/usr/include/dune/istl/paamg/amg.hh is in libdune-istl-dev 2.2.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 | // $Id: amg.hh 1762 2013-01-19 11:21:36Z mblatt $
#ifndef DUNE_AMG_AMG_HH
#define DUNE_AMG_AMG_HH
#include<memory>
#include<dune/common/exceptions.hh>
#include<dune/istl/paamg/smoother.hh>
#include<dune/istl/paamg/transfer.hh>
#include<dune/istl/paamg/hierarchy.hh>
#include<dune/istl/solvers.hh>
#include<dune/istl/scalarproducts.hh>
#include<dune/istl/superlu.hh>
#include<dune/istl/solvertype.hh>
#include<dune/common/typetraits.hh>
#include<dune/common/exceptions.hh>
namespace Dune
{
namespace Amg
{
/**
* @defgroup ISTL_PAAMG Parallel Algebraic Multigrid
* @ingroup ISTL_Prec
* @brief A Parallel Algebraic Multigrid based on Agglomeration.
*/
/**
* @addtogroup ISTL_PAAMG
*
* @{
*/
/** @file
* @author Markus Blatt
* @brief The AMG preconditioner.
*/
template<class M, class X, class S, class P, class K, class A>
class KAMG;
template<class T>
class KAmgTwoGrid;
/**
* @brief Parallel algebraic multigrid based on agglomeration.
*
* \tparam M The matrix type
* \tparam X The vector type
* \tparam A An allocator for X
*/
template<class M, class X, class S, class PI=SequentialInformation,
class A=std::allocator<X> >
class AMG : public Preconditioner<X,X>
{
template<class M1, class X1, class S1, class P1, class K1, class A1>
friend class KAMG;
friend class KAmgTwoGrid<AMG>;
public:
/** @brief The matrix operator type. */
typedef M Operator;
/**
* @brief The type of the parallel information.
* Either OwnerOverlapCommunication or another type
* describing the parallel data distribution and
* providing communication methods.
*/
typedef PI ParallelInformation;
/** @brief The operator hierarchy type. */
typedef MatrixHierarchy<M, ParallelInformation, A> OperatorHierarchy;
/** @brief The parallal data distribution hierarchy type. */
typedef typename OperatorHierarchy::ParallelInformationHierarchy ParallelInformationHierarchy;
/** @brief The domain type. */
typedef X Domain;
/** @brief The range type. */
typedef X Range;
/** @brief the type of the coarse solver. */
typedef InverseOperator<X,X> CoarseSolver;
/**
* @brief The type of the smoother.
*
* One of the preconditioners implementing the Preconditioner interface.
* Note that the smoother has to fit the ParallelInformation.*/
typedef S Smoother;
/** @brief The argument type for the construction of the smoother. */
typedef typename SmootherTraits<Smoother>::Arguments SmootherArgs;
enum {
/** @brief The solver category. */
category = S::category
};
/**
* @brief Construct a new amg with a specific coarse solver.
* @param matrices The already set up matix hierarchy.
* @param coarseSolver The set up solver to use on the coarse
* grid, must match the coarse matrix in the matrix hierachy.
* @param smootherArgs The arguments needed for thesmoother to use
* for pre and post smoothing
* @param gamma The number of subcycles. 1 for V-cycle, 2 for W-cycle.
* @param preSmoothingSteps The number of smoothing steps for premoothing.
* @param postSmoothingSteps The number of smoothing steps for postmoothing.
* @deprecated Use constructor
* AMG(const OperatorHierarchy&, CoarseSolver&, const SmootherArgs, const Parameters&)
* instead.
* All parameters can be set in the criterion!
*/
AMG(const OperatorHierarchy& matrices, CoarseSolver& coarseSolver,
const SmootherArgs& smootherArgs, std::size_t gamma,
std::size_t preSmoothingSteps,
std::size_t postSmoothingSteps,
bool additive=false) DUNE_DEPRECATED;
/**
* @brief Construct a new amg with a specific coarse solver.
* @param matrices The already set up matix hierarchy.
* @param coarseSolver The set up solver to use on the coarse
* grid, must match the coarse matrix in the matrix hierachy.
* @param smootherArgs The arguments needed for thesmoother to use
* for pre and post smoothing.
* @param parms The parameters for the AMG.
*/
AMG(const OperatorHierarchy& matrices, CoarseSolver& coarseSolver,
const SmootherArgs& smootherArgs, const Parameters& parms);
/**
* @brief Construct an AMG with an inexact coarse solver based on the smoother.
*
* As coarse solver a preconditioned CG method with the smoother as preconditioner
* will be used. The matrix hierarchy is built automatically.
* @param fineOperator The operator on the fine level.
* @param criterion The criterion describing the coarsening strategy. E. g. SymmetricCriterion
* or UnsymmetricCriterion.
* @param smootherArgs The arguments for constructing the smoothers.
* @param gamma 1 for V-cycle, 2 for W-cycle
* @param preSmoothingSteps The number of smoothing steps for premoothing.
* @param postSmoothingSteps The number of smoothing steps for postmoothing.
* @param pinfo The information about the parallel distribution of the data.
* @deprecated Use
* AMG(const Operator&, const C&, const SmootherArgs, const ParallelInformation)
* instead.
* All parameters can be set in the criterion!
*/
template<class C>
AMG(const Operator& fineOperator, const C& criterion,
const SmootherArgs& smootherArgs, std::size_t gamma,
std::size_t preSmoothingSteps,
std::size_t postSmoothingSteps,
bool additive=false,
const ParallelInformation& pinfo=ParallelInformation()) DUNE_DEPRECATED;
/**
* @brief Construct an AMG with an inexact coarse solver based on the smoother.
*
* As coarse solver a preconditioned CG method with the smoother as preconditioner
* will be used. The matrix hierarchy is built automatically.
* @param fineOperator The operator on the fine level.
* @param criterion The criterion describing the coarsening strategy. E. g. SymmetricCriterion
* or UnsymmetricCriterion, and providing the parameters.
* @param smootherArgs The arguments for constructing the smoothers.
* @param pinfo The information about the parallel distribution of the data.
*/
template<class C>
AMG(const Operator& fineOperator, const C& criterion,
const SmootherArgs& smootherArgs,
const ParallelInformation& pinfo=ParallelInformation());
~AMG();
/** \copydoc Preconditioner::pre */
void pre(Domain& x, Range& b);
/** \copydoc Preconditioner::apply */
void apply(Domain& v, const Range& d);
/** \copydoc Preconditioner::post */
void post(Domain& x);
/**
* @brief Get the aggregate number of each unknown on the coarsest level.
* @param cont The random access container to store the numbers in.
*/
template<class A1>
void getCoarsestAggregateNumbers(std::vector<std::size_t,A1>& cont);
std::size_t levels();
std::size_t maxlevels();
/**
* @brief Recalculate the matrix hierarchy.
*
* It is assumed that the coarsening for the changed fine level
* matrix would yield the same aggregates. In this case it suffices
* to recalculate all the Galerkin products for the matrices of the
* coarser levels.
*/
void recalculateHierarchy()
{
matrices_->recalculateGalerkin(NegateSet<typename PI::OwnerSet>());
}
/**
* @brief Check whether the coarse solver used is a direct solver.
* @return True if the coarse level solver is a direct solver.
*/
bool usesDirectCoarseLevelSolver() const;
private:
/** @brief Multigrid cycle on a level. */
void mgc();
typename Hierarchy<Smoother,A>::Iterator smoother;
typename OperatorHierarchy::ParallelMatrixHierarchy::ConstIterator matrix;
typename ParallelInformationHierarchy::Iterator pinfo;
typename OperatorHierarchy::RedistributeInfoList::const_iterator redist;
typename OperatorHierarchy::AggregatesMapList::const_iterator aggregates;
typename Hierarchy<Domain,A>::Iterator lhs;
typename Hierarchy<Domain,A>::Iterator update;
typename Hierarchy<Range,A>::Iterator rhs;
void additiveMgc();
/** @brief Apply pre smoothing on the current level. */
void presmooth();
/** @brief Apply post smoothing on the current level. */
void postsmooth();
/**
* @brief Move the iterators to the finer level
* @*/
void moveToFineLevel(bool processedFineLevel);
/** @brief Move the iterators to the coarser level */
bool moveToCoarseLevel();
/** @brief Initialize iterators over levels with fine level */
void initIteratorsWithFineLevel();
/** @brief The matrix we solve. */
OperatorHierarchy* matrices_;
/** @brief The arguments to construct the smoother */
SmootherArgs smootherArgs_;
/** @brief The hierarchy of the smoothers. */
Hierarchy<Smoother,A> smoothers_;
/** @brief The solver of the coarsest level. */
CoarseSolver* solver_;
/** @brief The right hand side of our problem. */
Hierarchy<Range,A>* rhs_;
/** @brief The left approximate solution of our problem. */
Hierarchy<Domain,A>* lhs_;
/** @brief The total update for the outer solver. */
Hierarchy<Domain,A>* update_;
/** @brief The type of the chooser of the scalar product. */
typedef Dune::ScalarProductChooser<X,PI,M::category> ScalarProductChooser;
/** @brief The type of the scalar product for the coarse solver. */
typedef typename ScalarProductChooser::ScalarProduct ScalarProduct;
/** @brief Scalar product on the coarse level. */
ScalarProduct* scalarProduct_;
/** @brief Gamma, 1 for V-cycle and 2 for W-cycle. */
std::size_t gamma_;
/** @brief The number of pre and postsmoothing steps. */
std::size_t preSteps_;
/** @brief The number of postsmoothing steps. */
std::size_t postSteps_;
std::size_t level;
bool buildHierarchy_;
bool additive;
bool coarsesolverconverged;
Smoother *coarseSmoother_;
/** @brief The verbosity level. */
std::size_t verbosity_;
};
template<class M, class X, class S, class PI, class A>
AMG<M,X,S,PI,A>::AMG(const OperatorHierarchy& matrices, CoarseSolver& coarseSolver,
const SmootherArgs& smootherArgs,
std::size_t gamma, std::size_t preSmoothingSteps,
std::size_t postSmoothingSteps, bool additive_)
: matrices_(&matrices), smootherArgs_(smootherArgs),
smoothers_(), solver_(&coarseSolver), scalarProduct_(0),
gamma_(gamma), preSteps_(preSmoothingSteps), postSteps_(postSmoothingSteps), buildHierarchy_(false),
additive(additive_), coarsesolverconverged(true),
coarseSmoother_(), verbosity_(2)
{
assert(matrices_->isBuilt());
// build the necessary smoother hierarchies
matrices_->coarsenSmoother(smoothers_, smootherArgs_);
}
template<class M, class X, class S, class PI, class A>
AMG<M,X,S,PI,A>::AMG(const OperatorHierarchy& matrices, CoarseSolver& coarseSolver,
const SmootherArgs& smootherArgs,
const Parameters& parms)
: matrices_(&matrices), smootherArgs_(smootherArgs),
smoothers_(), solver_(&coarseSolver), scalarProduct_(0),
gamma_(parms.getGamma()), preSteps_(parms.getNoPreSmoothSteps()),
postSteps_(parms.getNoPostSmoothSteps()), buildHierarchy_(false),
additive(parms.getAdditive()), coarsesolverconverged(true),
coarseSmoother_(), verbosity_(parms.debugLevel())
{
assert(matrices_->isBuilt());
// build the necessary smoother hierarchies
matrices_->coarsenSmoother(smoothers_, smootherArgs_);
}
template<class M, class X, class S, class PI, class A>
template<class C>
AMG<M,X,S,PI,A>::AMG(const Operator& matrix,
const C& criterion,
const SmootherArgs& smootherArgs,
std::size_t gamma, std::size_t preSmoothingSteps,
std::size_t postSmoothingSteps,
bool additive_,
const PI& pinfo)
: smootherArgs_(smootherArgs),
smoothers_(), solver_(), scalarProduct_(0), gamma_(gamma),
preSteps_(preSmoothingSteps), postSteps_(postSmoothingSteps), buildHierarchy_(true),
additive(additive_), coarsesolverconverged(true),
coarseSmoother_(), verbosity_(criterion.debugLevel())
{
dune_static_assert(static_cast<int>(M::category)==static_cast<int>(S::category),
"Matrix and Solver must match in terms of category!");
// TODO: reestablish compile time checks.
//dune_static_assert(static_cast<int>(PI::category)==static_cast<int>(S::category),
// "Matrix and Solver must match in terms of category!");
Timer watch;
matrices_ = new OperatorHierarchy(const_cast<Operator&>(matrix), pinfo);
matrices_->template build<NegateSet<typename PI::OwnerSet> >(criterion);
// build the necessary smoother hierarchies
matrices_->coarsenSmoother(smoothers_, smootherArgs_);
if(verbosity_>0 && matrices_->parallelInformation().finest()->communicator().rank()==0)
std::cout<<"Building Hierarchy of "<<matrices_->maxlevels()<<" levels took "<<watch.elapsed()<<" seconds."<<std::endl;
}
template<class M, class X, class S, class PI, class A>
template<class C>
AMG<M,X,S,PI,A>::AMG(const Operator& matrix,
const C& criterion,
const SmootherArgs& smootherArgs,
const PI& pinfo)
: smootherArgs_(smootherArgs),
smoothers_(), solver_(), scalarProduct_(0),
gamma_(criterion.getGamma()), preSteps_(criterion.getNoPreSmoothSteps()),
postSteps_(criterion.getNoPostSmoothSteps()), buildHierarchy_(true),
additive(criterion.getAdditive()), coarsesolverconverged(true),
coarseSmoother_(), verbosity_(criterion.debugLevel())
{
dune_static_assert(static_cast<int>(M::category)==static_cast<int>(S::category),
"Matrix and Solver must match in terms of category!");
// TODO: reestablish compile time checks.
//dune_static_assert(static_cast<int>(PI::category)==static_cast<int>(S::category),
// "Matrix and Solver must match in terms of category!");
Timer watch;
matrices_ = new OperatorHierarchy(const_cast<Operator&>(matrix), pinfo);
matrices_->template build<NegateSet<typename PI::OwnerSet> >(criterion);
// build the necessary smoother hierarchies
matrices_->coarsenSmoother(smoothers_, smootherArgs_);
if(verbosity_>0 && matrices_->parallelInformation().finest()->communicator().rank()==0)
std::cout<<"Building Hierarchy of "<<matrices_->maxlevels()<<" levels took "<<watch.elapsed()<<" seconds."<<std::endl;
}
template<class M, class X, class S, class PI, class A>
AMG<M,X,S,PI,A>::~AMG()
{
if(buildHierarchy_){
delete matrices_;
}
if(scalarProduct_)
delete scalarProduct_;
}
template<class M, class X, class S, class PI, class A>
void AMG<M,X,S,PI,A>::pre(Domain& x, Range& b)
{
// Detect Matrix rows where all offdiagonal entries are
// zero and set x such that A_dd*x_d=b_d
// Thus users can be more careless when setting up their linear
// systems.
typedef typename M::matrix_type Matrix;
typedef typename Matrix::ConstRowIterator RowIter;
typedef typename Matrix::ConstColIterator ColIter;
typedef typename Matrix::block_type Block;
Block zero;
zero=typename Matrix::field_type();
const Matrix& mat=matrices_->matrices().finest()->getmat();
for(RowIter row=mat.begin(); row!=mat.end(); ++row){
bool isDirichlet = true;
bool hasDiagonal = false;
Block diagonal;
for(ColIter col=row->begin(); col!=row->end(); ++col){
if(row.index()==col.index()){
diagonal = *col;
hasDiagonal = false;
}else{
if(*col!=zero)
isDirichlet = false;
}
}
if(isDirichlet && hasDiagonal)
diagonal.solve(x[row.index()], b[row.index()]);
}
if(smoothers_.levels()>0)
smoothers_.finest()->pre(x,b);
else
// No smoother to make x consistent! Do it by hand
matrices_->parallelInformation().coarsest()->copyOwnerToAll(x,x);
Range* copy = new Range(b);
rhs_ = new Hierarchy<Range,A>(*copy);
Domain* dcopy = new Domain(x);
lhs_ = new Hierarchy<Domain,A>(*dcopy);
dcopy = new Domain(x);
update_ = new Hierarchy<Domain,A>(*dcopy);
matrices_->coarsenVector(*rhs_);
matrices_->coarsenVector(*lhs_);
matrices_->coarsenVector(*update_);
// Preprocess all smoothers
typedef typename Hierarchy<Smoother,A>::Iterator Iterator;
typedef typename Hierarchy<Range,A>::Iterator RIterator;
typedef typename Hierarchy<Domain,A>::Iterator DIterator;
Iterator coarsest = smoothers_.coarsest();
Iterator smoother = smoothers_.finest();
RIterator rhs = rhs_->finest();
DIterator lhs = lhs_->finest();
if(smoothers_.levels()>0){
assert(lhs_->levels()==rhs_->levels());
assert(smoothers_.levels()==lhs_->levels() || matrices_->levels()==matrices_->maxlevels());
assert(smoothers_.levels()+1==lhs_->levels() || matrices_->levels()<matrices_->maxlevels());
if(smoother!=coarsest)
for(++smoother, ++lhs, ++rhs; smoother != coarsest; ++smoother, ++lhs, ++rhs)
smoother->pre(*lhs,*rhs);
smoother->pre(*lhs,*rhs);
}
// The preconditioner might change x and b. So we have to
// copy the changes to the original vectors.
x = *lhs_->finest();
b = *rhs_->finest();
if(buildHierarchy_ && matrices_->levels()==matrices_->maxlevels()){
// We have the carsest level. Create the coarse Solver
SmootherArgs sargs(smootherArgs_);
sargs.iterations = 1;
typename ConstructionTraits<Smoother>::Arguments cargs;
cargs.setArgs(sargs);
if(matrices_->redistributeInformation().back().isSetup()){
// Solve on the redistributed partitioning
cargs.setMatrix(matrices_->matrices().coarsest().getRedistributed().getmat());
cargs.setComm(matrices_->parallelInformation().coarsest().getRedistributed());
coarseSmoother_ = ConstructionTraits<Smoother>::construct(cargs);
scalarProduct_ = ScalarProductChooser::construct(matrices_->parallelInformation().coarsest().getRedistributed());
}else{
cargs.setMatrix(matrices_->matrices().coarsest()->getmat());
cargs.setComm(*matrices_->parallelInformation().coarsest());
coarseSmoother_ = ConstructionTraits<Smoother>::construct(cargs);
scalarProduct_ = ScalarProductChooser::construct(*matrices_->parallelInformation().coarsest());
}
#if HAVE_SUPERLU
// Use superlu if we are purely sequential or with only one processor on the coarsest level.
if(is_same<ParallelInformation,SequentialInformation>::value // sequential mode
|| matrices_->parallelInformation().coarsest()->communicator().size()==1 //parallel mode and only one processor
|| (matrices_->parallelInformation().coarsest().isRedistributed()
&& matrices_->parallelInformation().coarsest().getRedistributed().communicator().size()==1
&& matrices_->parallelInformation().coarsest().getRedistributed().communicator().size()>0)){ // redistribute and 1 proc
if(verbosity_>0 && matrices_->parallelInformation().coarsest()->communicator().rank()==0)
std::cout<<"Using superlu"<<std::endl;
if(matrices_->parallelInformation().coarsest().isRedistributed())
{
if(matrices_->matrices().coarsest().getRedistributed().getmat().N()>0)
// We are still participating on this level
solver_ = new SuperLU<typename M::matrix_type>(matrices_->matrices().coarsest().getRedistributed().getmat());
else
solver_ = 0;
}else
solver_ = new SuperLU<typename M::matrix_type>(matrices_->matrices().coarsest()->getmat());
}else
#endif
{
if(matrices_->parallelInformation().coarsest().isRedistributed())
{
if(matrices_->matrices().coarsest().getRedistributed().getmat().N()>0)
// We are still participating on this level
solver_ = new BiCGSTABSolver<X>(const_cast<M&>(matrices_->matrices().coarsest().getRedistributed()),
*scalarProduct_,
*coarseSmoother_, 1E-2, 10000, 0);
else
solver_ = 0;
}else
solver_ = new BiCGSTABSolver<X>(const_cast<M&>(*matrices_->matrices().coarsest()),
*scalarProduct_,
*coarseSmoother_, 1E-2, 1000, 0);
}
}
}
template<class M, class X, class S, class PI, class A>
std::size_t AMG<M,X,S,PI,A>::levels()
{
return matrices_->levels();
}
template<class M, class X, class S, class PI, class A>
std::size_t AMG<M,X,S,PI,A>::maxlevels()
{
return matrices_->maxlevels();
}
/** \copydoc Preconditioner::apply */
template<class M, class X, class S, class PI, class A>
void AMG<M,X,S,PI,A>::apply(Domain& v, const Range& d)
{
if(additive){
*(rhs_->finest())=d;
additiveMgc();
v=*lhs_->finest();
}else{
// Init all iterators for the current level
initIteratorsWithFineLevel();
*lhs = v;
*rhs = d;
*update=0;
level=0;
mgc();
if(postSteps_==0||matrices_->maxlevels()==1)
pinfo->copyOwnerToAll(*update, *update);
v=*update;
}
}
template<class M, class X, class S, class PI, class A>
void AMG<M,X,S,PI,A>::initIteratorsWithFineLevel()
{
smoother = smoothers_.finest();
matrix = matrices_->matrices().finest();
pinfo = matrices_->parallelInformation().finest();
redist =
matrices_->redistributeInformation().begin();
aggregates = matrices_->aggregatesMaps().begin();
lhs = lhs_->finest();
update = update_->finest();
rhs = rhs_->finest();
}
template<class M, class X, class S, class PI, class A>
bool AMG<M,X,S,PI,A>
::moveToCoarseLevel()
{
bool processNextLevel=true;
if(redist->isSetup()){
redist->redistribute(static_cast<const Range&>(*rhs), rhs.getRedistributed());
processNextLevel =rhs.getRedistributed().size()>0;
if(processNextLevel){
//restrict defect to coarse level right hand side.
typename Hierarchy<Range,A>::Iterator fineRhs = rhs++;
++pinfo;
Transfer<typename OperatorHierarchy::AggregatesMap::AggregateDescriptor,Range,ParallelInformation>
::restrict(*(*aggregates), *rhs, static_cast<const Range&>(fineRhs.getRedistributed()), *pinfo);
}
}else{
//restrict defect to coarse level right hand side.
typename Hierarchy<Range,A>::Iterator fineRhs = rhs++;
++pinfo;
Transfer<typename OperatorHierarchy::AggregatesMap::AggregateDescriptor,Range,ParallelInformation>
::restrict(*(*aggregates), *rhs, static_cast<const Range&>(*fineRhs), *pinfo);
}
if(processNextLevel){
// prepare coarse system
++lhs;
++update;
++matrix;
++level;
++redist;
if(matrix != matrices_->matrices().coarsest() || matrices_->levels()<matrices_->maxlevels()){
// next level is not the globally coarsest one
++smoother;
++aggregates;
}
// prepare the update on the next level
*update=0;
}
return processNextLevel;
}
template<class M, class X, class S, class PI, class A>
void AMG<M,X,S,PI,A>
::moveToFineLevel(bool processNextLevel)
{
if(processNextLevel){
if(matrix != matrices_->matrices().coarsest() || matrices_->levels()<matrices_->maxlevels()){
// previous level is not the globally coarsest one
--smoother;
--aggregates;
}
--redist;
--level;
//prolongate and add the correction (update is in coarse left hand side)
--matrix;
//typename Hierarchy<Domain,A>::Iterator coarseLhs = lhs--;
--lhs;
--pinfo;
}
if(redist->isSetup()){
// Need to redistribute during prolongate
lhs.getRedistributed()=0;
Transfer<typename OperatorHierarchy::AggregatesMap::AggregateDescriptor,Range,ParallelInformation>
::prolongate(*(*aggregates), *update, *lhs, lhs.getRedistributed(), matrices_->getProlongationDampingFactor(),
*pinfo, *redist);
}else{
*lhs=0;
Transfer<typename OperatorHierarchy::AggregatesMap::AggregateDescriptor,Range,ParallelInformation>
::prolongate(*(*aggregates), *update, *lhs,
matrices_->getProlongationDampingFactor(), *pinfo);
}
if(processNextLevel){
--update;
--rhs;
}
*update += *lhs;
}
template<class M, class X, class S, class PI, class A>
void AMG<M,X,S,PI,A>
::presmooth()
{
for(std::size_t i=0; i < preSteps_; ++i){
*lhs=0;
SmootherApplier<S>::preSmooth(*smoother, *lhs, *rhs);
// Accumulate update
*update += *lhs;
// update defect
matrix->applyscaleadd(-1,static_cast<const Domain&>(*lhs), *rhs);
pinfo->project(*rhs);
}
}
template<class M, class X, class S, class PI, class A>
void AMG<M,X,S,PI,A>
::postsmooth()
{
for(std::size_t i=0; i < postSteps_; ++i){
// update defect
matrix->applyscaleadd(-1,static_cast<const Domain&>(*lhs), *rhs);
*lhs=0;
pinfo->project(*rhs);
SmootherApplier<S>::postSmooth(*smoother, *lhs, *rhs);
// Accumulate update
*update += *lhs;
}
}
template<class M, class X, class S, class PI, class A>
bool AMG<M,X,S,PI,A>::usesDirectCoarseLevelSolver() const
{
return IsDirectSolver< CoarseSolver>::value;
}
template<class M, class X, class S, class PI, class A>
void AMG<M,X,S,PI,A>::mgc(){
if(matrix == matrices_->matrices().coarsest() && levels()==maxlevels()){
// Solve directly
InverseOperatorResult res;
res.converged=true; // If we do not compute this flag will not get updated
if(redist->isSetup()){
redist->redistribute(*rhs, rhs.getRedistributed());
if(rhs.getRedistributed().size()>0){
// We are still participating in the computation
pinfo.getRedistributed().copyOwnerToAll(rhs.getRedistributed(), rhs.getRedistributed());
solver_->apply(update.getRedistributed(), rhs.getRedistributed(), res);
}
redist->redistributeBackward(*update, update.getRedistributed());
pinfo->copyOwnerToAll(*update, *update);
}else{
pinfo->copyOwnerToAll(*rhs, *rhs);
solver_->apply(*update, *rhs, res);
}
if (!res.converged)
coarsesolverconverged = false;
}else{
// presmoothing
presmooth();
#ifndef DUNE_AMG_NO_COARSEGRIDCORRECTION
bool processNextLevel = moveToCoarseLevel();
if(processNextLevel){
// next level
for(std::size_t i=0; i<gamma_; i++)
mgc();
}
moveToFineLevel(processNextLevel);
#else
*lhs=0;
#endif
if(matrix == matrices_->matrices().finest()){
coarsesolverconverged = matrices_->parallelInformation().finest()->communicator().prod(coarsesolverconverged);
if(!coarsesolverconverged)
DUNE_THROW(MathError, "Coarse solver did not converge");
}
// postsmoothing
postsmooth();
}
}
template<class M, class X, class S, class PI, class A>
void AMG<M,X,S,PI,A>::additiveMgc(){
// restrict residual to all levels
typename ParallelInformationHierarchy::Iterator pinfo=matrices_->parallelInformation().finest();
typename Hierarchy<Range,A>::Iterator rhs=rhs_->finest();
typename Hierarchy<Domain,A>::Iterator lhs = lhs_->finest();
typename OperatorHierarchy::AggregatesMapList::const_iterator aggregates=matrices_->aggregatesMaps().begin();
for(typename Hierarchy<Range,A>::Iterator fineRhs=rhs++; fineRhs != rhs_->coarsest(); fineRhs=rhs++, ++aggregates){
++pinfo;
Transfer<typename OperatorHierarchy::AggregatesMap::AggregateDescriptor,Range,ParallelInformation>
::restrict(*(*aggregates), *rhs, static_cast<const Range&>(*fineRhs), *pinfo);
}
// pinfo is invalid, set to coarsest level
//pinfo = matrices_->parallelInformation().coarsest
// calculate correction for all levels
lhs = lhs_->finest();
typename Hierarchy<Smoother,A>::Iterator smoother = smoothers_.finest();
for(rhs=rhs_->finest(); rhs != rhs_->coarsest(); ++lhs, ++rhs, ++smoother){
// presmoothing
*lhs=0;
smoother->apply(*lhs, *rhs);
}
// Coarse level solve
#ifndef DUNE_AMG_NO_COARSEGRIDCORRECTION
InverseOperatorResult res;
pinfo->copyOwnerToAll(*rhs, *rhs);
solver_->apply(*lhs, *rhs, res);
if(!res.converged)
DUNE_THROW(MathError, "Coarse solver did not converge");
#else
*lhs=0;
#endif
// Prologate and add up corrections from all levels
--pinfo;
--aggregates;
for(typename Hierarchy<Domain,A>::Iterator coarseLhs = lhs--; coarseLhs != lhs_->finest(); coarseLhs = lhs--, --aggregates, --pinfo){
Transfer<typename OperatorHierarchy::AggregatesMap::AggregateDescriptor,Range,ParallelInformation>
::prolongate(*(*aggregates), *coarseLhs, *lhs, 1, *pinfo);
}
}
/** \copydoc Preconditioner::post */
template<class M, class X, class S, class PI, class A>
void AMG<M,X,S,PI,A>::post(Domain& x)
{
if(buildHierarchy_){
if(solver_)
delete solver_;
if(coarseSmoother_)
ConstructionTraits<Smoother>::deconstruct(coarseSmoother_);
}
// Postprocess all smoothers
typedef typename Hierarchy<Smoother,A>::Iterator Iterator;
typedef typename Hierarchy<Range,A>::Iterator RIterator;
typedef typename Hierarchy<Domain,A>::Iterator DIterator;
Iterator coarsest = smoothers_.coarsest();
Iterator smoother = smoothers_.finest();
DIterator lhs = lhs_->finest();
if(smoothers_.levels()>0){
if(smoother != coarsest || matrices_->levels()<matrices_->maxlevels())
smoother->post(*lhs);
if(smoother!=coarsest)
for(++smoother, ++lhs; smoother != coarsest; ++smoother, ++lhs)
smoother->post(*lhs);
smoother->post(*lhs);
}
delete &(*lhs_->finest());
delete lhs_;
delete &(*update_->finest());
delete update_;
delete &(*rhs_->finest());
delete rhs_;
}
template<class M, class X, class S, class PI, class A>
template<class A1>
void AMG<M,X,S,PI,A>::getCoarsestAggregateNumbers(std::vector<std::size_t,A1>& cont)
{
matrices_->getCoarsestAggregatesOnFinest(cont);
}
} // end namespace Amg
}// end namespace Dune
#endif
|