/usr/include/dune/istl/paamg/hierarchy.hh is in libdune-istl-dev 2.2.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 | // -*- tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=8 sw=2 sts=2:
// $Id: hierarchy.hh 1871 2013-02-26 11:21:45Z mblatt $
#ifndef DUNE_AMGHIERARCHY_HH
#define DUNE_AMGHIERARCHY_HH
#include<list>
#include<memory>
#include<limits>
#include<algorithm>
#include"aggregates.hh"
#include"graph.hh"
#include"galerkin.hh"
#include"renumberer.hh"
#include"graphcreator.hh"
#include<dune/common/stdstreams.hh>
#include<dune/common/timer.hh>
#include<dune/common/tuples.hh>
#include<dune/common/bigunsignedint.hh>
#include<dune/istl/bvector.hh>
#include<dune/common/parallel/indexset.hh>
#include<dune/istl/matrixutils.hh>
#include<dune/istl/matrixredistribute.hh>
#include<dune/istl/paamg/dependency.hh>
#include<dune/istl/paamg/graph.hh>
#include<dune/istl/paamg/indicescoarsener.hh>
#include<dune/istl/paamg/globalaggregates.hh>
#include<dune/istl/paamg/construction.hh>
#include<dune/istl/paamg/smoother.hh>
#include<dune/istl/paamg/transfer.hh>
namespace Dune
{
namespace Amg
{
/**
* @addtogroup ISTL_PAAMG
*
* @{
*/
/** @file
* @author Markus Blatt
* @brief Provides a classes representing the hierarchies in AMG.
*/
enum{
/**
* @brief Hard limit for the number of processes allowed.
*
* This is needed to prevent overflows when calculating
* the coarsening rate. Currently set 72,000 which is
* enough for JUGENE.
*/
MAX_PROCESSES = 72000};
/**
* @brief A hierarchy of coantainers (e.g. matrices or vectors)
*
* Because sometimes a redistribution of the parallel data might be
* advisable one can add redistributed version of the container at
* each level.
*/
template<typename T, typename A=std::allocator<T> >
class Hierarchy
{
public:
/**
* @brief The type of the container we store.
*/
typedef T MemberType;
template<typename T1, typename T2>
class LevelIterator;
private:
/**
* @brief An element in the hierarchy.
*/
struct Element
{
friend class LevelIterator<Hierarchy<T,A>, T>;
friend class LevelIterator<const Hierarchy<T,A>, const T>;
/** @brief The next coarser element in the list. */
Element* coarser_;
/** @brief The next finer element in the list. */
Element* finer_;
/** @brief Pointer to the element. */
MemberType* element_;
/** @brief The redistributed version of the element. */
MemberType* redistributed_;
};
public:
// enum{
// /**
// * @brief If true only the method addCoarser will be usable
// * otherwise only the method addFiner will be usable.
// */
// coarsen = b
// };
/**
* @brief The allocator to use for the list elements.
*/
typedef typename A::template rebind<Element>::other Allocator;
typedef typename ConstructionTraits<T>::Arguments Arguments;
/**
* @brief Construct a new hierarchy.
* @param first The first element in the hierarchy.
*/
Hierarchy(MemberType& first);
/**
* @brief Construct a new empty hierarchy.
*/
Hierarchy();
/**
* @brief Add an element on a coarser level.
* @param args The arguments needed for the construction.
*/
void addCoarser(Arguments& args);
void addRedistributedOnCoarsest(Arguments& args);
/**
* @brief Add an element on a finer level.
* @param args The arguments needed for the construction.
*/
void addFiner(Arguments& args);
/**
* @brief Iterator over the levels in the hierarchy.
*
* operator++() moves to the next coarser level in the hierarchy.
* while operator--() moves to the next finer level in the hierarchy.
*/
template<class C, class T1>
class LevelIterator
: public BidirectionalIteratorFacade<LevelIterator<C,T1>,T1,T1&>
{
friend class LevelIterator<typename remove_const<C>::type,
typename remove_const<T1>::type >;
friend class LevelIterator<const typename remove_const<C>::type,
const typename remove_const<T1>::type >;
public:
/** @brief Constructor. */
LevelIterator()
: element_(0)
{}
LevelIterator(Element* element)
: element_(element)
{}
/** @brief Copy constructor. */
LevelIterator(const LevelIterator<typename remove_const<C>::type,
typename remove_const<T1>::type>& other)
: element_(other.element_)
{}
/** @brief Copy constructor. */
LevelIterator(const LevelIterator<const typename remove_const<C>::type,
const typename remove_const<T1>::type>& other)
: element_(other.element_)
{}
/**
* @brief Equality check.
*/
bool equals(const LevelIterator<typename remove_const<C>::type,
typename remove_const<T1>::type>& other) const
{
return element_ == other.element_;
}
/**
* @brief Equality check.
*/
bool equals(const LevelIterator<const typename remove_const<C>::type,
const typename remove_const<T1>::type>& other) const
{
return element_ == other.element_;
}
/** @brief Dereference the iterator. */
T1& dereference() const
{
return *(element_->element_);
}
/** @brief Move to the next coarser level */
void increment()
{
element_ = element_->coarser_;
}
/** @brief Move to the next fine level */
void decrement()
{
element_ = element_->finer_;
}
/**
* @brief Check whether there was a redistribution at the current level.
* @return True if there is a redistributed version of the conatainer at the current level.
*/
bool isRedistributed() const
{
return element_->redistributed_;
}
/**
* @brief Get the redistributed container.
* @return The redistributed container.
*/
T1& getRedistributed() const
{
assert(element_->redistributed_);
return *element_->redistributed_;
}
void addRedistributed(T1* t)
{
element_->redistributed_ = t;
}
void deleteRedistributed()
{
element_->redistributed_ = 0;
}
private:
Element* element_;
};
/** @brief Type of the mutable iterator. */
typedef LevelIterator<Hierarchy<T,A>,T> Iterator;
/** @brief Type of the const iterator. */
typedef LevelIterator<const Hierarchy<T,A>, const T> ConstIterator;
/**
* @brief Get an iterator positioned at the finest level.
* @return An iterator positioned at the finest level.
*/
Iterator finest();
/**
* @brief Get an iterator positioned at the coarsest level.
* @return An iterator positioned at the coarsest level.
*/
Iterator coarsest();
/**
* @brief Get an iterator positioned at the finest level.
* @return An iterator positioned at the finest level.
*/
ConstIterator finest() const;
/**
* @brief Get an iterator positioned at the coarsest level.
* @return An iterator positioned at the coarsest level.
*/
ConstIterator coarsest() const;
/**
* @brief Get the number of levels in the hierarchy.
* @return The number of levels.
*/
std::size_t levels() const;
/** @brief Destructor. */
~Hierarchy();
private:
/** @brief The finest element in the hierarchy. */
Element* finest_;
/** @brief The coarsest element in the hierarchy. */
Element* coarsest_;
/** @brief Whether the first element was not allocated by us. */
Element* nonAllocated_;
/** @brief The allocator for the list elements. */
Allocator allocator_;
/** @brief The number of levels in the hierarchy. */
int levels_;
};
/**
* @brief The hierarchies build by the coarsening process.
*
* Namely a hierarchy of matrices, index sets, remote indices,
* interfaces and communicators.
*/
template<class M, class PI, class A=std::allocator<M> >
class MatrixHierarchy
{
public:
/** @brief The type of the matrix operator. */
typedef M MatrixOperator;
/** @brief The type of the matrix. */
typedef typename MatrixOperator::matrix_type Matrix;
/** @brief The type of the index set. */
typedef PI ParallelInformation;
/** @brief The allocator to use. */
typedef A Allocator;
/** @brief The type of the aggregates map we use. */
typedef Dune::Amg::AggregatesMap<typename MatrixGraph<Matrix>::VertexDescriptor> AggregatesMap;
/** @brief The type of the parallel matrix hierarchy. */
typedef Dune::Amg::Hierarchy<MatrixOperator,Allocator> ParallelMatrixHierarchy;
/** @brief The type of the parallel informarion hierarchy. */
typedef Dune::Amg::Hierarchy<ParallelInformation,Allocator> ParallelInformationHierarchy;
/** @brief Allocator for pointers. */
typedef typename Allocator::template rebind<AggregatesMap*>::other AAllocator;
/** @brief The type of the aggregates maps list. */
typedef std::list<AggregatesMap*,AAllocator> AggregatesMapList;
/** @brief The type of the redistribute information. */
typedef RedistributeInformation<ParallelInformation> RedistributeInfoType;
/** @brief Allocator for RedistributeInfoType. */
typedef typename Allocator::template rebind<RedistributeInfoType>::other RILAllocator;
/** @brief The type of the list of redistribute information. */
typedef std::list<RedistributeInfoType,RILAllocator> RedistributeInfoList;
/**
* @brief Constructor
* @param fineMatrix The matrix to coarsen.
* @param pinfo The information about the parallel data decomposition at the first level.
*/
MatrixHierarchy(const MatrixOperator& fineMatrix,
const ParallelInformation& pinfo=ParallelInformation());
~MatrixHierarchy();
/**
* @brief Build the matrix hierarchy using aggregation.
*
* @brief criterion The criterion describing the aggregation process.
*/
template<typename O, typename T>
void build(const T& criterion);
/**
* @brief Recalculate the galerkin products.
*
* If the data of the fine matrix changes but not its sparsity pattern
* this will recalculate all coarser levels without starting the expensive
* aggregation process all over again.
*/
template<class F>
void recalculateGalerkin(const F& copyFlags);
/**
* @brief Coarsen the vector hierarchy according to the matrix hierarchy.
* @param hierarchy The vector hierarchy to coarsen.
*/
template<class V, class TA>
void coarsenVector(Hierarchy<BlockVector<V,TA> >& hierarchy) const;
/**
* @brief Coarsen the smoother hierarchy according to the matrix hierarchy.
* @param smoothers The smoother hierarchy to coarsen.
* @param args The arguments for the construction of the coarse level smoothers.
*/
template<class S, class TA>
void coarsenSmoother(Hierarchy<S,TA>& smoothers,
const typename SmootherTraits<S>::Arguments& args) const;
/**
* @brief Get the number of levels in the hierarchy.
* @return The number of levels.
*/
std::size_t levels() const;
/**
* @brief Get the max number of levels in the hierarchy of processors.
* @return The maximum number of levels.
*/
std::size_t maxlevels() const;
bool hasCoarsest() const;
/**
* @brief Whether the hierarchy was built.
* @return true if the ::coarsen method was called.
*/
bool isBuilt() const;
/**
* @brief Get the matrix hierarchy.
* @return The matrix hierarchy.
*/
const ParallelMatrixHierarchy& matrices() const;
/**
* @brief Get the hierarchy of the parallel data distribution information.
* @return The hierarchy of the parallel data distribution information.
*/
const ParallelInformationHierarchy& parallelInformation() const;
/**
* @brief Get the hierarchy of the mappings of the nodes onto aggregates.
* @return The hierarchy of the mappings of the nodes onto aggregates.
*/
const AggregatesMapList& aggregatesMaps() const;
/**
* @brief Get the hierachy of the information about redistributions,
* @return The hierarchy of the information about redistributions of the
* data to fewer processes.
*/
const RedistributeInfoList& redistributeInformation() const;
typename MatrixOperator::field_type getProlongationDampingFactor() const
{
return prolongDamp_;
}
/**
* @brief Get the mapping of fine level unknowns to coarse level
* aggregates.
*
* For each fine level unknown i the correcponding data[i] is the
* aggregate it belongs to on the coarsest level.
*
* @param[out] data The mapping of fine level unknowns to coarse level
* aggregates.
*/
void getCoarsestAggregatesOnFinest(std::vector<std::size_t>& data) const;
private:
typedef typename ConstructionTraits<MatrixOperator>::Arguments MatrixArgs;
typedef typename ConstructionTraits<ParallelInformation>::Arguments CommunicationArgs;
/** @brief The list of aggregates maps. */
AggregatesMapList aggregatesMaps_;
/** @brief The list of redistributes. */
RedistributeInfoList redistributes_;
/** @brief The hierarchy of parallel matrices. */
ParallelMatrixHierarchy matrices_;
/** @brief The hierarchy of the parallel information. */
ParallelInformationHierarchy parallelInformation_;
/** @brief Whether the hierarchy was built. */
bool built_;
/** @brief The maximum number of level across all processors.*/
int maxlevels_;
typename MatrixOperator::field_type prolongDamp_;
/**
* @brief functor to print matrix statistics.
*/
template<class Matrix, bool print>
struct MatrixStats
{
/**
* @brief Print matrix statistics.
*/
static void stats(const Matrix& matrix)
{}
};
template<class Matrix>
struct MatrixStats<Matrix,true>
{
struct calc
{
typedef typename Matrix::size_type size_type;
typedef typename Matrix::row_type matrix_row;
calc()
{
min=std::numeric_limits<size_type>::max();
max=0;
sum=0;
}
void operator()(const matrix_row& row)
{
min=std::min(min, row.size());
max=std::max(max, row.size());
sum += row.size();
}
size_type min;
size_type max;
size_type sum;
};
/**
* @brief Print matrix statistics.
*/
static void stats(const Matrix& matrix)
{
calc c= for_each(matrix.begin(), matrix.end(), calc());
dinfo<<"Matrix row: min="<<c.min<<" max="<<c.max
<<" average="<<static_cast<double>(c.sum)/matrix.N()
<<std::endl;
}
};
};
/**
* @brief The criterion describing the stop criteria for the coarsening process.
*/
template<class T>
class CoarsenCriterion : public T
{
public:
/**
* @brief The criterion for tagging connections as strong and nodes as isolated.
* This might be e.g. SymmetricDependency or UnSymmetricCriterion.
*/
typedef T AggregationCriterion;
/**
* @brief Constructor
* @param maxLevel The maximum number of levels allowed in the matrix hierarchy (default: 100).
* @param coarsenTarget If the number of nodes in the matrix is below this threshold the
* coarsening will stop (default: 1000).
* @param minCoarsenRate If the coarsening rate falls below this threshold the
* coarsening will stop (default: 1.2)
* @param prolongDamp The damping factor to apply to the prolongated update (default: 1.6)
* @param accumulate Whether to accumulate the data onto fewer processors on coarser levels.
*/
CoarsenCriterion(int maxLevel=100, int coarsenTarget=1000, double minCoarsenRate=1.2,
double prolongDamp=1.6, AccumulationMode accumulate=successiveAccu)
: AggregationCriterion(Dune::Amg::Parameters(maxLevel, coarsenTarget, minCoarsenRate, prolongDamp, accumulate))
{}
CoarsenCriterion(const Dune::Amg::Parameters& parms)
: AggregationCriterion(parms)
{}
};
template<typename M, typename C1>
bool repartitionAndDistributeMatrix(const M& origMatrix, M& newMatrix,
SequentialInformation& origSequentialInformationomm,
SequentialInformation*& newComm,
RedistributeInformation<SequentialInformation>& ri,
int nparts, C1& criterion)
{
DUNE_THROW(NotImplemented, "Redistribution does not make sense in sequential code!");
}
template<typename M, typename C, typename C1>
bool repartitionAndDistributeMatrix(const M& origMatrix, M& newMatrix, C& origComm, C*& newComm,
RedistributeInformation<C>& ri,
int nparts, C1& criterion)
{
Timer time;
#ifdef AMG_REPART_ON_COMM_GRAPH
// Done not repartition the matrix graph, but a graph of the communication scheme.
bool existentOnRedist=Dune::commGraphRepartition(origMatrix, origComm, nparts, newComm,
ri.getInterface(),
criterion.debugLevel()>1);
#else
typedef Dune::Amg::MatrixGraph<const M> MatrixGraph;
typedef Dune::Amg::PropertiesGraph<MatrixGraph,
VertexProperties,
EdgeProperties,
IdentityMap,
IdentityMap> PropertiesGraph;
MatrixGraph graph(origMatrix);
PropertiesGraph pgraph(graph);
buildDependency(pgraph, origMatrix, criterion, false);
#ifdef DEBUG_REPART
if(origComm.communicator().rank()==0)
std::cout<<"Original matrix"<<std::endl;
origComm.communicator().barrier();
printGlobalSparseMatrix(origMatrix, origComm, std::cout);
#endif
bool existentOnRedist=Dune::graphRepartition(pgraph, origComm, nparts,
newComm, ri.getInterface(),
criterion.debugLevel()>1);
#endif // if else AMG_REPART
if(origComm.communicator().rank()==0 && criterion.debugLevel()>1)
std::cout<<"Repartitioning took "<<time.elapsed()<<" seconds."<<std::endl;
ri.setSetup();
#ifdef DEBUG_REPART
ri.checkInterface(origComm.indexSet(), newComm->indexSet(), origComm.communicator());
#endif
redistributeMatrix(const_cast<M&>(origMatrix), newMatrix, origComm, *newComm, ri);
#ifdef DEBUG_REPART
if(origComm.communicator().rank()==0)
std::cout<<"Original matrix"<<std::endl;
origComm.communicator().barrier();
if(newComm->communicator().size()>0)
printGlobalSparseMatrix(newMatrix, *newComm, std::cout);
origComm.communicator().barrier();
#endif
if(origComm.communicator().rank()==0 && criterion.debugLevel()>1)
std::cout<<"Redistributing matrix took "<<time.elapsed()<<" seconds."<<std::endl;
return existentOnRedist;
}
template<typename M>
bool repartitionAndDistributeMatrix(M& origMatrix, M& newMatrix,
SequentialInformation& origComm,
SequentialInformation& newComm,
RedistributeInformation<SequentialInformation>& ri)
{
return true;
}
template<class M, class IS, class A>
MatrixHierarchy<M,IS,A>::MatrixHierarchy(const MatrixOperator& fineOperator,
const ParallelInformation& pinfo)
: matrices_(const_cast<MatrixOperator&>(fineOperator)),
parallelInformation_(const_cast<ParallelInformation&>(pinfo))
{
dune_static_assert((static_cast<int>(MatrixOperator::category) ==
static_cast<int>(SolverCategory::sequential) ||
static_cast<int>(MatrixOperator::category) ==
static_cast<int>(SolverCategory::overlapping) ||
static_cast<int>(MatrixOperator::category) ==
static_cast<int>(SolverCategory::nonoverlapping)),
"MatrixOperator must be of category sequential or overlapping or nonoverlapping");
if (static_cast<int>(MatrixOperator::category) != static_cast<int>(pinfo.getSolverCategory()))
DUNE_THROW(ISTLError, "MatrixOperator and ParallelInformation must belong to the same category!");
}
template<class M, class IS, class A>
template<typename O, typename T>
void MatrixHierarchy<M,IS,A>::build(const T& criterion)
{
prolongDamp_ = criterion.getProlongationDampingFactor();
typedef O OverlapFlags;
typedef typename ParallelMatrixHierarchy::Iterator MatIterator;
typedef typename ParallelInformationHierarchy::Iterator PInfoIterator;
static const int noints=(Dune::Amg::MAX_PROCESSES/4096>0)?(Dune::Amg::MAX_PROCESSES/4096):1;
typedef bigunsignedint<sizeof(int)*8*noints> BIGINT;
GalerkinProduct<ParallelInformation> productBuilder;
MatIterator mlevel = matrices_.finest();
MatrixStats<typename M::matrix_type,MINIMAL_DEBUG_LEVEL<=INFO_DEBUG_LEVEL>::stats(mlevel->getmat());
PInfoIterator infoLevel = parallelInformation_.finest();
BIGINT finenonzeros=countNonZeros(mlevel->getmat());
finenonzeros = infoLevel->communicator().sum(finenonzeros);
BIGINT allnonzeros = finenonzeros;
int level = 0;
int rank = 0;
BIGINT unknowns = mlevel->getmat().N();
unknowns = infoLevel->communicator().sum(unknowns);
double dunknowns=unknowns.todouble();
infoLevel->buildGlobalLookup(mlevel->getmat().N());
redistributes_.push_back(RedistributeInfoType());
for(; level < criterion.maxLevel(); ++level, ++mlevel){
assert(matrices_.levels()==redistributes_.size());
rank = infoLevel->communicator().rank();
if(rank==0 && criterion.debugLevel()>1)
std::cout<<"Level "<<level<<" has "<<dunknowns<<" unknowns, "<<dunknowns/infoLevel->communicator().size()
<<" unknowns per proc (procs="<<infoLevel->communicator().size()<<")"<<std::endl;
MatrixOperator* matrix=&(*mlevel);
ParallelInformation* info =&(*infoLevel);
if((
#if HAVE_PARMETIS
criterion.accumulate()==successiveAccu
#else
false
#endif
|| (criterion.accumulate()==atOnceAccu
&& dunknowns < 30*infoLevel->communicator().size()))
&& infoLevel->communicator().size()>1 &&
dunknowns/infoLevel->communicator().size() <= criterion.coarsenTarget())
{
// accumulate to fewer processors
Matrix* redistMat= new Matrix();
ParallelInformation* redistComm=0;
std::size_t nodomains = (std::size_t)std::ceil(dunknowns/(criterion.minAggregateSize()
*criterion.coarsenTarget()));
if( nodomains<=criterion.minAggregateSize()/2 ||
dunknowns <= criterion.coarsenTarget() )
nodomains=1;
bool existentOnNextLevel =
repartitionAndDistributeMatrix(mlevel->getmat(), *redistMat, *infoLevel,
redistComm, redistributes_.back(), nodomains,
criterion);
BIGINT unknowns = redistMat->N();
unknowns = infoLevel->communicator().sum(unknowns);
dunknowns= unknowns.todouble();
if(redistComm->communicator().rank()==0 && criterion.debugLevel()>1)
std::cout<<"Level "<<level<<" (redistributed) has "<<dunknowns<<" unknowns, "<<dunknowns/redistComm->communicator().size()
<<" unknowns per proc (procs="<<redistComm->communicator().size()<<")"<<std::endl;
MatrixArgs args(*redistMat, *redistComm);
mlevel.addRedistributed(ConstructionTraits<MatrixOperator>::construct(args));
assert(mlevel.isRedistributed());
infoLevel.addRedistributed(redistComm);
infoLevel->freeGlobalLookup();
if(!existentOnNextLevel)
// We do not hold any data on the redistributed partitioning
break;
// Work on the redistributed Matrix from now on
matrix = &(mlevel.getRedistributed());
info = &(infoLevel.getRedistributed());
info->buildGlobalLookup(matrix->getmat().N());
}
rank = info->communicator().rank();
if(dunknowns <= criterion.coarsenTarget())
// No further coarsening needed
break;
typedef PropertiesGraphCreator<MatrixOperator> GraphCreator;
typedef typename GraphCreator::PropertiesGraph PropertiesGraph;
typedef typename GraphCreator::MatrixGraph MatrixGraph;
typedef typename GraphCreator::GraphTuple GraphTuple;
typedef typename PropertiesGraph::VertexDescriptor Vertex;
std::vector<bool> excluded(matrix->getmat().N(), false);
GraphTuple graphs = GraphCreator::create(*matrix, excluded, *info, OverlapFlags());
AggregatesMap* aggregatesMap=new AggregatesMap(get<1>(graphs)->maxVertex()+1);
aggregatesMaps_.push_back(aggregatesMap);
Timer watch;
watch.reset();
int noAggregates, isoAggregates, oneAggregates, skippedAggregates;
tie(noAggregates, isoAggregates, oneAggregates, skippedAggregates) =
aggregatesMap->buildAggregates(matrix->getmat(), *(get<1>(graphs)), criterion, level==0);
if(rank==0 && criterion.debugLevel()>2)
std::cout<<" Have built "<<noAggregates<<" aggregates totally ("<<isoAggregates<<" isolated aggregates, "<<
oneAggregates<<" aggregates of one vertex, and skipped "<<
skippedAggregates<<" aggregates)."<<std::endl;
#ifdef TEST_AGGLO
{
// calculate size of local matrix in the distributed direction
int start, end, overlapStart, overlapEnd;
int procs=info->communicator().rank();
int n = UNKNOWNS/procs; // number of unknowns per process
int bigger = UNKNOWNS%procs; // number of process with n+1 unknows
// Compute owner region
if(rank<bigger){
start = rank*(n+1);
end = (rank+1)*(n+1);
}else{
start = bigger + rank * n;
end = bigger + (rank + 1) * n;
}
// Compute overlap region
if(start>0)
overlapStart = start - 1;
else
overlapStart = start;
if(end<UNKNOWNS)
overlapEnd = end + 1;
else
overlapEnd = end;
assert((UNKNOWNS)*(overlapEnd-overlapStart)==aggregatesMap->noVertices());
for(int j=0; j< UNKNOWNS; ++j)
for(int i=0; i < UNKNOWNS; ++i)
{
if(i>=overlapStart && i<overlapEnd)
{
int no = (j/2)*((UNKNOWNS)/2)+i/2;
(*aggregatesMap)[j*(overlapEnd-overlapStart)+i-overlapStart]=no;
}
}
}
#endif
if(criterion.debugLevel()>1 && info->communicator().rank()==0)
std::cout<<"aggregating finished."<<std::endl;
BIGINT gnoAggregates=noAggregates;
gnoAggregates = info->communicator().sum(gnoAggregates);
double dgnoAggregates = gnoAggregates.todouble();
#ifdef TEST_AGGLO
BIGINT gnoAggregates=((UNKNOWNS)/2)*((UNKNOWNS)/2);
#endif
if(criterion.debugLevel()>2 && rank==0)
std::cout << "Building "<<dgnoAggregates<<" aggregates took "<<watch.elapsed()<<" seconds."<<std::endl;
if(dgnoAggregates==0 || dunknowns/dgnoAggregates<criterion.minCoarsenRate())
{
if(rank==0)
{
if(dgnoAggregates>0)
std::cerr << "Stopped coarsening because of rate breakdown "<<dunknowns<<"/"<<dgnoAggregates
<<"="<<dunknowns/dgnoAggregates<<"<"
<<criterion.minCoarsenRate()<<std::endl;
else
std::cerr<< "Could not build any aggregates. Probably no connected nodes."<<std::endl;
}
aggregatesMap->free();
delete aggregatesMap;
aggregatesMaps_.pop_back();
if(criterion.accumulate() && mlevel.isRedistributed() && info->communicator().size()>1){
// coarse level matrix was already redistributed, but to more than 1 process
// Therefore need to delete the redistribution. Further down it will
// then be redistributed to 1 process
delete &(mlevel.getRedistributed().getmat());
mlevel.deleteRedistributed();
delete &(infoLevel.getRedistributed());
infoLevel.deleteRedistributed();
redistributes_.back().resetSetup();
}
break;
}
unknowns = noAggregates;
dunknowns = dgnoAggregates;
CommunicationArgs commargs(info->communicator(),info->getSolverCategory());
parallelInformation_.addCoarser(commargs);
++infoLevel; // parallel information on coarse level
typename PropertyMapTypeSelector<VertexVisitedTag,PropertiesGraph>::Type visitedMap =
get(VertexVisitedTag(), *(get<1>(graphs)));
watch.reset();
int aggregates = IndicesCoarsener<ParallelInformation,OverlapFlags>
::coarsen(*info,
*(get<1>(graphs)),
visitedMap,
*aggregatesMap,
*infoLevel);
GraphCreator::free(graphs);
if(criterion.debugLevel()>2){
if(rank==0)
std::cout<<"Coarsening of index sets took "<<watch.elapsed()<<" seconds."<<std::endl;
}
watch.reset();
infoLevel->buildGlobalLookup(aggregates);
AggregatesPublisher<Vertex,OverlapFlags,ParallelInformation>::publish(*aggregatesMap,
*info,
infoLevel->globalLookup());
if(criterion.debugLevel()>2){
if(rank==0)
std::cout<<"Communicating global aggregate numbers took "<<watch.elapsed()<<" seconds."<<std::endl;
}
watch.reset();
std::vector<bool>& visited=excluded;
typedef std::vector<bool>::iterator Iterator;
typedef IteratorPropertyMap<Iterator, IdentityMap> VisitedMap2;
Iterator end = visited.end();
for(Iterator iter= visited.begin(); iter != end; ++iter)
*iter=false;
VisitedMap2 visitedMap2(visited.begin(), Dune::IdentityMap());
typename MatrixOperator::matrix_type* coarseMatrix;
coarseMatrix = productBuilder.build(matrix->getmat(), *(get<0>(graphs)), visitedMap2,
*info,
*aggregatesMap,
aggregates,
OverlapFlags());
info->freeGlobalLookup();
delete get<0>(graphs);
productBuilder.calculate(matrix->getmat(), *aggregatesMap, *coarseMatrix, *infoLevel, OverlapFlags());
if(criterion.debugLevel()>2){
if(rank==0)
std::cout<<"Calculation of Galerkin product took "<<watch.elapsed()<<" seconds."<<std::endl;
}
BIGINT nonzeros = countNonZeros(*coarseMatrix);
allnonzeros = allnonzeros + infoLevel->communicator().sum(nonzeros);
MatrixArgs args(*coarseMatrix, *infoLevel);
matrices_.addCoarser(args);
redistributes_.push_back(RedistributeInfoType());
} // end level loop
infoLevel->freeGlobalLookup();
built_=true;
AggregatesMap* aggregatesMap=new AggregatesMap(0);
aggregatesMaps_.push_back(aggregatesMap);
if(criterion.debugLevel()>0){
if(level==criterion.maxLevel()){
BIGINT unknowns = mlevel->getmat().N();
unknowns = infoLevel->communicator().sum(unknowns);
double dunknowns = unknowns.todouble();
if(rank==0 && criterion.debugLevel()>1){
std::cout<<"Level "<<level<<" has "<<dunknowns<<" unknowns, "<<dunknowns/infoLevel->communicator().size()
<<" unknowns per proc (procs="<<infoLevel->communicator().size()<<")"<<std::endl;
}
}
}
if(criterion.accumulate() && !redistributes_.back().isSetup() &&
infoLevel->communicator().size()>1){
#if HAVE_MPI && !HAVE_PARMETIS
if(criterion.accumulate()==successiveAccu &&
infoLevel->communicator().rank()==0)
std::cerr<<"Successive accumulation of data on coarse levels only works with ParMETIS installed."
<<" Fell back to accumulation to one domain on coarsest level"<<std::endl;
#endif
// accumulate to fewer processors
Matrix* redistMat= new Matrix();
ParallelInformation* redistComm=0;
int nodomains = 1;
repartitionAndDistributeMatrix(mlevel->getmat(), *redistMat, *infoLevel,
redistComm, redistributes_.back(), nodomains,criterion);
MatrixArgs args(*redistMat, *redistComm);
BIGINT unknowns = redistMat->N();
unknowns = infoLevel->communicator().sum(unknowns);
if(redistComm->communicator().rank()==0 && criterion.debugLevel()>1){
double dunknowns= unknowns.todouble();
std::cout<<"Level "<<level<<" redistributed has "<<dunknowns<<" unknowns, "<<dunknowns/redistComm->communicator().size()
<<" unknowns per proc (procs="<<redistComm->communicator().size()<<")"<<std::endl;
}
mlevel.addRedistributed(ConstructionTraits<MatrixOperator>::construct(args));
infoLevel.addRedistributed(redistComm);
infoLevel->freeGlobalLookup();
}
int levels = matrices_.levels();
maxlevels_ = parallelInformation_.finest()->communicator().max(levels);
assert(matrices_.levels()==redistributes_.size());
if(hasCoarsest() && rank==0 && criterion.debugLevel()>1)
std::cout<<"operator complexity: "<<allnonzeros.todouble()/finenonzeros.todouble()<<std::endl;
}
template<class M, class IS, class A>
const typename MatrixHierarchy<M,IS,A>::ParallelMatrixHierarchy&
MatrixHierarchy<M,IS,A>::matrices() const
{
return matrices_;
}
template<class M, class IS, class A>
const typename MatrixHierarchy<M,IS,A>::ParallelInformationHierarchy&
MatrixHierarchy<M,IS,A>::parallelInformation() const
{
return parallelInformation_;
}
template<class M, class IS, class A>
void MatrixHierarchy<M,IS,A>::getCoarsestAggregatesOnFinest(std::vector<std::size_t>& data) const
{
int levels=aggregatesMaps().size();
int maxlevels=parallelInformation_.finest()->communicator().max(levels);
std::size_t size=(*(aggregatesMaps().begin()))->noVertices();
// We need an auxiliary vector for the consecutive prolongation.
std::vector<std::size_t> tmp;
std::vector<std::size_t> *coarse, *fine;
// make sure the allocated space suffices.
tmp.reserve(size);
data.reserve(size);
// Correctly assign coarse and fine for the first prolongation such that
// we end up in data in the end.
if(levels%2==0){
coarse=&tmp;
fine=&data;
}else{
coarse=&data;
fine=&tmp;
}
// Number the unknowns on the coarsest level consecutively for each process.
if(levels==maxlevels){
const AggregatesMap& map = *(*(++aggregatesMaps().rbegin()));
std::size_t m=0;
for(typename AggregatesMap::const_iterator iter = map.begin(); iter != map.end(); ++iter)
if(*iter< AggregatesMap::ISOLATED)
m=std::max(*iter,m);
coarse->resize(m+1);
std::size_t i=0;
srand((unsigned)std::clock());
std::set<size_t> used;
for(typename std::vector<std::size_t>::iterator iter=coarse->begin(); iter != coarse->end();
++iter, ++i)
{
std::pair<std::set<std::size_t>::iterator,bool> ibpair
= used.insert(static_cast<std::size_t>((((double)rand())/(RAND_MAX+1.0)))*coarse->size());
while(!ibpair.second)
ibpair = used.insert(static_cast<std::size_t>((((double)rand())/(RAND_MAX+1.0))*coarse->size()));
*iter=*(ibpair.first);
}
}
typename ParallelInformationHierarchy::Iterator pinfo = parallelInformation().coarsest();
--pinfo;
// Now consecutively project the numbers to the finest level.
for(typename AggregatesMapList::const_reverse_iterator aggregates=++aggregatesMaps().rbegin();
aggregates != aggregatesMaps().rend(); ++aggregates,--levels){
fine->resize((*aggregates)->noVertices());
fine->assign(fine->size(), 0);
Transfer<typename AggregatesMap::AggregateDescriptor, std::vector<std::size_t>, ParallelInformation>
::prolongate(*(*aggregates), *coarse, *fine, static_cast<std::size_t>(1), *pinfo);
--pinfo;
std::swap(coarse, fine);
}
// Assertion to check that we really projected to data on the last step.
assert(coarse==&data);
}
template<class M, class IS, class A>
const typename MatrixHierarchy<M,IS,A>::AggregatesMapList&
MatrixHierarchy<M,IS,A>::aggregatesMaps() const
{
return aggregatesMaps_;
}
template<class M, class IS, class A>
const typename MatrixHierarchy<M,IS,A>::RedistributeInfoList&
MatrixHierarchy<M,IS,A>::redistributeInformation() const
{
return redistributes_;
}
template<class M, class IS, class A>
MatrixHierarchy<M,IS,A>::~MatrixHierarchy()
{
typedef typename AggregatesMapList::reverse_iterator AggregatesMapIterator;
typedef typename ParallelMatrixHierarchy::Iterator Iterator;
typedef typename ParallelInformationHierarchy::Iterator InfoIterator;
AggregatesMapIterator amap = aggregatesMaps_.rbegin();
InfoIterator info = parallelInformation_.coarsest();
for(Iterator level=matrices_.coarsest(), finest=matrices_.finest(); level != finest; --level, --info, ++amap){
(*amap)->free();
delete *amap;
delete &level->getmat();
if(level.isRedistributed())
delete &(level.getRedistributed().getmat());
}
delete *amap;
}
template<class M, class IS, class A>
template<class V, class TA>
void MatrixHierarchy<M,IS,A>::coarsenVector(Hierarchy<BlockVector<V,TA> >& hierarchy) const
{
assert(hierarchy.levels()==1);
typedef typename ParallelMatrixHierarchy::ConstIterator Iterator;
typedef typename RedistributeInfoList::const_iterator RIter;
RIter redist = redistributes_.begin();
Iterator matrix = matrices_.finest(), coarsest = matrices_.coarsest();
int level=0;
if(redist->isSetup())
hierarchy.addRedistributedOnCoarsest(matrix.getRedistributed().getmat().N());
Dune::dvverb<<"Level "<<level<<" has "<<matrices_.finest()->getmat().N()<<" unknowns!"<<std::endl;
while(matrix != coarsest){
++matrix; ++level; ++redist;
Dune::dvverb<<"Level "<<level<<" has "<<matrix->getmat().N()<<" unknowns!"<<std::endl;
hierarchy.addCoarser(matrix->getmat().N());
if(redist->isSetup())
hierarchy.addRedistributedOnCoarsest(matrix.getRedistributed().getmat().N());
}
}
template<class M, class IS, class A>
template<class S, class TA>
void MatrixHierarchy<M,IS,A>::coarsenSmoother(Hierarchy<S,TA>& smoothers,
const typename SmootherTraits<S>::Arguments& sargs) const
{
assert(smoothers.levels()==0);
typedef typename ParallelMatrixHierarchy::ConstIterator MatrixIterator;
typedef typename ParallelInformationHierarchy::ConstIterator PinfoIterator;
typedef typename AggregatesMapList::const_iterator AggregatesIterator;
typename ConstructionTraits<S>::Arguments cargs;
cargs.setArgs(sargs);
PinfoIterator pinfo = parallelInformation_.finest();
AggregatesIterator aggregates = aggregatesMaps_.begin();
int level=0;
for(MatrixIterator matrix = matrices_.finest(), coarsest = matrices_.coarsest();
matrix != coarsest; ++matrix, ++pinfo, ++aggregates, ++level){
cargs.setMatrix(matrix->getmat(), **aggregates);
cargs.setComm(*pinfo);
smoothers.addCoarser(cargs);
}
if(maxlevels()>levels()){
// This is not the globally coarsest level and therefore smoothing is needed
cargs.setMatrix(matrices_.coarsest()->getmat(), **aggregates);
cargs.setComm(*pinfo);
smoothers.addCoarser(cargs);
++level;
}
}
template<class M, class IS, class A>
template<class F>
void MatrixHierarchy<M,IS,A>::recalculateGalerkin(const F& copyFlags)
{
typedef typename AggregatesMapList::iterator AggregatesMapIterator;
typedef typename ParallelMatrixHierarchy::Iterator Iterator;
typedef typename ParallelInformationHierarchy::Iterator InfoIterator;
AggregatesMapIterator amap = aggregatesMaps_.begin();
BaseGalerkinProduct productBuilder;
InfoIterator info = parallelInformation_.finest();
typename RedistributeInfoList::iterator riIter = redistributes_.begin();
Iterator level = matrices_.finest(), coarsest=matrices_.coarsest();
if(level.isRedistributed()){
info->buildGlobalLookup(info->indexSet().size());
redistributeMatrixEntries(const_cast<Matrix&>(level->getmat()),
const_cast<Matrix&>(level.getRedistributed().getmat()),
*info,info.getRedistributed(), *riIter);
info->freeGlobalLookup();
}
for(; level!=coarsest; ++amap){
const Matrix& fine = (level.isRedistributed()?level.getRedistributed():*level).getmat();
++level;
++info;
++riIter;
productBuilder.calculate(fine, *(*amap), const_cast<Matrix&>(level->getmat()), *info, copyFlags);
if(level.isRedistributed()){
info->buildGlobalLookup(info->indexSet().size());
redistributeMatrixEntries(const_cast<Matrix&>(level->getmat()),
const_cast<Matrix&>(level.getRedistributed().getmat()), *info,
info.getRedistributed(), *riIter);
info->freeGlobalLookup();
}
}
}
template<class M, class IS, class A>
std::size_t MatrixHierarchy<M,IS,A>::levels() const
{
return matrices_.levels();
}
template<class M, class IS, class A>
std::size_t MatrixHierarchy<M,IS,A>::maxlevels() const
{
return maxlevels_;
}
template<class M, class IS, class A>
bool MatrixHierarchy<M,IS,A>::hasCoarsest() const
{
return levels()==maxlevels() &&
(!matrices_.coarsest().isRedistributed() ||matrices_.coarsest()->getmat().N()>0);
}
template<class M, class IS, class A>
bool MatrixHierarchy<M,IS,A>::isBuilt() const
{
return built_;
}
template<class T, class A>
Hierarchy<T,A>::Hierarchy()
: finest_(0), coarsest_(0), nonAllocated_(0), allocator_(), levels_(0)
{}
template<class T, class A>
Hierarchy<T,A>::Hierarchy(MemberType& first)
: allocator_()
{
finest_ = allocator_.allocate(1,0);
finest_->element_ = &first;
finest_->redistributed_ = 0;
nonAllocated_ = finest_;
coarsest_ = finest_;
coarsest_->coarser_ = coarsest_->finer_ = 0;
levels_ = 1;
}
template<class T, class A>
Hierarchy<T,A>::~Hierarchy()
{
while(coarsest_){
Element* current = coarsest_;
coarsest_ = coarsest_->finer_;
if(current != nonAllocated_){
if(current->redistributed_)
ConstructionTraits<T>::deconstruct(current->redistributed_);
ConstructionTraits<T>::deconstruct(current->element_);
}
allocator_.deallocate(current, 1);
//coarsest_->coarser_ = 0;
}
}
template<class T, class A>
std::size_t Hierarchy<T,A>::levels() const
{
return levels_;
}
template<class T, class A>
void Hierarchy<T,A>::addRedistributedOnCoarsest(Arguments& args)
{
coarsest_->redistributed_ = ConstructionTraits<MemberType>::construct(args);
}
template<class T, class A>
void Hierarchy<T,A>::addCoarser(Arguments& args)
{
if(!coarsest_){
assert(!finest_);
coarsest_ = allocator_.allocate(1,0);
coarsest_->element_ = ConstructionTraits<MemberType>::construct(args);
finest_ = coarsest_;
coarsest_->finer_ = 0;
}else{
coarsest_->coarser_ = allocator_.allocate(1,0);
coarsest_->coarser_->finer_ = coarsest_;
coarsest_ = coarsest_->coarser_;
coarsest_->element_ = ConstructionTraits<MemberType>::construct(args);
}
coarsest_->redistributed_ = 0;
coarsest_->coarser_=0;
++levels_;
}
template<class T, class A>
void Hierarchy<T,A>::addFiner(Arguments& args)
{
if(!finest_){
assert(!coarsest_);
finest_ = allocator_.allocate(1,0);
finest_->element = ConstructionTraits<T>::construct(args);
coarsest_ = finest_;
coarsest_->coarser_ = coarsest_->finer_ = 0;
}else{
finest_->finer_ = allocator_.allocate(1,0);
finest_->finer_->coarser_ = finest_;
finest_ = finest_->finer_;
finest_->finer = 0;
finest_->element = ConstructionTraits<T>::construct(args);
}
++levels_;
}
template<class T, class A>
typename Hierarchy<T,A>::Iterator Hierarchy<T,A>::finest()
{
return Iterator(finest_);
}
template<class T, class A>
typename Hierarchy<T,A>::Iterator Hierarchy<T,A>::coarsest()
{
return Iterator(coarsest_);
}
template<class T, class A>
typename Hierarchy<T,A>::ConstIterator Hierarchy<T,A>::finest() const
{
return ConstIterator(finest_);
}
template<class T, class A>
typename Hierarchy<T,A>::ConstIterator Hierarchy<T,A>::coarsest() const
{
return ConstIterator(coarsest_);
}
/** @} */
}// namespace Amg
}// namespace Dune
#endif
|