class Y>
class OverlappingAssignerILUBase
{
public:
typedef M matrix_type;
typedef typename M::field_type field_type;
typedef typename Y::block_type block_type;
typedef typename matrix_type::size_type size_type;
/**
* @brief Constructor.
* @param maxlength The maximum entries over all subdomains.
* @param mat The global matrix.
* @param b the global right hand side.
* @param x the global left hand side.
*/
OverlappingAssignerILUBase(std::size_t maxlength, const M& mat,
const Y& b, X& x);
/**
* @brief Deallocates memory of the local vector.
* @warning memory is released by the destructor as this Functor
* is copied and the copy needs to still have the data.
*/
void deallocate();
/**
* @brief Resets the local index to zero.
*/
void resetIndexForNextDomain();
/**
* @brief Get the local left hand side.
* @return The local left hand side.
*/
X& lhs();
/**
* @brief Get the local right hand side.
* @return The local right hand side.
*/
Y& rhs();
/**
* @brief relax the result.
* @param relax The relaxation parameter.
*/
void relaxResult(field_type relax);
/**
* @brief calculate one entry of the local defect.
* @param domain One index of the domain.
*/
void operator()(const size_type& domain);
/**
* @brief Assigns the block to the current local
* index.
* At the same time the local defect is calculated
* for the index and stored in the rhs.
* Afterwards the is incremented for the next block.
*/
void assignResult(block_type& res);
private:
/**
* @brief The global matrix for the defect calculation.
*/
const M* mat;
/** @brief The local left hand side. */
X* lhs_;
/** @brief The local right hand side. */
Y* rhs_;
/** @brief The global right hand side for the defect calculation. */
const Y* b;
/** @brief The global left hand side for adding the local update to. */
X* x;
/** @brief The maximum entries over all subdomains. */
size_type i;
};
// specialization for ILU0
template<class M, class X, class Y>
class OverlappingAssigner<ILU0SubdomainSolver<M,X,Y> >
: public OverlappingAssignerILUBase<M,X,Y>
{
public:
/**
* @brief Constructor.
* @param maxlength The maximum entries over all subdomains.
* @param mat The global matrix.
* @param b the global right hand side.
* @param x the global left hand side.
*/
OverlappingAssigner(std::size_t maxlength, const M& mat,
const Y& b, X& x)
: OverlappingAssignerILUBase<M,X,Y>(maxlength, mat,b,x)
{}
};
// specialization for ILUN
template<class M, class X, class Y>
class OverlappingAssigner<ILUNSubdomainSolver<M,X,Y> >
: public OverlappingAssignerILUBase<M,X,Y>
{
public:
/**
* @brief Constructor.
* @param maxlength The maximum entries over all subdomains.
* @param mat The global matrix.
* @param b the global right hand side.
* @param x the global left hand side.
*/
OverlappingAssigner(std::size_t maxlength, const M& mat,
const Y& b, X& x)
: OverlappingAssignerILUBase<M,X,Y>(maxlength, mat,b,x)
{}
};
template<typename S, typename T>
struct AdditiveAdder
{
};
template<typename S, typename T, typename A, int n>
struct AdditiveAdder<S, BlockVector<FieldVector<T,n>,A> >
{
typedef typename A::size_type size_type;
AdditiveAdder(BlockVector<FieldVector<T,n>,A>& v, BlockVector<FieldVector<T,n>,A>& x,
OverlappingAssigner<S>& assigner, const T& relax_);
void operator()(const size_type& domain);
void axpy();
private:
BlockVector<FieldVector<T,n>,A>* v;
BlockVector<FieldVector<T,n>,A>* x;
OverlappingAssigner<S>* assigner;
T relax;
};
template<typename S,typename T>
struct MultiplicativeAdder
{
};
template<typename S, typename T, typename A, int n>
struct MultiplicativeAdder<S, BlockVector<FieldVector<T,n>,A> >
{
typedef typename A::size_type size_type;
MultiplicativeAdder(BlockVector<FieldVector<T,n>,A>& v, BlockVector<FieldVector<T,n>,A>& x,
OverlappingAssigner<S>& assigner_, const T& relax_);
void operator()(const size_type& domain);
void axpy();
private:
BlockVector<FieldVector<T,n>,A>* x;
OverlappingAssigner<S>* assigner;
T relax;
};
/**
* @brief template meta program for choosing how to add the correction.
*
* There are specialization for the additive, the multiplicative, and the symmetric multiplicative mode.
*
* \tparam T The Schwarz mode (either AdditiveSchwarzMode or MuliplicativeSchwarzMode or
* SymmetricMultiplicativeSchwarzMode)
* \tparam X The vector field type
*/
template<typename T, class X, class S>
struct AdderSelector
{};
template<class X, class S>
struct AdderSelector<AdditiveSchwarzMode,X,S>
{
typedef AdditiveAdder<S,X> Adder;
};
template<class X, class S>
struct AdderSelector<MultiplicativeSchwarzMode,X,S>
{
typedef MultiplicativeAdder<S,X> Adder;
};
template<class X, class S>
struct AdderSelector<SymmetricMultiplicativeSchwarzMode,X,S>
{
typedef MultiplicativeAdder<S,X> Adder;
};
/**
* @brief Helper template meta program for application of overlapping schwarz.
*
* The is needed because when using the multiplicative schwarz version one
* might still want to make multigrid symmetric, i.e. forward sweep when pre-
* and backward sweep when post-smoothing.
*
* @tparam T1 type of the vector with the subdomain solvers.
* @tparam T2 type of the vector with the subdomain vector fields.
* @tparam forward If true apply in a forward sweep.
*/
template<typename T1, typename T2, bool forward>
struct IteratorDirectionSelector
{
typedef T1 solver_vector;
typedef typename solver_vector::iterator solver_iterator;
typedef T2 subdomain_vector;
typedef typename subdomain_vector::const_iterator domain_iterator;
static solver_iterator begin(solver_vector& sv)
{
return sv.begin();
}
static solver_iterator end(solver_vector& sv)
{
return sv.end();
}
static domain_iterator begin(const subdomain_vector& sv)
{
return sv.begin();
}
static domain_iterator end(const subdomain_vector& sv)
{
return sv.end();
}
};
template<typename T1, typename T2>
struct IteratorDirectionSelector<T1,T2,false>
{
typedef T1 solver_vector;
typedef typename solver_vector::reverse_iterator solver_iterator;
typedef T2 subdomain_vector;
typedef typename subdomain_vector::const_reverse_iterator domain_iterator;
static solver_iterator begin(solver_vector& sv)
{
return sv.rbegin();
}
static solver_iterator end(solver_vector& sv)
{
return sv.rend();
}
static domain_iterator begin(const subdomain_vector& sv)
{
return sv.rbegin();
}
static domain_iterator end(const subdomain_vector& sv)
{
return sv.rend();
}
};
/**
* @brief Helper template meta program for application of overlapping schwarz.
*
* The is needed because when using the multiplicative schwarz version one
* might still want to make multigrid symmetric, i.e. forward sweep when pre-
* and backward sweep when post-smoothing.
* @tparam T The smoother to apply.
*/
template<class T>
struct SeqOverlappingSchwarzApplier
{
typedef T smoother;
typedef typename smoother::range_type range_type;
static void apply(smoother& sm, range_type& v, const range_type& b)
{
sm.template apply<true>(v, b);
}
};
template<class M, class X, class TD, class TA>
struct SeqOverlappingSchwarzApplier<SeqOverlappingSchwarz<M,X,SymmetricMultiplicativeSchwarzMode,TD,TA> >
{
typedef SeqOverlappingSchwarz<M,X,SymmetricMultiplicativeSchwarzMode,TD,TA> smoother;
typedef typename smoother::range_type range_type;
static void apply(smoother& sm, range_type& v, const range_type& b)
{
sm.template apply<true>(v, b);
sm.template apply<false>(v, b);
}
};
template<class T>
struct SeqOverlappingSchwarzAssembler
{};
template<class K, int n, class Al, class X, class Y>
struct SeqOverlappingSchwarzAssembler< DynamicMatrixSubdomainSolver< BCRSMatrix< FieldMatrix<K,n,n>, Al>, X, Y > >
{
typedef BCRSMatrix< FieldMatrix<K,n,n>, Al> matrix_type;
template<class RowToDomain, class Solvers, class SubDomains>
static std::size_t assembleLocalProblems(const RowToDomain& rowToDomain, const matrix_type& mat,
Solvers& solvers, const SubDomains& domains,
bool onTheFly);
};
#if HAVE_SUPERLU
template<class T>
struct SeqOverlappingSchwarzAssembler<SuperLU<T> >
{
typedef T matrix_type;
template<class RowToDomain, class Solvers, class SubDomains>
static std::size_t assembleLocalProblems(const RowToDomain& rowToDomain, const matrix_type& mat,
Solvers& solvers, const SubDomains& domains,
bool onTheFly);
};
#endif
template<class M,class X, class Y>
struct SeqOverlappingSchwarzAssemblerILUBase
{
typedef M matrix_type;
template<class RowToDomain, class Solvers, class SubDomains>
static std::size_t assembleLocalProblems(const RowToDomain& rowToDomain, const matrix_type& mat,
Solvers& solvers, const SubDomains& domains,
bool onTheFly);
};
template<class M,class X, class Y>
struct SeqOverlappingSchwarzAssembler<ILU0SubdomainSolver<M,X,Y> >
: public SeqOverlappingSchwarzAssemblerILUBase<M,X,Y>
{};
template<class M,class X, class Y>
struct SeqOverlappingSchwarzAssembler<ILUNSubdomainSolver<M,X,Y> >
: public SeqOverlappingSchwarzAssemblerILUBase<M,X,Y>
{};
/**
* @brief Sequential overlapping Schwarz preconditioner
*
* @tparam M The matrix type.
* @tparam X The range and domain type.
* @tparam TM The Schwarz mode. Currently supported modes are AdditiveSchwarzMode,
* MultiplicativeSchwarzMode, and SymmetricMultiplicativeSchwarzMode. (Default values is AdditiveSchwarzMode)
* @tparam TD The type of the local subdomain solver to be used.
* @tparam TA The type of the allocator to use.
*/
template<class M, class X, class TM=AdditiveSchwarzMode,
class TD=ILU0SubdomainSolver<M,X,X>, class TA=std::allocator<X> >
class SeqOverlappingSchwarz
: public Preconditioner<X,X>
{
public:
/**
* @brief The type of the matrix to precondition.
*/
typedef M matrix_type;
/**
* @brief The domain type of the preconditioner
*/
typedef X domain_type;
/**
* @brief The range type of the preconditioner.
*/
typedef X range_type;
/**
* @brief The mode (additive or multiplicative) of the Schwarz
* method.
*
* Either AdditiveSchwarzMode or MultiplicativeSchwarzMode
*/
typedef TM Mode;
/**
* @brief The field type of the preconditioner.
*/
typedef typename X::field_type field_type;
/** @brief The return type of the size method. */
typedef typename matrix_type::size_type size_type;
/** @brief The allocator to use. */
typedef TA allocator;
/** @brief The type for the subdomain to row index mapping. */
typedef std::set<size_type, std::less<size_type>,
typename TA::template rebind<size_type>::other>
subdomain_type;
/** @brief The vector type containing the subdomain to row index mapping. */
typedef std::vector<subdomain_type, typename TA::template rebind<subdomain_type>::other> subdomain_vector;
/** @brief The type for the row to subdomain mapping. */
typedef SLList<size_type, typename TA::template rebind<size_type>::other> subdomain_list;
/** @brief The vector type containing the row index to subdomain mapping. */
typedef std::vector<subdomain_list, typename TA::template rebind<subdomain_list>::other > rowtodomain_vector;
/** @brief The type for the subdomain solver in use. */
typedef TD slu;
/** @brief The vector type containing subdomain solvers. */
typedef std::vector<slu, typename TA::template rebind<slu>::other> slu_vector;
enum{
//! \brief The category the precondtioner is part of.
category = SolverCategory::sequential
};
/**
* @brief Construct the overlapping Schwarz method.
* @param mat The matrix to precondition.
* @param subDomains Array of sets of rowindices belonging to an overlapping
* subdomain
* @param relaxationFactor relaxation factor
* @param onTheFly_ If true the decomposition of the exact local solvers is
* computed on the fly for each subdomain and
* iteration step. If false all decompositions are computed in pre and
* only forward and backward substitution takes place
* in the iteration steps.
* @warning Each rowindex should be part of at least one subdomain!
*/
SeqOverlappingSchwarz(const matrix_type& mat, const subdomain_vector& subDomains,
field_type relaxationFactor=1, bool onTheFly_=true);
/**
* Construct the overlapping Schwarz method
* @param mat The matrix to precondition.
* @param rowToDomain The mapping of the rows onto the domains.
* @param relaxationFactor relaxation factor
* @param onTheFly_ If true the decomposition of the exact local solvers is
* computed on the fly for each subdomain and
* iteration step. If false all decompositions are computed in pre and
* only forward and backward substitution takes place
* in the iteration steps.
*/
SeqOverlappingSchwarz(const matrix_type& mat, const rowtodomain_vector& rowToDomain,
field_type relaxationFactor=1, bool onTheFly_=true);
/*!
\brief Prepare the preconditioner.
\copydoc Preconditioner::pre(X&,Y&)
*/
virtual void pre (X& x, X& b) {}
/*!
\brief Apply the precondtioner
\copydoc Preconditioner::apply(X&,const Y&)
*/
virtual void apply (X& v, const X& d);
template<bool forward>
void apply(X& v, const X& d);
/*!
\brief Clean up.
\copydoc Preconditioner::post(X&)
*/
virtual void post (X& x) {
Dune::dverb<<" avg nnz over subdomain is "<<nnz<<std::endl;
}
private:
const M& mat;
slu_vector solvers;
subdomain_vector subDomains;
field_type relax;
typename M::size_type maxlength;
std::size_t nnz;
bool onTheFly;
};
template<class I, class S, class D>
OverlappingSchwarzInitializer<I,S,D>::OverlappingSchwarzInitializer(InitializerList& il,
const IndexSet& idx,
const subdomain_vector& domains_)
: initializers(&il), indices(&idx), indexMaps(il.size()), domains(domains_)
{
}
template<class I, class S, class D>
void OverlappingSchwarzInitializer<I,S,D>::addRowNnz(const Iter& row)
{
typedef typename IndexSet::value_type::const_iterator iterator;
for(iterator domain=(*indices)[row.index()].begin(); domain != (*indices)[row.index()].end(); ++domain){
(*initializers)[*domain].addRowNnz(row, domains[*domain]);
indexMaps[*domain].insert(row.index());
}
}
template<class I, class S, class D>
void OverlappingSchwarzInitializer<I,S,D>::allocate()
{
std::for_each(initializers->begin(), initializers->end(),
std::mem_fun_ref(&AtomInitializer::allocateMatrixStorage));
std::for_each(initializers->begin(), initializers->end(),
std::mem_fun_ref(&AtomInitializer::allocateMarker));
}
template<class I, class S, class D>
void OverlappingSchwarzInitializer<I,S,D>::countEntries(const Iter& row, const CIter& col) const
{
typedef typename IndexSet::value_type::const_iterator iterator;
for(iterator domain=(*indices)[row.index()].begin(); domain != (*indices)[row.index()].end(); ++domain){
typename std::map<size_type,size_type>::const_iterator v = indexMaps[*domain].find(col.index());
if(v!= indexMaps[*domain].end()){
(*initializers)[*domain].countEntries(indexMaps[*domain].find(col.index())->second);
}
}
}
template<class I, class S, class D>
void OverlappingSchwarzInitializer<I,S,D>::calcColstart() const
{
std::for_each(initializers->begin(), initializers->end(),
std::mem_fun_ref(&AtomInitializer::calcColstart));
}
template<class I, class S, class D>
void OverlappingSchwarzInitializer<I,S,D>::copyValue(const Iter& row, const CIter& col) const
{
typedef typename IndexSet::value_type::const_iterator iterator;
for(iterator domain=(*indices)[row.index()].begin(); domain!= (*indices)[row.index()].end(); ++domain){
typename std::map<size_type,size_type>::const_iterator v = indexMaps[*domain].find(col.index());
if(v!= indexMaps[*domain].end()){
assert(indexMaps[*domain].end()!=indexMaps[*domain].find(row.index()));
(*initializers)[*domain].copyValue(col, indexMaps[*domain].find(row.index())->second,
v->second);
}
}
}
template<class I, class S, class D>
void OverlappingSchwarzInitializer<I,S,D>::createMatrix() const
{
indexMaps.clear();
indexMaps.swap(std::vector<IndexMap>(indexMaps));
std::for_each(initializers->begin(), initializers->end(),
std::mem_fun_ref(&AtomInitializer::createMatrix));
}
template<class I, class S, class D>
OverlappingSchwarzInitializer<I,S,D>::IndexMap::IndexMap()
: row(0)
{}
template<class I, class S, class D>
void OverlappingSchwarzInitializer<I,S,D>::IndexMap::insert(size_type grow)
{
assert(map_.find(grow)==map_.end());
map_.insert(std::make_pair(grow, row++));
}
template<class I, class S, class D>
typename OverlappingSchwarzInitializer<I,S,D>::IndexMap::const_iterator
OverlappingSchwarzInitializer<I,S,D>::IndexMap::find(size_type grow) const
{
return map_.find(grow);
}
template<class I, class S, class D>
typename OverlappingSchwarzInitializer<I,S,D>::IndexMap::iterator
OverlappingSchwarzInitializer<I,S,D>::IndexMap::find(size_type grow)
{
return map_.find(grow);
}
template<class I, class S, class D>
typename OverlappingSchwarzInitializer<I,S,D>::IndexMap::const_iterator
OverlappingSchwarzInitializer<I,S,D>::IndexMap::end() const
{
return map_.end();
}
template<class I, class S, class D>
typename OverlappingSchwarzInitializer<I,S,D>::IndexMap::iterator
OverlappingSchwarzInitializer<I,S,D>::IndexMap::end()
{
return map_.end();
}
template<class I, class S, class D>
typename OverlappingSchwarzInitializer<I,S,D>::IndexMap::const_iterator
OverlappingSchwarzInitializer<I,S,D>::IndexMap::begin() const
{
return map_.begin();
}
template<class I, class S, class D>
typename OverlappingSchwarzInitializer<I,S,D>::IndexMap::iterator
OverlappingSchwarzInitializer<I,S,D>::IndexMap::begin()
{
return map_.begin();
}
template<class M, class X, class TM, class TD, class TA>
SeqOverlappingSchwarz<M,X,TM,TD,TA>::SeqOverlappingSchwarz(const matrix_type& mat_, const rowtodomain_vector& rowToDomain,
field_type relaxationFactor, bool fly)
: mat(mat_), relax(relaxationFactor), onTheFly(fly)
{
typedef typename rowtodomain_vector::const_iterator RowDomainIterator;
typedef typename subdomain_list::const_iterator DomainIterator;
#ifdef DUNE_ISTL_WITH_CHECKING
assert(rowToDomain.size()==mat.N());
assert(rowToDomain.size()==mat.M());
for(RowDomainIterator iter=rowToDomain.begin(); iter != rowToDomain.end(); ++iter)
assert(iter->size()>0);
#endif
// calculate the number of domains
size_type domains=0;
for(RowDomainIterator iter=rowToDomain.begin(); iter != rowToDomain.end(); ++iter)
for(DomainIterator d=iter->begin(); d != iter->end(); ++d)
domains=std::max(domains, *d);
++domains;
solvers.resize(domains);
subDomains.resize(domains);
// initialize subdomains to row mapping from row to subdomain mapping
size_type row=0;
for(RowDomainIterator iter=rowToDomain.begin(); iter != rowToDomain.end(); ++iter, ++row)
for(DomainIterator d=iter->begin(); d != iter->end(); ++d)
subDomains[*d].insert(row);
#ifdef DUNE_ISTL_WITH_CHECKING
size_type i=0;
typedef typename subdomain_vector::const_iterator iterator;
for(iterator iter=subDomains.begin(); iter != subDomains.end(); ++iter){
typedef typename subdomain_type::const_iterator entry_iterator;
Dune::dvverb<<"domain "<<i++<<":";
for(entry_iterator entry = iter->begin(); entry != iter->end(); ++entry){
Dune::dvverb<<" "<<*entry;
}
Dune::dvverb<<std::endl;
}
#endif
maxlength = SeqOverlappingSchwarzAssembler<slu>
::assembleLocalProblems(rowToDomain, mat, solvers, subDomains, onTheFly);
}
template<class M, class X, class TM, class TD, class TA>
SeqOverlappingSchwarz<M,X,TM,TD,TA>::SeqOverlappingSchwarz(const matrix_type& mat_,
const subdomain_vector& sd,
field_type relaxationFactor,
bool fly)
: mat(mat_), solvers(sd.size()), subDomains(sd), relax(relaxationFactor),
onTheFly(fly)
{
typedef typename subdomain_vector::const_iterator DomainIterator;
#ifdef DUNE_ISTL_WITH_CHECKING
size_type i=0;
for(DomainIterator d=sd.begin(); d != sd.end(); ++d,++i){
//std::cout<<i<<": "<<d->size()<<std::endl;
assert(d->size()>0);
typedef typename DomainIterator::value_type::const_iterator entry_iterator;
Dune::dvverb<<"domain "<<i<<":";
for(entry_iterator entry = d->begin(); entry != d->end(); ++entry){
Dune::dvverb<<" "<<*entry;
}
Dune::dvverb<<std::endl;
}
#endif
// Create a row to subdomain mapping
rowtodomain_vector rowToDomain(mat.N());
size_type domainId=0;
for(DomainIterator domain=sd.begin(); domain != sd.end(); ++domain, ++domainId){
typedef typename subdomain_type::const_iterator iterator;
for(iterator row=domain->begin(); row != domain->end(); ++row)
rowToDomain[*row].push_back(domainId);
}
maxlength = SeqOverlappingSchwarzAssembler<slu>
::assembleLocalProblems(rowToDomain, mat, solvers, subDomains, onTheFly);
}
/**
template helper struct to determine the size of a domain for the
SeqOverlappingSchwarz solver
only implemented for BCRSMatrix<FieldMatrix<T,n,m>
*/
template<class M>
struct SeqOverlappingSchwarzDomainSize {};
template<typename T, typename A, int n, int m>
struct SeqOverlappingSchwarzDomainSize<BCRSMatrix<FieldMatrix<T,n,m>,A > >
{
template<class Domain>
static int size(const Domain & d)
{
assert(n==m);
return m*d.size();
}
};
template<class K, int n, class Al, class X, class Y>
template<class RowToDomain, class Solvers, class SubDomains>
std::size_t
SeqOverlappingSchwarzAssembler< DynamicMatrixSubdomainSolver< BCRSMatrix< FieldMatrix<K,n,n>, Al>, X, Y > >::
assembleLocalProblems(const RowToDomain& rowToDomain,
const matrix_type& mat,
Solvers& solvers,
const SubDomains& subDomains,
bool onTheFly)
{
typedef typename SubDomains::const_iterator DomainIterator;
std::size_t maxlength = 0;
assert(onTheFly);
for(DomainIterator domain=subDomains.begin();domain!=subDomains.end();++domain)
maxlength=std::max(maxlength, domain->size());
maxlength*=n;
return maxlength;
}
#if HAVE_SUPERLU
template<class T>
template<class RowToDomain, class Solvers, class SubDomains>
std::size_t SeqOverlappingSchwarzAssembler<SuperLU<T> >::assembleLocalProblems(const RowToDomain& rowToDomain,
const matrix_type& mat,
Solvers& solvers,
const SubDomains& subDomains,
bool onTheFly)
{
typedef typename std::vector<SuperMatrixInitializer<matrix_type> >::iterator InitializerIterator;
typedef typename SubDomains::const_iterator DomainIterator;
typedef typename Solvers::iterator SolverIterator;
std::size_t maxlength = 0;
if(onTheFly){
for(DomainIterator domain=subDomains.begin();domain!=subDomains.end();++domain)
maxlength=std::max(maxlength, domain->size());
maxlength*=mat[0].begin()->N();
}else{
// initialize the initializers
DomainIterator domain=subDomains.begin();
// Create the initializers list.
std::vector<SuperMatrixInitializer<matrix_type> > initializers(subDomains.size());
SolverIterator solver=solvers.begin();
for(InitializerIterator initializer=initializers.begin(); initializer!=initializers.end();
++initializer, ++solver, ++domain){
solver->mat.N_=SeqOverlappingSchwarzDomainSize<matrix_type>::size(*domain);
solver->mat.M_=SeqOverlappingSchwarzDomainSize<matrix_type>::size(*domain);
//solver->setVerbosity(true);
*initializer=SuperMatrixInitializer<matrix_type>(solver->mat);
}
// Set up the supermatrices according to the subdomains
typedef OverlappingSchwarzInitializer<std::vector<SuperMatrixInitializer<matrix_type> >,
RowToDomain, SubDomains> Initializer;
Initializer initializer(initializers, rowToDomain, subDomains);
copyToSuperMatrix(initializer, mat);
if(solvers.size()==1)
assert(solvers[0].mat==mat);
/* for(SolverIterator solver=solvers.begin(); solver!=solvers.end(); ++solver)
dPrint_CompCol_Matrix("superlu", &static_cast<SuperMatrix&>(solver->mat)); */
// Calculate the LU decompositions
std::for_each(solvers.begin(), solvers.end(), std::mem_fun_ref(&SuperLU<matrix_type>::decompose));
for(SolverIterator solver=solvers.begin(); solver!=solvers.end(); ++solver){
assert(solver->mat.N()==solver->mat.M());
maxlength=std::max(maxlength, solver->mat.N());
//writeCompColMatrixToMatlab(static_cast<SuperLUMatrix<M>&>(solver->mat), std::cout);
}
}
return maxlength;
}
#endif
template<class M,class X,class Y>
template<class RowToDomain, class Solvers, class SubDomains>
std::size_t SeqOverlappingSchwarzAssemblerILUBase<M,X,Y>::assembleLocalProblems(const RowToDomain& rowToDomain,
const matrix_type& mat,
Solvers& solvers,
const SubDomains& subDomains,
bool onTheFly)
{
typedef typename SubDomains::const_iterator DomainIterator;
typedef typename Solvers::iterator SolverIterator;
std::size_t maxlength = 0;
if(onTheFly){
for(DomainIterator domain=subDomains.begin();domain!=subDomains.end();++domain)
maxlength=std::max(maxlength, domain->size());
}else{
// initialize the solvers of the local prolems.
SolverIterator solver=solvers.begin();
for(DomainIterator domain=subDomains.begin(); domain!=subDomains.end();
++domain, ++solver){
solver->setSubMatrix(mat, *domain);
maxlength=std::max(maxlength, domain->size());
}
}
return maxlength;
}
template<class M, class X, class TM, class TD, class TA>
void SeqOverlappingSchwarz<M,X,TM,TD,TA>::apply(X& x, const X& b)
{
SeqOverlappingSchwarzApplier<SeqOverlappingSchwarz>::apply(*this, x, b);
}
template<class M, class X, class TM, class TD, class TA>
template<bool forward>
void SeqOverlappingSchwarz<M,X,TM,TD,TA>::apply(X& x, const X& b)
{
typedef typename X::block_type block;
typedef slu_vector solver_vector;
typedef typename IteratorDirectionSelector<solver_vector,subdomain_vector,forward>::solver_iterator iterator;
typedef typename IteratorDirectionSelector<solver_vector,subdomain_vector,forward>::domain_iterator
domain_iterator;
OverlappingAssigner<TD> assigner(maxlength, mat, b, x);
domain_iterator domain=IteratorDirectionSelector<solver_vector,subdomain_vector,forward>::begin(subDomains);
iterator solver = IteratorDirectionSelector<solver_vector,subdomain_vector,forward>::begin(solvers);
X v(x); // temporary for the update
v=0;
typedef typename AdderSelector<TM,X,TD >::Adder Adder;
Adder adder(v, x, assigner, relax);
nnz=0;
std::size_t no=0;
for(;domain != IteratorDirectionSelector<solver_vector,subdomain_vector,forward>::end(subDomains); ++domain){
//Copy rhs to C-array for SuperLU
std::for_each(domain->begin(), domain->end(), assigner);
assigner.resetIndexForNextDomain();
if(onTheFly){
// Create the subdomain solver
slu sdsolver;
sdsolver.setSubMatrix(mat, *domain);
// Apply
sdsolver.apply(assigner.lhs(), assigner.rhs());
//nnz+=sdsolver.nnz();
}else{
solver->apply(assigner.lhs(), assigner.rhs());
//nnz+=solver->nnz();
++solver;
}
++no;
//Add relaxed correction to from SuperLU to v
std::for_each(domain->begin(), domain->end(), adder);
assigner.resetIndexForNextDomain();
}
nnz/=no;
adder.axpy();
assigner.deallocate();
}
template<class K, int n, class Al, class X, class Y>
OverlappingAssigner< DynamicMatrixSubdomainSolver< BCRSMatrix< FieldMatrix<K,n,n>, Al>, X, Y > >
::OverlappingAssigner(std::size_t maxlength, const BCRSMatrix<FieldMatrix<K,n,n>, Al>& mat_,
const X& b_, Y& x_) :
mat(&mat_),
rhs_( new DynamicVector<field_type>(maxlength, 42) ),
lhs_( new DynamicVector<field_type>(maxlength, -42) ),
b(&b_),
x(&x_),
i(0),
maxlength_(maxlength)
{}
template<class K, int n, class Al, class X, class Y>
void
OverlappingAssigner< DynamicMatrixSubdomainSolver< BCRSMatrix< FieldMatrix<K,n,n>, Al>, X, Y > >
::deallocate()
{
delete rhs_;
delete lhs_;
}
template<class K, int n, class Al, class X, class Y>
void
OverlappingAssigner< DynamicMatrixSubdomainSolver< BCRSMatrix< FieldMatrix<K,n,n>, Al>, X, Y > >
::resetIndexForNextDomain()
{
i=0;
}
template<class K, int n, class Al, class X, class Y>
DynamicVector<K> &
OverlappingAssigner< DynamicMatrixSubdomainSolver< BCRSMatrix< FieldMatrix<K,n,n>, Al>, X, Y > >
::lhs()
{
return *lhs_;
}
template<class K, int n, class Al, class X, class Y>
DynamicVector<K> &
OverlappingAssigner< DynamicMatrixSubdomainSolver< BCRSMatrix< FieldMatrix<K,n,n>, Al>, X, Y > >
::rhs()
{
return *rhs_;
}
template<class K, int n, class Al, class X, class Y>
void
OverlappingAssigner< DynamicMatrixSubdomainSolver< BCRSMatrix< FieldMatrix<K,n,n>, Al>, X, Y > >
::relaxResult(field_type relax)
{
lhs() *= relax;
}
template<class K, int n, class Al, class X, class Y>
void
OverlappingAssigner< DynamicMatrixSubdomainSolver< BCRSMatrix< FieldMatrix<K,n,n>, Al>, X, Y > >
::operator()(const size_type& domainIndex)
{
lhs() = 0.0;
#if 0
//assign right hand side of current domainindex block
for(size_type j=0; j<n; ++j, ++i){
assert(i<maxlength_);
rhs()[i]=(*b)[domainIndex][j];
}
// loop over all Matrix row entries and calculate defect.
typedef typename matrix_type::ConstColIterator col_iterator;
// calculate defect for current row index block
for(col_iterator col=(*mat)[domainIndex].begin(); col!=(*mat)[domainIndex].end(); ++col){
block_type tmp(0.0);
(*col).mv((*x)[col.index()], tmp);
i-=n;
for(size_type j=0; j<n; ++j, ++i){
assert(i<maxlength_);
rhs()[i]-=tmp[j];
}
}
#else
//assign right hand side of current domainindex block
for(size_type j=0; j<n; ++j, ++i){
assert(i<maxlength_);
rhs()[i]=(*b)[domainIndex][j];
// loop over all Matrix row entries and calculate defect.
typedef typename matrix_type::ConstColIterator col_iterator;
// calculate defect for current row index block
for(col_iterator col=(*mat)[domainIndex].begin(); col!=(*mat)[domainIndex].end(); ++col){
for(size_type k=0; k<n; ++k){
rhs()[i]-=(*col)[j][k] * (*x)[col.index()][k];
}
}
}
#endif
}
template<class K, int n, class Al, class X, class Y>
void
OverlappingAssigner< DynamicMatrixSubdomainSolver< BCRSMatrix< FieldMatrix<K,n,n>, Al>, X, Y > >
::assignResult(block_type& res)
{
// assign the result of the local solve to the global vector
for(size_type j=0; j<n; ++j, ++i){
assert(i<maxlength_);
res[j]+=lhs()[i];
}
}
#if HAVE_SUPERLU
template<typename T, typename A, int n, int m>
OverlappingAssigner<SuperLU<BCRSMatrix<FieldMatrix<T,n,m>,A> > >
::OverlappingAssigner(std::size_t maxlength,
const BCRSMatrix<FieldMatrix<T,n,m>,A>& mat_,
const range_type& b_,
range_type& x_)
: mat(&mat_),
b(&b_),
x(&x_), i(0), maxlength_(maxlength)
{
rhs_ = new field_type[maxlength];
lhs_ = new field_type[maxlength];
}
template<typename T, typename A, int n, int m>
void OverlappingAssigner<SuperLU<BCRSMatrix<FieldMatrix<T,n,m>,A> > >::deallocate()
{
delete[] rhs_;
delete[] lhs_;
}
template<typename T, typename A, int n, int m>
void OverlappingAssigner<SuperLU<BCRSMatrix<FieldMatrix<T,n,m>,A> > >::operator()(const size_type& domainIndex)
{
//assign right hand side of current domainindex block
// rhs is an array of doubles!
// rhs[starti] = b[domainindex]
for(size_type j=0; j<n; ++j, ++i){
assert(i<maxlength_);
rhs_[i]=(*b)[domainIndex][j];
}
// loop over all Matrix row entries and calculate defect.
typedef typename matrix_type::ConstColIterator col_iterator;
// calculate defect for current row index block
for(col_iterator col=(*mat)[domainIndex].begin(); col!=(*mat)[domainIndex].end(); ++col){
block_type tmp;
(*col).mv((*x)[col.index()], tmp);
i-=n;
for(size_type j=0; j<n; ++j, ++i){
assert(i<maxlength_);
rhs_[i]-=tmp[j];
}
}
}
template<typename T, typename A, int n, int m>
void OverlappingAssigner<SuperLU<BCRSMatrix<FieldMatrix<T,n,m>,A> > >::relaxResult(field_type relax)
{
for(size_type j=i+n; i<j; ++i){
assert(i<maxlength_);
lhs_[i]*=relax;
}
i-=n;
}
template<typename T, typename A, int n, int m>
void OverlappingAssigner<SuperLU<BCRSMatrix<FieldMatrix<T,n,m>,A> > >::assignResult(block_type& res)
{
// assign the result of the local solve to the global vector
for(size_type j=0; j<n; ++j, ++i){
assert(i<maxlength_);
res[j]+=lhs_[i];
}
}
template<typename T, typename A, int n, int m>
void OverlappingAssigner<SuperLU<BCRSMatrix<FieldMatrix<T,n,m>,A> > >::resetIndexForNextDomain()
{
i=0;
}
template<typename T, typename A, int n, int m>
typename OverlappingAssigner<SuperLU<BCRSMatrix<FieldMatrix<T,n,m>,A> > >::field_type*
OverlappingAssigner<SuperLU<BCRSMatrix<FieldMatrix<T,n,m>,A> > >::lhs()
{
return lhs_;
}
template<typename T, typename A, int n, int m>
typename OverlappingAssigner<SuperLU<BCRSMatrix<FieldMatrix<T,n,m>,A> > >::field_type*
OverlappingAssigner<SuperLU<BCRSMatrix<FieldMatrix<T,n,m>,A> > >::rhs()
{
return rhs_;
}
#endif
template<class M, class X, class Y>
OverlappingAssignerILUBase<M,X,Y>::OverlappingAssignerILUBase(std::size_t maxlength,
const M& mat_,
const Y& b_,
X& x_)
: mat(&mat_),
b(&b_),
x(&x_), i(0)
{
rhs_= new Y(maxlength);
lhs_ = new X(maxlength);
}
template<class M, class X, class Y>
void OverlappingAssignerILUBase<M,X,Y>::deallocate()
{
delete rhs_;
delete lhs_;
}
template<class M, class X, class Y>
void OverlappingAssignerILUBase<M,X,Y>::operator()(const size_type& domainIndex)
{
(*rhs_)[i]=(*b)[domainIndex];
// loop over all Matrix row entries and calculate defect.
typedef typename matrix_type::ConstColIterator col_iterator;
// calculate defect for current row index block
for(col_iterator col=(*mat)[domainIndex].begin(); col!=(*mat)[domainIndex].end(); ++col){
(*col).mmv((*x)[col.index()], (*rhs_)[i]);
}
// Goto next local index
++i;
}
template<class M, class X, class Y>
void OverlappingAssignerILUBase<M,X,Y>::relaxResult(field_type relax)
{
(*lhs_)[i]*=relax;
}
template<class M, class X, class Y>
void OverlappingAssignerILUBase<M,X,Y>::assignResult(block_type& res)
{
res+=(*lhs_)[i++];
}
template<class M, class X, class Y>
X& OverlappingAssignerILUBase<M,X,Y>::lhs()
{
return *lhs_;
}
template<class M, class X, class Y>
Y& OverlappingAssignerILUBase<M,X,Y>::rhs()
{
return *rhs_;
}
template<class M, class X, class Y>
void OverlappingAssignerILUBase<M,X,Y>::resetIndexForNextDomain()
{
i=0;
}
template<typename S, typename T, typename A, int n>
AdditiveAdder<S,BlockVector<FieldVector<T,n>,A> >::AdditiveAdder(BlockVector<FieldVector<T,n>,A>& v_,
BlockVector<FieldVector<T,n>,A>& x_,
OverlappingAssigner<S>& assigner_,
const T& relax_)
: v(&v_), x(&x_), assigner(&assigner_), relax(relax_)
{}
template<typename S, typename T, typename A, int n>
void AdditiveAdder<S,BlockVector<FieldVector<T,n>,A> >::operator()(const size_type& domainIndex)
{
// add the result of the local solve to the current update
assigner->assignResult((*v)[domainIndex]);
}
template<typename S, typename T, typename A, int n>
void AdditiveAdder<S,BlockVector<FieldVector<T,n>,A> >::axpy()
{
// relax the update and add it to the current guess.
x->axpy(relax,*v);
}
template<typename S, typename T, typename A, int n>
MultiplicativeAdder<S,BlockVector<FieldVector<T,n>,A> >
::MultiplicativeAdder(BlockVector<FieldVector<T,n>,A>& v_,
BlockVector<FieldVector<T,n>,A>& x_,
OverlappingAssigner<S>& assigner_, const T& relax_)
: x(&x_), assigner(&assigner_), relax(relax_)
{}
template<typename S,typename T, typename A, int n>
void MultiplicativeAdder<S,BlockVector<FieldVector<T,n>,A> >::operator()(const size_type& domainIndex)
{
// add the result of the local solve to the current guess
assigner->relaxResult(relax);
assigner->assignResult((*x)[domainIndex]);
}
template<typename S,typename T, typename A, int n>
void MultiplicativeAdder<S,BlockVector<FieldVector<T,n>,A> >::axpy()
{
// nothing to do, as the corrections already relaxed and added in operator()
}
/** @} */
}
#endif
|