/usr/include/dune/istl/repartition.hh is in libdune-istl-dev 2.2.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 | #ifndef DUNE_REPARTITION_HH
#define DUNE_REPARTITION_HH
#include <cassert>
#include <map>
#include <utility>
#if HAVE_PARMETIS
#include <parmetis.h>
#endif
#include <dune/common/timer.hh>
#include <dune/common/enumset.hh>
#include <dune/common/mpitraits.hh>
#include <dune/common/stdstreams.hh>
#include <dune/common/parallel/communicator.hh>
#include <dune/common/parallel/indexset.hh>
#include <dune/common/parallel/indicessyncer.hh>
#include <dune/common/parallel/remoteindices.hh>
#include <dune/istl/owneroverlapcopy.hh>
#include <dune/istl/paamg/graph.hh>
/**
* @file
* @brief Functionality for redistributing a parallel index set using graph partitioning.
*
* Refactored version of an intern.
* @author Markus Blatt
*/
namespace Dune
{
#if HAVE_MPI
/**
* @brief Fills the holes in an index set.
*
* In general the index set only needs to know those indices
* where communication my occur. In usual FE computations these
* are just those near the processor boundaries.
*
* For the repartitioning we need to know all all indices for which data is stored.
* The missing indices will be created in this method.
*
* @param graph The graph to reparition.
* @param oocomm The communication information.
*/
template<class G, class T1, class T2>
void fillIndexSetHoles(const G& graph, Dune::OwnerOverlapCopyCommunication<T1,T2>& oocomm)
{
typedef typename Dune::OwnerOverlapCopyCommunication<T1,T2>::ParallelIndexSet IndexSet;
typedef typename IndexSet::LocalIndex::Attribute Attribute;
IndexSet& indexSet = oocomm.indexSet();
const typename Dune::OwnerOverlapCopyCommunication<T1,T2>::GlobalLookupIndexSet& lookup =oocomm.globalLookup();
// The type of the const vertex iterator.
typedef typename G::ConstVertexIterator VertexIterator;
std::size_t sum=0, needed = graph.noVertices()-indexSet.size();
std::vector<std::size_t> neededall(oocomm.communicator().size(), 0);
MPI_Allgather(&needed, 1, MPITraits<std::size_t>::getType() , &(neededall[0]), 1, MPITraits<std::size_t>::getType(), oocomm.communicator());
for(int i=0; i<oocomm.communicator().size(); ++i)
sum=sum+neededall[i]; // MAke this for generic
if(sum==0)
// Nothing to do
return;
//Compute Maximum Global Index
T1 maxgi=0;
typedef typename IndexSet::const_iterator Iterator;
Iterator end;
end = indexSet.end();
for(Iterator it = indexSet.begin(); it != end; ++it)
maxgi=std::max(maxgi,it->global());
//Process p creates global indices consecutively
//starting atmaxgi+\sum_{i=1}^p neededall[i]
// All created indices are owned by the process
maxgi=oocomm.communicator().max(maxgi);
++maxgi;//Sart with the next free index.
for(int i=0; i<oocomm.communicator().rank(); ++i)
maxgi=maxgi+neededall[i]; // TODO: make this more generic
// Store the global index information for repairing the remote index information
std::map<int,SLList<std::pair<T1,Attribute> > > globalIndices;
storeGlobalIndicesOfRemoteIndices(globalIndices, oocomm.remoteIndices(), indexSet);
indexSet.beginResize();
for(VertexIterator vertex = graph.begin(), vend=graph.end(); vertex != vend; ++vertex){
const typename IndexSet::IndexPair* pair=lookup.pair(*vertex);
if(pair==0){
// No index yet, add new one
indexSet.add(maxgi, typename IndexSet::LocalIndex(*vertex, OwnerOverlapCopyAttributeSet::owner, false));
++maxgi;
}
}
indexSet.endResize();
repairLocalIndexPointers(globalIndices, oocomm.remoteIndices(), indexSet);
oocomm.freeGlobalLookup();
oocomm.buildGlobalLookup();
#ifdef DEBUG_REPART
std::cout<<"Holes are filled!"<<std::endl;
std::cout<<oocomm.communicator().rank()<<": "<<oocomm.indexSet()<<std::endl;
#endif
}
namespace
{
class ParmetisDuneIndexMap
{
public:
template<class Graph, class OOComm>
ParmetisDuneIndexMap(const Graph& graph, const OOComm& com);
int toParmetis(int i) const
{
return duneToParmetis[i];
}
int toLocalParmetis(int i) const
{
return duneToParmetis[i]-base_;
}
int operator[](int i) const
{
return duneToParmetis[i];
}
int toDune(int i) const
{
return parmetisToDune[i];
}
std::vector<int>::size_type numOfOwnVtx() const
{
return parmetisToDune.size();
}
int* vtxDist()
{
return &vtxDist_[0];
}
int globalOwnerVertices;
private:
int base_;
std::vector<int> duneToParmetis;
std::vector<int> parmetisToDune;
// range of vertices for processor i: vtxdist[i] to vtxdist[i+1] (parmetis global)
std::vector<int> vtxDist_;
};
template<class G, class OOComm>
ParmetisDuneIndexMap::ParmetisDuneIndexMap(const G& graph, const OOComm& oocomm)
: duneToParmetis(graph.noVertices(), -1), vtxDist_(oocomm.communicator().size()+1)
{
int npes=oocomm.communicator().size(), mype=oocomm.communicator().rank();
typedef typename OOComm::ParallelIndexSet::const_iterator Iterator;
typedef typename OOComm::OwnerSet OwnerSet;
int numOfOwnVtx=0;
Iterator end = oocomm.indexSet().end();
for(Iterator index = oocomm.indexSet().begin(); index != end; ++index) {
if (OwnerSet::contains(index->local().attribute())) {
numOfOwnVtx++;
}
}
parmetisToDune.resize(numOfOwnVtx);
std::vector<int> globalNumOfVtx(npes);
// make this number available to all processes
MPI_Allgather(&numOfOwnVtx, 1, MPI_INT, &(globalNumOfVtx[0]), 1, MPI_INT, oocomm.communicator());
int base=0;
vtxDist_[0] = 0;
for(int i=0; i<npes; i++) {
if (i<mype) {
base += globalNumOfVtx[i];
}
vtxDist_[i+1] = vtxDist_[i] + globalNumOfVtx[i];
}
globalOwnerVertices=vtxDist_[npes];
base_=base;
// The type of the const vertex iterator.
typedef typename G::ConstVertexIterator VertexIterator;
#ifdef DEBUG_REPART
std::cout << oocomm.communicator().rank()<<" vtxDist: ";
for(int i=0; i<= npes;++i)
std::cout << vtxDist_[i]<<" ";
std::cout<<std::endl;
#endif
// Traverse the graph and assign a new consecutive number/index
// starting by "base" to all owner vertices.
// The new index is used as the ParMETIS global index and is
// stored in the vector "duneToParmetis"
VertexIterator vend = graph.end();
for(VertexIterator vertex = graph.begin(); vertex != vend; ++vertex) {
const typename OOComm::ParallelIndexSet::IndexPair* index=oocomm.globalLookup().pair(*vertex);
assert(index);
if (OwnerSet::contains(index->local().attribute())) {
// assign and count the index
parmetisToDune[base-base_]=index->local();
duneToParmetis[index->local()] = base++;
}
}
// At this point, every process knows the ParMETIS global index
// of it's owner vertices. The next step is to get the
// ParMETIS global index of the overlap vertices from the
// associated processes. To do this, the Dune::Interface class
// is used.
#ifdef DEBUG_REPART
std::cout <<oocomm.communicator().rank()<<": before ";
for(std::size_t i=0; i<duneToParmetis.size(); ++i)
std::cout<<duneToParmetis[i]<<" ";
std::cout<<std::endl;
#endif
oocomm.copyOwnerToAll(duneToParmetis,duneToParmetis);
#ifdef DEBUG_REPART
std::cout <<oocomm.communicator().rank()<<": after ";
for(std::size_t i=0; i<duneToParmetis.size(); ++i)
std::cout<<duneToParmetis[i]<<" ";
std::cout<<std::endl;
#endif
}
}
struct RedistributeInterface
: public Interface
{
void setCommunicator(MPI_Comm comm)
{
communicator_=comm;
}
template<class Flags,class IS>
void buildSendInterface(const std::vector<int>& toPart, const IS& idxset)
{
std::map<int,int> sizes;
typedef typename IS::const_iterator IIter;
for(IIter i=idxset.begin(), end=idxset.end();i!=end; ++i)
if(Flags::contains(i->local().attribute()))
++sizes[toPart[i->local()]];
// Allocate the necessary space
typedef std::map<int,int>::const_iterator MIter;
for(MIter i=sizes.begin(), end=sizes.end(); i!=end; ++i)
interfaces()[i->first].first.reserve(i->second);
//Insert the interface information
typedef typename IS::const_iterator IIter;
for(IIter i=idxset.begin(), end=idxset.end();i!=end; ++i)
if(Flags::contains(i->local().attribute()))
interfaces()[toPart[i->local()]].first.add(i->local());
}
void reserveSpaceForReceiveInterface(int proc, int size)
{
interfaces()[proc].second.reserve(size);
}
void addReceiveIndex(int proc, std::size_t idx)
{
interfaces()[proc].second.add(idx);
}
template<typename TG>
void buildReceiveInterface(std::vector<std::pair<TG,int> >& indices)
{
typedef typename std::vector<std::pair<TG,int> >::const_iterator VIter;
std::size_t i=0;
for(VIter idx=indices.begin(); idx!= indices.end(); ++idx){
interfaces()[idx->second].second.add(i++);
}
}
~RedistributeInterface()
{
}
};
namespace
{
/**
* @brief Fills send buffer with global indices.
*
* @param ownerVec the owner vertices to send
* @param overlapSet the overlap vertices to send
* @param sendBuf the send buffer
* @param buffersize The size of the send buffer
* @param comm Communicator for the send.
*/
template<class GI>
void createSendBuf(std::vector<GI>& ownerVec, std::set<GI>& overlapVec, std::set<int>& neighbors, char *sendBuf, int buffersize, MPI_Comm comm) {
// Pack owner vertices
std::size_t s=ownerVec.size();
int pos=0;
if(s==0)
ownerVec.resize(1); // otherwise would read beyond the memory bound
MPI_Pack(&s, 1, MPITraits<std::size_t>::getType(), sendBuf, buffersize, &pos, comm);
MPI_Pack(&(ownerVec[0]), s, MPITraits<GI>::getType(), sendBuf, buffersize, &pos, comm);
s = overlapVec.size();
MPI_Pack(&s, 1, MPITraits<std::size_t>::getType(), sendBuf, buffersize, &pos, comm);
typedef typename std::set<GI>::iterator Iter;
for(Iter i=overlapVec.begin(), end= overlapVec.end(); i != end; ++i)
MPI_Pack(const_cast<GI*>(&(*i)), 1, MPITraits<GI>::getType(), sendBuf, buffersize, &pos, comm);
s=neighbors.size();
MPI_Pack(&s, 1, MPITraits<std::size_t>::getType(), sendBuf, buffersize, &pos, comm);
typedef typename std::set<int>::iterator IIter;
for(IIter i=neighbors.begin(), end= neighbors.end(); i != end; ++i)
MPI_Pack(const_cast<int*>(&(*i)), 1, MPI_INT, sendBuf, buffersize, &pos, comm);
}
/**
* @brief save the values of the received MPI buffer to the owner/overlap vectors
*
* @param recvBuf the receive buffer.
* @param ownerVec the vector to store the owner indices in.
* @param overlapVec the set to store the overlap indices in.
* @param comm The communicator used in the receive.
*/
template<class GI>
void saveRecvBuf(char *recvBuf, int bufferSize, std::vector<std::pair<GI,int> >& ownerVec,
std::set<GI>& overlapVec, std::set<int>& neighbors, RedistributeInterface& inf, int from, MPI_Comm comm) {
std::size_t size;
int pos=0;
// unpack owner vertices
MPI_Unpack(recvBuf, bufferSize, &pos, &size, 1, MPITraits<std::size_t>::getType(), comm);
inf.reserveSpaceForReceiveInterface(from, size);
ownerVec.reserve(ownerVec.size()+size);
for(;size!=0;--size){
GI gi;
MPI_Unpack(recvBuf, bufferSize, &pos, &gi, 1, MPITraits<GI>::getType(), comm);
ownerVec.push_back(std::make_pair(gi,from));
}
// unpack overlap vertices
MPI_Unpack(recvBuf, bufferSize, &pos, &size, 1, MPITraits<std::size_t>::getType(), comm);
typename std::set<GI>::iterator ipos = overlapVec.begin();
Dune::dverb << "unpacking "<<size<<" overlap"<<std::endl;
for(;size!=0;--size){
GI gi;
MPI_Unpack(recvBuf, bufferSize, &pos, &gi, 1, MPITraits<GI>::getType(), comm);
ipos=overlapVec.insert(ipos, gi);
}
//unpack neighbors
MPI_Unpack(recvBuf, bufferSize, &pos, &size, 1, MPITraits<std::size_t>::getType(), comm);
Dune::dverb << "unpacking "<<size<<" neighbors"<<std::endl;
typename std::set<int>::iterator npos = neighbors.begin();
for(;size!=0;--size){
int n;
MPI_Unpack(recvBuf, bufferSize, &pos, &n, 1, MPI_INT, comm);
npos=neighbors.insert(npos, n);
}
}
/**
* @brief Find the optimal domain number for a given process
*
* The estimation is necessary because the result of ParMETIS for
* the new partition is only a domain/set number and not a process number.
*
* @param comm the MPI communicator
* @param *part the result array of the ParMETIS repartition
* @param numOfOwnVtx the number of owner vertices
* @param nparts the number of target partitions/processes
* @param *myDomain the optimal output domain number
* @param domainMapping[] the array of output domain mapping
*/
template<typename T>
void getDomain(const MPI_Comm& comm, T *part, int numOfOwnVtx, int nparts, int *myDomain, std::vector<int> &domainMapping) {
int npes, mype;
MPI_Comm_size(comm, &npes);
MPI_Comm_rank(comm, &mype);
MPI_Status status;
*myDomain = -1;
int i=0;
int j=0;
std::vector<int> domain(nparts);
std::vector<int> assigned(npes);
// init
for (i=0; i<nparts; i++) {
domainMapping[i] = -1;
domain[i] = 0;
}
for (i=0; i<npes; i++) {
assigned[i] = -0;
}
// count the occurance of domains
for (i=0; i<numOfOwnVtx; i++) {
domain[part[i]]++;
}
int *domainMatrix = new int[npes * nparts];
// init
for(i=0; i<npes*nparts; i++) {
domainMatrix[i]=-1;
}
// init buffer with the own domain
int *buf = new int[nparts];
for (i=0; i<nparts; i++) {
buf[i] = domain[i];
domainMatrix[mype*nparts+i] = domain[i];
}
int pe=0;
int src = (mype-1+npes)%npes;
int dest = (mype+1)%npes;
// ring communication, we need n-1 communications for n processors
for (i=0; i<npes-1; i++) {
MPI_Sendrecv_replace(buf, nparts, MPI_INT, dest, 0, src, 0, comm, &status);
// pe is the process of the actual received buffer
pe = ((mype-1-i)+npes)%npes;
for(j=0; j<nparts; j++) {
// save the values to the domain matrix
domainMatrix[pe*nparts+j] = buf[j];
}
}
delete[] buf;
// Start the domain calculation.
// The process which contains the maximum number of vertices of a
// particular domain is selected to choose it's favorate domain
int maxOccurance = 0;
pe = -1;
for(i=0; i<nparts; i++) {
for(j=0; j<npes; j++) {
// process has no domain assigned
if (assigned[j]==0) {
if (maxOccurance < domainMatrix[j*nparts+i]) {
maxOccurance = domainMatrix[j*nparts+i];
pe = j;
}
}
}
if (pe!=-1) {
// process got a domain, ...
domainMapping[i] = pe;
// ...mark as assigned
assigned[pe] = 1;
if (pe==mype) {
*myDomain = i;
}
pe = -1;
}
maxOccurance = 0;
}
delete[] domainMatrix;
}
struct SortFirst
{
template<class T>
bool operator()(const T& t1, const T& t2) const
{
return t1<t2;
}
};
/**
* @brief Merge the owner/overlap vectors
*
* This function merges and adds the vertices of a owner/overlap
* vector to a result owner/overlap vector
*
* @param &ownerVec a global index vector contains the owner vertices to merge/add, sorted according
* to the global index.
* @param &overlapSet a global index set contains the overlap vertices to merge/add
*/
template<class GI>
void mergeVec(std::vector<std::pair<GI, int> >& ownerVec, std::set<GI>& overlapSet) {
typedef typename std::vector<std::pair<GI,int> >::const_iterator VIter;
#ifdef DEBUG_REPART
// Safty check for duplicates.
if(ownerVec.size()>0)
{
VIter old=ownerVec.begin();
for(VIter i=old+1, end=ownerVec.end(); i != end; old=i++)
{
if(i->first==old->first)
{
std::cerr<<"Value at indes"<<old-ownerVec.begin()<<" is the same as at index "
<<i-ownerVec.begin()<<" ["<<old->first<<","<<old->second<<"]==["
<<i->first<<","<<i->second<<"]"<<std::endl;
throw "Huch!";
}
}
}
#endif
typedef typename std::set<GI>::iterator SIter;
VIter v=ownerVec.begin(), vend=ownerVec.end();
for(SIter s=overlapSet.begin(), send=overlapSet.end(); s!=send;)
{
while(v!=vend && v->first<*s) ++v;
if(v!=vend && v->first==*s){
// Move to the next element before erasing
// thus s stays valid!
SIter tmp=s;
++s;
overlapSet.erase(tmp);
}else
++s;
}
}
/**
* @brief get the non-owner neighbors of a given vertex
*
* For a given vertex, get the index of all non-owner neighbor vertices are
* computed.
*
* @param g the local graph
* @param part Where the vertices become owner
* @param vtx the given vertex
* @param parmetisVtxMapping mapping between Dune and ParMETIS vertices
* @param indexSet the indexSet
* @param neighbor the output set to store the neighbor indices in.
*/
template<class OwnerSet, class Graph, class IS, class GI>
void getNeighbor(const Graph& g, std::vector<int>& part,
typename Graph::VertexDescriptor vtx, const IS& indexSet,
int toPe, std::set<GI>& neighbor, std::set<int>& neighborProcs) {
typedef typename Graph::ConstEdgeIterator Iter;
for(Iter edge=g.beginEdges(vtx), end=g.endEdges(vtx); edge!=end; ++edge)
{
const typename IS::IndexPair* pindex = indexSet.pair(edge.target());
assert(pindex);
if(part[pindex->local()]!=toPe || !OwnerSet::contains(pindex->local().attribute()))
{
// is sent to another process and therefore becomes overlap
neighbor.insert(pindex->global());
neighborProcs.insert(part[pindex->local()]);
}
}
}
template<class T, class I>
void my_push_back(std::vector<T>& ownerVec, const I& index, int proc)
{
ownerVec.push_back(index);
}
template<class T, class I>
void my_push_back(std::vector<std::pair<T,int> >& ownerVec, const I& index, int proc)
{
ownerVec.push_back(std::make_pair(index,proc));
}
template<class T>
void reserve(std::vector<T>&, RedistributeInterface&, int)
{
}
template<class T>
void reserve(std::vector<std::pair<T,int> >& ownerVec, RedistributeInterface& redist, int proc)
{
redist.reserveSpaceForReceiveInterface(proc, ownerVec.size());
}
/**
* @brief get the owner- and overlap vertices for giving source and destination processes.
*
* The estimation is based on the vtxdist and the global PARMETIS mapping
* generated before. The owner- and overlap vertices are stored in two
* separate vectors
*
* @param graph The local graph.
* @param part The target domain of the local vertices (result of PARMETIS).
* @param indexSet The indexSet of the given graph.
* @param parmetisVtxMapping The mapping between PARMETIS index
* and DUNE global index.
* @param myPe The source process number.
* @param toPe The target process number.
* @param ownerVec The output vector containing all owner vertices.
* @param overlapSet The output vector containing all overlap vertices.
*/
template<class OwnerSet, class G, class IS, class T, class GI>
void getOwnerOverlapVec(const G& graph, std::vector<int>& part, IS& indexSet,
int myPe, int toPe, std::vector<T>& ownerVec, std::set<GI>& overlapSet,
RedistributeInterface& redist, std::set<int>& neighborProcs) {
//typedef typename IndexSet::const_iterator Iterator;
typedef typename IS::const_iterator Iterator;
for(Iterator index = indexSet.begin(); index != indexSet.end(); ++index) {
// Only Process owner vertices, the others are not in the parmetis graph.
if(OwnerSet::contains(index->local().attribute()))
{
if(part[index->local()]==toPe)
{
getNeighbor<OwnerSet>(graph, part, index->local(), indexSet,
toPe, overlapSet, neighborProcs);
my_push_back(ownerVec, index->global(), toPe);
}
}
}
reserve(ownerVec, redist, toPe);
}
/**
* @brief check if the given vertex is a owner vertex
*
* @param indexSet the indexSet
* @param index the given vertex index
*/
template<class F, class IS>
inline bool isOwner(IS& indexSet, int index) {
const typename IS::IndexPair* pindex=indexSet.pair(index);
assert(pindex);
return F::contains(pindex->local().attribute());
}
class BaseEdgeFunctor
{
public:
BaseEdgeFunctor(int* adj,const ParmetisDuneIndexMap& data)
:i_(), adj_(adj), data_(data)
{}
template<class T>
void operator()(const T& edge)
{
// Get the egde weight
// const Weight& weight=edge.weight();
adj_[i_] = data_.toParmetis(edge.target());
i_++;
}
std::size_t index()
{
return i_;
}
private:
std::size_t i_;
int* adj_;
const ParmetisDuneIndexMap& data_;
};
template<typename G>
struct EdgeFunctor
: public BaseEdgeFunctor
{
EdgeFunctor(int* adj, const ParmetisDuneIndexMap& data, std::size_t s)
: BaseEdgeFunctor(adj, data)
{}
int* getWeights()
{
return NULL;
}
void free(){}
};
template<class G, class V, class E, class VM, class EM>
class EdgeFunctor<Dune::Amg::PropertiesGraph<G,V,E,VM,EM> >
: public BaseEdgeFunctor
{
public:
EdgeFunctor(int* adj, const ParmetisDuneIndexMap& data, std::size_t s)
:BaseEdgeFunctor(adj, data)
{
weight_=new int[s];
}
template<class T>
void operator()(const T& edge)
{
weight_[index()]=edge.properties().depends()?3:1;
BaseEdgeFunctor::operator()(edge);
}
int* getWeights()
{
return weight_;
}
void free(){
if(weight_!=0){
delete weight_;
weight_=0;
}
}
private:
int* weight_;
};
/**
* @brief Create the "adjncy" and "xadj" arrays for using ParMETIS
*
* This function builds the ParMETIS "adjncy" and "xadj" array according
* to the ParMETIS documentation. These arrays are generated by
* traversing the graph object. The assigned index to the
* "adjncy" array is the ParMETIS global index calculated before.
*
* @param graph the local graph.
* @param indexSet the local indexSet.
* @param &xadj the ParMETIS xadj array
* @param ew Funcot to setup adjacency info.
*/
template<class F, class G, class IS, class EW>
void getAdjArrays(G& graph, IS& indexSet, int *xadj,
EW& ew)
{
int j=0;
// The type of the const vertex iterator.
typedef typename G::ConstVertexIterator VertexIterator;
//typedef typename IndexSet::const_iterator Iterator;
typedef typename IS::const_iterator Iterator;
VertexIterator vend = graph.end();
Iterator end;
for(VertexIterator vertex = graph.begin(); vertex != vend; ++vertex){
if (isOwner<F>(indexSet,*vertex)) {
// The type of const edge iterator.
typedef typename G::ConstEdgeIterator EdgeIterator;
EdgeIterator eend = vertex.end();
xadj[j] = ew.index();
j++;
for(EdgeIterator edge = vertex.begin(); edge != eend; ++edge){
ew(edge);
}
}
}
xadj[j] = ew.index();
}
}// end anonymous namespace
template<class G, class T1, class T2>
bool buildCommunication(const G& graph, std::vector<int>& realparts,
Dune::OwnerOverlapCopyCommunication<T1,T2>& oocomm,
Dune::OwnerOverlapCopyCommunication<T1,T2>*& outcomm,
RedistributeInterface& redistInf,
bool verbose=false);
#if HAVE_PARMETIS
extern "C"{
void METIS_PartGraphKway(int *nvtxs, idxtype *xadj, idxtype *adjncy, idxtype *vwgt,
idxtype *adjwgt, int *wgtflag, int *numflag, int *nparts,
int *options, int *edgecut, idxtype *part);
void METIS_PartGraphRecursive(int *nvtxs, idxtype *xadj, idxtype *adjncy, idxtype *vwgt,
idxtype *adjwgt, int *wgtflag, int *numflag, int *nparts,
int *options, int *edgecut, idxtype *part);
}
#endif
template<class S, class T>
inline void print_carray(S& os, T* array, std::size_t l)
{
for(T *cur=array, *end=array+l; cur!=end; ++cur)
os<<*cur<<" ";
}
#if !HAVE_PARMETIS
typedef std::size_t idxtype;
#endif
inline bool isValidGraph(std::size_t noVtx, std::size_t gnoVtx, idxtype noEdges, idxtype* xadj,
idxtype* adjncy, bool checkSymmetry)
{
bool correct=true;
for(idxtype vtx=0; vtx<(idxtype)noVtx; ++vtx){
if(xadj[vtx]>noEdges||xadj[vtx]<0){
std::cerr <<"Check graph: xadj["<<vtx<<"]="<<xadj[vtx]<<" (>"
<<noEdges<<") out of range!"<<std::endl;
correct=false;
}
if(xadj[vtx+1]>noEdges||xadj[vtx+1]<0){
std::cerr <<"Check graph: xadj["<<vtx+1<<"]="<<xadj[vtx+1]<<" (>"
<<noEdges<<") out of range!"<<std::endl;
correct=false;
}
// Check numbers in adjncy
for(idxtype i=xadj[vtx]; i< xadj[vtx+1];++i){
if(adjncy[i]<0||((std::size_t)adjncy[i])>gnoVtx){
std::cerr<<" Edge "<<adjncy[i]<<" out of range ["<<0<<","<<noVtx<<")"
<<std::endl;
correct=false;
}
}
if(checkSymmetry){
for(idxtype i=xadj[vtx]; i< xadj[vtx+1];++i){
idxtype target=adjncy[i];
// search for symmetric edge
int found=0;
for(idxtype j=xadj[target]; j< xadj[target+1];++j)
if(adjncy[j]==vtx)
found++;
if(found!=1){
std::cerr<<"Edge ("<<target<<","<<vtx<<") "<<i<<" time"<<std::endl;
correct=false;
}
}
}
}
return correct;
}
template<class M, class T1, class T2>
bool commGraphRepartition(const M& mat, Dune::OwnerOverlapCopyCommunication<T1,T2>& oocomm, int nparts,
Dune::OwnerOverlapCopyCommunication<T1,T2>*& outcomm,
RedistributeInterface& redistInf,
bool verbose=false)
{
if(verbose && oocomm.communicator().rank()==0)
std::cout<<"Repartitioning from "<<oocomm.communicator().size()
<<" to "<<nparts<<" parts"<<std::endl;
Timer time;
int rank = oocomm.communicator().rank();
#if !HAVE_PARMETIS
int* part = new int[1];
part[0]=0;
#else
idxtype* part = new idxtype[1]; // where all our data moves to
if(nparts>1){
part[0]=rank;
{ // sublock for automatic memory deletion
// Build the graph of the communication scheme and create an appropriate indexset.
// calculate the neighbour vertices
int noNeighbours = oocomm.remoteIndices().neighbours();
typedef typename Dune::OwnerOverlapCopyCommunication<T1,T2>::RemoteIndices RemoteIndices;
typedef typename RemoteIndices::const_iterator
NeighbourIterator;
for(NeighbourIterator n= oocomm.remoteIndices().begin(); n != oocomm.remoteIndices().end();
++n)
if(n->first==rank){
//do not include ourselves.
--noNeighbours;
break;
}
// A parmetis graph representing the communication graph.
// The diagonal entries are the number of nodes on the process.
// The offdiagonal entries are the number of edges leading to other processes.
idxtype *xadj=new idxtype[2], *vwgt = 0;
idxtype *vtxdist=new idxtype[oocomm.communicator().size()+1];
idxtype * adjncy=new idxtype[noNeighbours], *adjwgt = 0;
// each process has exactly one vertex!
for(int i=0; i<oocomm.communicator().size(); ++i)
vtxdist[i]=i;
vtxdist[oocomm.communicator().size()]=oocomm.communicator().size();
xadj[0]=0;
xadj[1]=noNeighbours;
// count edges to other processor
// a vector mapping the index to the owner
// std::vector<int> owner(mat.N(), oocomm.communicator().rank());
// for(NeighbourIterator n= oocomm.remoteIndices().begin(); n != oocomm.remoteIndices().end();
// ++n)
// {
// if(n->first!=oocomm.communicator().rank()){
// typedef typename RemoteIndices::RemoteIndexList RIList;
// const RIList& rlist = *(n->second.first);
// typedef typename RIList::const_iterator LIter;
// for(LIter entry=rlist.begin(); entry!=rlist.end(); ++entry){
// if(entry->attribute()==OwnerOverlapCopyAttributeSet::owner)
// owner[entry->localIndexPair().local()] = n->first;
// }
// }
// }
// std::map<int,idxtype> edgecount; // edges to other processors
// typedef typename M::ConstRowIterator RIter;
// typedef typename M::ConstColIterator CIter;
// // calculate edge count
// for(RIter row=mat.begin(), endr=mat.end(); row != endr; ++row)
// if(owner[row.index()]==OwnerOverlapCopyAttributeSet::owner)
// for(CIter entry= row->begin(), ende = row->end(); entry != ende; ++entry)
// ++edgecount[owner[entry.index()]];
// setup edge and weight pattern
typedef typename RemoteIndices::const_iterator NeighbourIterator;
typedef typename Dune::OwnerOverlapCopyCommunication<T1,T2>::ParallelIndexSet IndexSet;
typedef typename IndexSet::LocalIndex LocalIndex;
idxtype* adjp=adjncy;
#ifdef USE_WEIGHTS
vwgt = new idxtype[1];
vwgt[0]= mat.N(); // weight is numer of rows TODO: Should actually be the nonzeros.
adjwgt = new idxtype[noNeighbours];
idxtype* adjwp=adjwgt;
#endif
for(NeighbourIterator n= oocomm.remoteIndices().begin(); n != oocomm.remoteIndices().end();
++n)
if(n->first != rank){
*adjp=n->first;
++adjp;
#ifdef USE_WEIGHTS
*adjwp=1;//edgecount[n->first];
++adjwp;
#endif
}
assert(isValidGraph(vtxdist[rank+1]-vtxdist[rank],
vtxdist[oocomm.communicator().size()],
noNeighbours, xadj, adjncy, false));
int wgtflag=0, numflag=0, edgecut;
#ifdef USE_WEIGHTS
wgtflag=3;
#endif
float *tpwgts = new float[nparts];
for(int i=0; i<nparts; ++i)
tpwgts[i]=1.0/nparts;
int options[5] ={ 0,1,15,0,0};
MPI_Comm comm=oocomm.communicator();
Dune::dinfo<<rank<<" vtxdist: ";
print_carray(Dune::dinfo, vtxdist, oocomm.communicator().size()+1);
Dune::dinfo<<std::endl<<rank<<" xadj: ";
print_carray(Dune::dinfo, xadj, 2);
Dune::dinfo<<std::endl<<rank<<" adjncy: ";
print_carray(Dune::dinfo, adjncy, noNeighbours);
#ifdef USE_WEIGHTS
Dune::dinfo<<std::endl<<rank<<" vwgt: ";
print_carray(Dune::dinfo, vwgt, 1);
Dune::dinfo<<std::endl<<rank<<" adwgt: ";
print_carray(Dune::dinfo, adjwgt, noNeighbours);
#endif
Dune::dinfo<<std::endl;
oocomm.communicator().barrier();
if(verbose && oocomm.communicator().rank()==0)
std::cout<<"Creating comm graph took "<<time.elapsed()<<std::endl;
time.reset();
#ifdef PARALLEL_PARTITION
float ubvec = 1.15;
int ncon=1;
//=======================================================
// ParMETIS_V3_PartKway
//=======================================================
ParMETIS_V3_PartKway(vtxdist, xadj, adjncy,
vwgt, adjwgt, &wgtflag,
&numflag, &ncon, &nparts, tpwgts, &ubvec, options, &edgecut, part,
&comm);
if(verbose && oocomm.communicator().rank()==0)
std::cout<<"ParMETIS took "<<time.elapsed()<<std::endl;
time.reset();
#else
Timer time1;
std::size_t gnoedges=0;
int* noedges = 0;
noedges = new int[oocomm.communicator().size()];
Dune::dverb<<"noNeighbours: "<<noNeighbours<<std::endl;
// gather number of edges for each vertex.
MPI_Allgather(&noNeighbours,1,MPI_INT,noedges,1, MPI_INT,oocomm.communicator());
if(verbose && oocomm.communicator().rank()==0)
std::cout<<"Gathering noedges took "<<time1.elapsed()<<std::endl;
time1.reset();
int noVertices = vtxdist[oocomm.communicator().size()];
idxtype *gxadj = 0;
idxtype *gvwgt = 0;
idxtype *gadjncy = 0;
idxtype *gadjwgt = 0;
idxtype *gpart = 0;
int* displ = 0;
int* noxs = 0;
int* xdispl = 0; // displacement for xadj
int* novs = 0;
int* vdispl=0; // real vertex displacement
std::size_t localNoVtx=vtxdist[rank+1]-vtxdist[rank];
std::size_t gxadjlen = vtxdist[oocomm.communicator().size()]-vtxdist[0]+oocomm.communicator().size();
{
Dune::dinfo<<"noedges: ";
print_carray(Dune::dinfo, noedges, oocomm.communicator().size());
Dune::dinfo<<std::endl;
displ = new int[oocomm.communicator().size()];
xdispl = new int[oocomm.communicator().size()];
noxs = new int[oocomm.communicator().size()];
vdispl = new int[oocomm.communicator().size()];
novs = new int[oocomm.communicator().size()];
for(int i=0; i < oocomm.communicator().size(); ++i){
noxs[i]=vtxdist[i+1]-vtxdist[i]+1;
novs[i]=vtxdist[i+1]-vtxdist[i];
}
idxtype *so= vtxdist;
int offset = 0;
for(int *xcurr = xdispl, *vcurr = vdispl, *end=vdispl+oocomm.communicator().size();
vcurr!=end; ++vcurr, ++xcurr, ++so, ++offset){
*vcurr = *so;
*xcurr = offset + *so;
}
int *pdispl =displ;
int cdispl = 0;
*pdispl = 0;
for(int *curr=noedges, *end=noedges+oocomm.communicator().size()-1;
curr!=end; ++curr){
++pdispl; // next displacement
cdispl += *curr; // next value
*pdispl = cdispl;
}
Dune::dinfo<<"displ: ";
print_carray(Dune::dinfo, displ, oocomm.communicator().size());
Dune::dinfo<<std::endl;
// calculate global number of edges
// It is bigger than the actual one as we habe size-1 additional end entries
for(int *curr=noedges, *end=noedges+oocomm.communicator().size();
curr!=end; ++curr)
gnoedges += *curr;
// alocate gobal graph
Dune::dinfo<<"gxadjlen: "<<gxadjlen<<" noVertices: "<<noVertices
<<" gnoedges: "<<gnoedges<<std::endl;
gxadj = new idxtype[gxadjlen];
gpart = new idxtype[noVertices];
#ifdef USE_WEIGHTS
gvwgt = new idxtype[noVertices];
gadjwgt = new idxtype[gnoedges];
#endif
gadjncy = new idxtype[gnoedges];
}
if(verbose && oocomm.communicator().rank()==0)
std::cout<<"Preparing global graph took "<<time1.elapsed()<<std::endl;
time1.reset();
// Communicate data
MPI_Allgatherv(xadj,2,MPITraits<idxtype>::getType(),
gxadj,noxs,xdispl,MPITraits<idxtype>::getType(),
comm);
MPI_Allgatherv(adjncy,noNeighbours,MPITraits<idxtype>::getType(),
gadjncy,noedges,displ,MPITraits<idxtype>::getType(),
comm);
#ifdef USE_WEIGHTS
MPI_Allgatherv(adjwgt,noNeighbours,MPITraits<idxtype>::getType(),
gadjwgt,noedges,displ,MPITraits<idxtype>::getType(),
comm);
MPI_Allgatherv(vwgt,localNoVtx,MPITraits<idxtype>::getType(),
gvwgt,novs,vdispl,MPITraits<idxtype>::getType(),
comm);
#endif
if(verbose && oocomm.communicator().rank()==0)
std::cout<<"Gathering global graph data took "<<time1.elapsed()<<std::endl;
time1.reset();
{
// create the real gxadj array
// i.e. shift entries and add displacements.
print_carray(Dune::dinfo, gxadj, gxadjlen);
int offset = 0;
idxtype increment = vtxdist[1];
idxtype *start=gxadj+1;
for(int i=1; i<oocomm.communicator().size(); ++i){
offset+=1;
int lprev = vtxdist[i]-vtxdist[i-1];
int l = vtxdist[i+1]-vtxdist[i];
start+=lprev;
assert((start+l+offset)-gxadj<=static_cast<idxtype>(gxadjlen));
increment = *(start-1);
std::transform(start+offset, start+l+offset, start, std::bind2nd(std::plus<idxtype>(), increment));
}
Dune::dinfo<<std::endl<<"shifted xadj:";
print_carray(Dune::dinfo, gxadj, noVertices+1);
Dune::dinfo<<std::endl<<" gadjncy: ";
print_carray(Dune::dinfo, gadjncy, gnoedges);
#ifdef USE_WEIGHTS
Dune::dinfo<<std::endl<<" gvwgt: ";
print_carray(Dune::dinfo, gvwgt, noVertices);
Dune::dinfo<<std::endl<<"adjwgt: ";
print_carray(Dune::dinfo, gadjwgt, gnoedges);
Dune::dinfo<<std::endl;
#endif
// everything should be fine now!!!
if(verbose && oocomm.communicator().rank()==0)
std::cout<<"Postprocesing global graph data took "<<time1.elapsed()<<std::endl;
time1.reset();
#ifndef NDEBUG
assert(isValidGraph(noVertices, noVertices, gnoedges,
gxadj, gadjncy, true));
#endif
if(verbose && oocomm.communicator().rank()==0)
std::cout<<"Creating grah one 1 process took "<<time.elapsed()<<std::endl;
time.reset();
options[0]=0; options[1]=1; options[2]=1; options[3]=3; options[4]=3;
// Call metis
METIS_PartGraphRecursive(&noVertices, gxadj, gadjncy, gvwgt, gadjwgt, &wgtflag,
&numflag, &nparts, options, &edgecut, gpart);
if(verbose && oocomm.communicator().rank()==0)
std::cout<<"METIS took "<<time.elapsed()<<std::endl;
time.reset();
Dune::dinfo<<std::endl<<"part:";
print_carray(Dune::dinfo, gpart, noVertices);
delete[] gxadj;
delete[] gadjncy;
#ifdef USE_WEIGHTS
delete[] gvwgt;
delete[] gadjwgt;
#endif
}
// Scatter result
MPI_Scatter(gpart, 1, MPITraits<idxtype>::getType(), part, 1,
MPITraits<idxtype>::getType(), 0, comm);
{
// release remaining memory
delete[] gpart;
delete[] noedges;
delete[] displ;
}
#endif
delete[] xadj;
delete[] vtxdist;
delete[] adjncy;
#ifdef USE_WEIGHTS
delete[] vwgt;
delete[] adjwgt;
#endif
delete[] tpwgts;
}
}else{
part[0]=0;
}
#endif
Dune::dinfo<<" repart "<<rank <<" -> "<< part[0]<<std::endl;
std::vector<int> realpart(mat.N(), part[0]);
delete[] part;
oocomm.copyOwnerToAll(realpart, realpart);
if(verbose && oocomm.communicator().rank()==0)
std::cout<<"Scattering repartitioning took "<<time.elapsed()<<std::endl;
time.reset();
oocomm.buildGlobalLookup(mat.N());
Dune::Amg::MatrixGraph<M> graph(const_cast<M&>(mat));
fillIndexSetHoles(graph, oocomm);
if(verbose && oocomm.communicator().rank()==0)
std::cout<<"Filling index set took "<<time.elapsed()<<std::endl;
time.reset();
if(verbose){
int noNeighbours=oocomm.remoteIndices().neighbours();
noNeighbours = oocomm.communicator().sum(noNeighbours)
/ oocomm.communicator().size();
if(oocomm.communicator().rank()==0)
std::cout<<"Average no neighbours was "<<noNeighbours<<std::endl;
}
bool ret = buildCommunication(graph, realpart, oocomm, outcomm, redistInf,
verbose);
if(verbose && oocomm.communicator().rank()==0)
std::cout<<"Building index sets took "<<time.elapsed()<<std::endl;
time.reset();
return ret;
}
/**
* @brief execute a graph repartition for a giving graph and indexset.
*
* This function provides repartition functionality using the
* PARMETIS library
*
* @param graph The given graph to repartition
* @param oocomm The parallel information about the graph.
* @param nparts The number of domains the repartitioning should achieve.
* @param[out] outcomm Pointer store the parallel information of the
* redistributed domains in.
* @param redistInf Redistribute interface
* @param verbose Verbosity flag to give out additional information.
*/
template<class G, class T1, class T2>
bool graphRepartition(const G& graph, Dune::OwnerOverlapCopyCommunication<T1,T2>& oocomm, int nparts,
Dune::OwnerOverlapCopyCommunication<T1,T2>*& outcomm,
RedistributeInterface& redistInf,
bool verbose=false)
{
Timer time;
MPI_Comm comm=oocomm.communicator();
oocomm.buildGlobalLookup(graph.noVertices());
fillIndexSetHoles(graph, oocomm);
if(verbose && oocomm.communicator().rank()==0)
std::cout<<"Filling holes took "<<time.elapsed()<<std::endl;
time.reset();
// simple precondition checks
#ifdef PERF_REPART
// Profiling variables
double t1=0.0, t2=0.0, t3=0.0, t4=0.0, tSum=0.0;
#endif
// MPI variables
int mype = oocomm.communicator().rank();
assert(nparts<=oocomm.communicator().size());
int myDomain;
//
// 1) Prepare the required parameters for using ParMETIS
// Especially the arrays that represent the graph must be
// generated by the DUNE Graph and IndexSet input variables.
// These are the arrays:
// - vtxdist
// - xadj
// - adjncy
//
//
#ifdef PERF_REPART
// reset timer for step 1)
t1=MPI_Wtime();
#endif
typedef typename Dune::OwnerOverlapCopyCommunication<T1,T2> OOComm;
typedef typename OOComm::OwnerSet OwnerSet;
// Create the vtxdist array and parmetisVtxMapping.
// Global communications are necessary
// The parmetis global identifiers for the owner vertices.
ParmetisDuneIndexMap indexMap(graph,oocomm);
#if HAVE_PARMETIS
idxtype *part = new idxtype[indexMap.numOfOwnVtx()];
#else
std::size_t *part = new std::size_t[indexMap.numOfOwnVtx()];
#endif
for(std::size_t i=0; i < indexMap.numOfOwnVtx(); ++i)
part[i]=mype;
#if !HAVE_PARMETIS
if(oocomm.communicator().rank()==0 && nparts>1)
std::cerr<<"ParMETIS not activated. Will repartition to 1 domain instead of requested "
<<nparts<<" domains."<<std::endl;
nparts=1; // No parmetis available, fallback to agglomerating to 1 process
#else
if(nparts>1){
// Create the xadj and adjncy arrays
idxtype *xadj = new idxtype[indexMap.numOfOwnVtx()+1];
idxtype *adjncy = new idxtype[graph.noEdges()];
EdgeFunctor<G> ef(adjncy, indexMap, graph.noEdges());
getAdjArrays<OwnerSet>(graph, oocomm.globalLookup(), xadj, ef);
//
// 2) Call ParMETIS
//
//
int numflag=0, wgtflag=0, options[3], edgecut=0, ncon=1;
//float *tpwgts = NULL;
float *tpwgts = new float[nparts];
for(int i=0; i<nparts; ++i)
tpwgts[i]=1.0/nparts;
float ubvec[1];
options[0] = 0; // 0=default, 1=options are defined in [1]+[2]
#ifdef DEBUG_REPART
options[1] = 3; // show info: 0=no message
#else
options[1] = 0; // show info: 0=no message
#endif
options[2] = 1; // random number seed, default is 15
wgtflag = (ef.getWeights()!=NULL)?1:0;
numflag = 0;
edgecut = 0;
ncon=1;
ubvec[0]=1.05; // recommended by ParMETIS
#ifdef DEBUG_REPART
if (mype == 0) {
std::cout<<std::endl;
std::cout<<"Testing ParMETIS_V3_PartKway with options[1-2] = {"
<<options[1]<<" "<<options[2]<<"}, Ncon: "
<<ncon<<", Nparts: "<<nparts<<std::endl;
}
#endif
#ifdef PERF_REPART
// stop the time for step 1)
t1=MPI_Wtime()-t1;
// reset timer for step 2)
t2=MPI_Wtime();
#endif
if(verbose){
oocomm.communicator().barrier();
if(oocomm.communicator().rank()==0)
std::cout<<"Preparing for parmetis took "<<time.elapsed()<<std::endl;
}
time.reset();
//=======================================================
// ParMETIS_V3_PartKway
//=======================================================
ParMETIS_V3_PartKway(indexMap.vtxDist(), xadj, adjncy,
NULL, ef.getWeights(), &wgtflag,
&numflag, &ncon, &nparts, tpwgts, ubvec, options, &edgecut, part, &const_cast<MPI_Comm&>(comm));
delete[] xadj;
delete[] adjncy;
delete[] tpwgts;
ef.free();
#ifdef DEBUG_REPART
if (mype == 0) {
std::cout<<std::endl;
std::cout<<"ParMETIS_V3_PartKway reported a cut of "<<edgecut<<std::endl;
std::cout<<std::endl;
}
std::cout<<mype<<": PARMETIS-Result: ";
for(int i=0; i < indexMap.vtxDist()[mype+1]-indexMap.vtxDist()[mype]; ++i) {
std::cout<<part[i]<<" ";
}
std::cout<<std::endl;
std::cout<<"Testing ParMETIS_V3_PartKway with options[1-2] = {"
<<options[1]<<" "<<options[2]<<"}, Ncon: "
<<ncon<<", Nparts: "<<nparts<<std::endl;
#endif
#ifdef PERF_REPART
// stop the time for step 2)
t2=MPI_Wtime()-t2;
// reset timer for step 3)
t3=MPI_Wtime();
#endif
if(verbose){
oocomm.communicator().barrier();
if(oocomm.communicator().rank()==0)
std::cout<<"Parmetis took "<<time.elapsed()<<std::endl;
}
time.reset();
}else
#endif
{
// Everything goes to process 0!
for(std::size_t i=0; i<indexMap.numOfOwnVtx();++i)
part[i]=0;
}
//
// 3) Find a optimal domain based on the ParMETIS repatitioning
// result
//
std::vector<int> domainMapping(nparts);
if(nparts>1)
getDomain(comm, part, indexMap.numOfOwnVtx(), nparts, &myDomain, domainMapping);
else
domainMapping[0]=0;
#ifdef DEBUG_REPART
std::cout<<mype<<": myDomain: "<<myDomain<<std::endl;
std::cout<<mype<<": DomainMapping: ";
for(int j=0; j<nparts; j++) {
std::cout<<" do: "<<j<<" pe: "<<domainMapping[j]<<" ";
}
std::cout<<std::endl;
#endif
// Make a domain mapping for the indexset and translate
//domain number to real process number
// domainMapping is the one of parmetis, that is without
// the overlap/copy vertices
std::vector<int> setPartition(oocomm.indexSet().size(), -1);
typedef typename OOComm::ParallelIndexSet::const_iterator Iterator;
std::size_t i=0; // parmetis index
for(Iterator index = oocomm.indexSet().begin(); index != oocomm.indexSet().end(); ++index)
if(OwnerSet::contains(index->local().attribute())){
setPartition[index->local()]=domainMapping[part[i++]];
}
delete[] part;
oocomm.copyOwnerToAll(setPartition, setPartition);
// communication only needed for ALU
// (ghosts with same global id as owners on the same process)
if (oocomm.getSolverCategory() ==
static_cast<int>(SolverCategory::nonoverlapping))
oocomm.copyCopyToAll(setPartition, setPartition);
bool ret = buildCommunication(graph, setPartition, oocomm, outcomm, redistInf,
verbose);
if(verbose){
oocomm.communicator().barrier();
if(oocomm.communicator().rank()==0)
std::cout<<"Creating indexsets took "<<time.elapsed()<<std::endl;
}
return ret;
}
template<class G, class T1, class T2>
bool buildCommunication(const G& graph,
std::vector<int>& setPartition, Dune::OwnerOverlapCopyCommunication<T1,T2>& oocomm,
Dune::OwnerOverlapCopyCommunication<T1,T2>*& outcomm,
RedistributeInterface& redistInf,
bool verbose)
{
typedef typename Dune::OwnerOverlapCopyCommunication<T1,T2> OOComm;
typedef typename OOComm::OwnerSet OwnerSet;
Timer time;
// Build the send interface
redistInf.buildSendInterface<OwnerSet>(setPartition, oocomm.indexSet());
#ifdef PERF_REPART
// stop the time for step 3)
t3=MPI_Wtime()-t3;
// reset timer for step 4)
t4=MPI_Wtime();
#endif
//
// 4) Create the output IndexSet and RemoteIndices
// 4.1) Determine the "send to" and "receive from" relation
// according to the new partition using a MPI ring
// communication.
//
// 4.2) Depends on the "send to" and "receive from" vector,
// the processes will exchange the vertices each other
//
// 4.3) Create the IndexSet, RemoteIndices and the new MPI
// communicator
//
//
// 4.1) Let's start...
//
int npes = oocomm.communicator().size();
int *sendTo = 0;
int noSendTo = 0;
std::set<int> recvFrom;
// the max number of vertices is stored in the sendTo buffer,
// not the number of vertices to send! Because the max number of Vtx
// is used as the fixed buffer size by the MPI send/receive calls
typedef typename std::vector<int>::const_iterator VIter;
int mype = oocomm.communicator().rank();
{
std::set<int> tsendTo;
for(VIter i=setPartition.begin(), iend = setPartition.end(); i!=iend; ++i)
tsendTo.insert(*i);
noSendTo = tsendTo.size();
sendTo = new int[noSendTo];
typedef std::set<int>::const_iterator iterator;
int idx=0;
for(iterator i=tsendTo.begin(); i != tsendTo.end(); ++i, ++idx)
sendTo[idx]=*i;
}
//
int* gnoSend= new int[oocomm.communicator().size()];
int* gsendToDispl = new int[oocomm.communicator().size()+1];
MPI_Allgather(&noSendTo, 1, MPI_INT, gnoSend, 1,
MPI_INT, oocomm.communicator());
// calculate total receive message size
int totalNoRecv = 0;
for(int i=0; i<npes; ++i)
totalNoRecv += gnoSend[i];
int *gsendTo = new int[totalNoRecv];
// calculate displacement for allgatherv
gsendToDispl[0]=0;
for(int i=0; i<npes; ++i)
gsendToDispl[i+1]=gsendToDispl[i]+gnoSend[i];
// gather the data
MPI_Allgatherv(sendTo, noSendTo, MPI_INT, gsendTo, gnoSend, gsendToDispl,
MPI_INT, oocomm.communicator());
// Extract from which processes we will receive data
for(int proc=0; proc < npes; ++proc)
for(int i=gsendToDispl[proc]; i < gsendToDispl[proc+1]; ++i)
if(gsendTo[i]==mype)
recvFrom.insert(proc);
bool existentOnNextLevel = recvFrom.size()>0;
// Delete memory
delete[] gnoSend;
delete[] gsendToDispl;
delete[] gsendTo;
#ifdef DEBUG_REPART
if(recvFrom.size()){
std::cout<<mype<<": recvFrom: ";
typedef typename std::set<int>::const_iterator siter;
for(siter i=recvFrom.begin(); i!= recvFrom.end(); ++i) {
std::cout<<*i<<" ";
}
}
std::cout<<std::endl<<std::endl;
std::cout<<mype<<": sendTo: ";
for(int i=0; i<noSendTo; i++) {
std::cout<<sendTo[i]<<" ";
}
std::cout<<std::endl<<std::endl;
#endif
if(verbose)
if(oocomm.communicator().rank()==0)
std::cout<<" Communicating the receive information took "<<
time.elapsed()<<std::endl;
time.reset();
//
// 4.2) Start the communication
//
// Get all the owner and overlap vertices for myself ans save
// it in the vectors myOwnerVec and myOverlapVec.
// The received vertices from the other processes are simple
// added to these vector.
//
typedef typename OOComm::ParallelIndexSet::GlobalIndex GI;
typedef std::vector<GI> GlobalVector;
std::vector<std::pair<GI,int> > myOwnerVec;
std::set<GI> myOverlapSet;
GlobalVector sendOwnerVec;
std::set<GI> sendOverlapSet;
std::set<int> myNeighbors;
// getOwnerOverlapVec<OwnerSet>(graph, setPartition, oocomm.globalLookup(),
// mype, mype, myOwnerVec, myOverlapSet, redistInf, myNeighbors);
char **sendBuffers=new char*[noSendTo];
MPI_Request *requests = new MPI_Request[noSendTo];
// Create all messages to be sent
for(int i=0; i < noSendTo; ++i){
// clear the vector for sending
sendOwnerVec.clear();
sendOverlapSet.clear();
// get all owner and overlap vertices for process j and save these
// in the vectors sendOwnerVec and sendOverlapSet
std::set<int> neighbors;
getOwnerOverlapVec<OwnerSet>(graph, setPartition, oocomm.globalLookup(),
mype, sendTo[i], sendOwnerVec, sendOverlapSet, redistInf,
neighbors);
// +2, we need 2 integer more for the length of each part
// (owner/overlap) of the array
int buffersize=0;
int tsize;
MPI_Pack_size(1, MPITraits<std::size_t>::getType(), oocomm.communicator(), &buffersize);
MPI_Pack_size(sendOwnerVec.size(), MPITraits<GI>::getType(), oocomm.communicator(), &tsize);
buffersize +=tsize;
MPI_Pack_size(1, MPITraits<std::size_t>::getType(), oocomm.communicator(), &tsize);
buffersize +=tsize;
MPI_Pack_size(sendOverlapSet.size(), MPITraits<GI>::getType(), oocomm.communicator(), &tsize);
buffersize += tsize;
MPI_Pack_size(1, MPITraits<std::size_t>::getType(), oocomm.communicator(), &tsize);
buffersize += tsize;
MPI_Pack_size(neighbors.size(), MPI_INT, oocomm.communicator(), &tsize);
buffersize += tsize;
sendBuffers[i] = new char[buffersize];
#ifdef DEBUG_REPART
std::cout<<mype<<" sending "<<sendOwnerVec.size()<<" owner and "<<
sendOverlapSet.size()<<" overlap to "<<sendTo[i]<<" buffersize="<<buffersize<<std::endl;
#endif
createSendBuf(sendOwnerVec, sendOverlapSet, neighbors, sendBuffers[i], buffersize, oocomm.communicator());
MPI_Issend(sendBuffers[i], buffersize, MPI_PACKED, sendTo[i], 99, oocomm.communicator(), requests+i);
}
if(verbose){
oocomm.communicator().barrier();
if(oocomm.communicator().rank()==0)
std::cout<<" Creating sends took "<<
time.elapsed()<<std::endl;
}
time.reset();
// Receive Messages
int noRecv = recvFrom.size();
int oldbuffersize=0;
char* recvBuf = 0;
while(noRecv>0){
// probe for an incoming message
MPI_Status stat;
MPI_Probe(MPI_ANY_SOURCE, 99, oocomm.communicator(), &stat);
int buffersize;
MPI_Get_count(&stat, MPI_PACKED, &buffersize);
if(oldbuffersize<buffersize){
// buffer too small, reallocate
delete[] recvBuf;
recvBuf = new char[buffersize];
oldbuffersize = buffersize;
}
MPI_Recv(recvBuf, buffersize, MPI_PACKED, stat.MPI_SOURCE, 99, oocomm.communicator(), &stat);
saveRecvBuf(recvBuf, buffersize, myOwnerVec, myOverlapSet, myNeighbors, redistInf,
stat.MPI_SOURCE, oocomm.communicator());
--noRecv;
}
if(recvBuf)
delete[] recvBuf;
time.reset();
// Wait for sending messages to complete
MPI_Status *statuses = new MPI_Status[noSendTo];
int send = MPI_Waitall(noSendTo, requests, statuses);
// check for errors
if(send==MPI_ERR_IN_STATUS){
std::cerr<<mype<<": Error in sending :"<<std::endl;
// Search for the error
for(int i=0; i< noSendTo; i++)
if(statuses[i].MPI_ERROR!=MPI_SUCCESS){
char message[300];
int messageLength;
MPI_Error_string(statuses[i].MPI_ERROR, message, &messageLength);
std::cerr<<" source="<<statuses[i].MPI_SOURCE<<" message: ";
for(int i=0; i< messageLength; i++)
std::cout<<message[i];
}
std::cerr<<std::endl;
}
if(verbose){
oocomm.communicator().barrier();
if(oocomm.communicator().rank()==0)
std::cout<<" Receiving and saving took "<<
time.elapsed()<<std::endl;
}
time.reset();
for(int i=0; i < noSendTo; ++i)
delete[] sendBuffers[i];
delete[] sendBuffers;
delete[] statuses;
delete[] requests;
redistInf.setCommunicator(oocomm.communicator());
//
// 4.2) Create the IndexSet etc.
//
// build the new outputIndexSet
int color=0;
if (!existentOnNextLevel) {
// this process is not used anymore
color= MPI_UNDEFINED;
}
MPI_Comm outputComm;
MPI_Comm_split(oocomm.communicator(), color, oocomm.communicator().rank(), &outputComm);
outcomm = new OOComm(outputComm,oocomm.getSolverCategory(),true);
// translate neighbor ranks.
int newrank=outcomm->communicator().rank();
int *newranks=new int[oocomm.communicator().size()];
std::vector<int> tneighbors;
tneighbors.reserve(myNeighbors.size());
typename OOComm::ParallelIndexSet& outputIndexSet = outcomm->indexSet();
MPI_Allgather(&newrank, 1, MPI_INT, newranks, 1,
MPI_INT, oocomm.communicator());
typedef typename std::set<int>::const_iterator IIter;
#ifdef DEBUG_REPART
std::cout<<oocomm.communicator().rank()<<" ";
for(IIter i=myNeighbors.begin(), end=myNeighbors.end();
i!=end; ++i){
assert(newranks[*i]>=0);
std::cout<<*i<<"->"<<newranks[*i]<<" ";
tneighbors.push_back(newranks[*i]);
}
std::cout<<std::endl;
#else
for(IIter i=myNeighbors.begin(), end=myNeighbors.end();
i!=end; ++i){
tneighbors.push_back(newranks[*i]);
}
#endif
delete[] newranks;
myNeighbors.clear();
if(verbose){
oocomm.communicator().barrier();
if(oocomm.communicator().rank()==0)
std::cout<<" Calculating new neighbours ("<<tneighbors.size()<<") took "<<
time.elapsed()<<std::endl;
}
time.reset();
outputIndexSet.beginResize();
// 1) add the owner vertices
// Sort the owners
std::sort(myOwnerVec.begin(), myOwnerVec.end(), SortFirst());
// The owners are sorted according to there global index
// Therefore the entries of ownerVec are the same as the
// ones in the resulting index set.
typedef typename OOComm::ParallelIndexSet::LocalIndex LocalIndex;
typedef typename std::vector<std::pair<GI,int> >::const_iterator VPIter;
int i=0;
for(VPIter g=myOwnerVec.begin(), end =myOwnerVec.end(); g!=end; ++g, ++i ) {
outputIndexSet.add(g->first,LocalIndex(i, OwnerOverlapCopyAttributeSet::owner, true));
redistInf.addReceiveIndex(g->second, i);
}
if(verbose){
oocomm.communicator().barrier();
if(oocomm.communicator().rank()==0)
std::cout<<" Adding owner indices took "<<
time.elapsed()<<std::endl;
}
time.reset();
// After all the vertices are received, the vectors must
// be "merged" together to create the final vectors.
// Because some vertices that are sent as overlap could now
// already included as owner vertiecs in the new partition
mergeVec(myOwnerVec, myOverlapSet);
// Trick to free memory
myOwnerVec.clear();
myOwnerVec.swap(myOwnerVec);
if(verbose){
oocomm.communicator().barrier();
if(oocomm.communicator().rank()==0)
std::cout<<" Merging indices took "<<
time.elapsed()<<std::endl;
}
time.reset();
// 2) add the overlap vertices
typedef typename std::set<GI>::const_iterator SIter;
for(SIter g=myOverlapSet.begin(), end=myOverlapSet.end(); g!=end; ++g, i++) {
outputIndexSet.add(*g,LocalIndex(i, OwnerOverlapCopyAttributeSet::copy, true));
}
myOverlapSet.clear();
outputIndexSet.endResize();
#ifdef DUNE_ISTL_WITH_CHECKING
int numOfOwnVtx =0;
typedef typename OOComm::ParallelIndexSet::const_iterator Iterator;
Iterator end = outputIndexSet.end();
for(Iterator index = outputIndexSet.begin(); index != end; ++index) {
if (OwnerSet::contains(index->local().attribute())) {
numOfOwnVtx++;
}
}
numOfOwnVtx = oocomm.communicator().sum(numOfOwnVtx);
// if(numOfOwnVtx!=indexMap.globalOwnerVertices)
// {
// std::cerr<<numOfOwnVtx<<"!="<<indexMap.globalOwnerVertices<<" owners missing or additional ones!"<<std::endl;
// DUNE_THROW(ISTLError, numOfOwnVtx<<"!="<<indexMap.globalOwnerVertices<<" owners missing or additional ones"
// <<" during repartitioning.");
// }
Iterator index=outputIndexSet.begin();
if(index!=end){
++index;
for(Iterator old = outputIndexSet.begin(); index != end; old=index++) {
if(old->global()>index->global())
DUNE_THROW(ISTLError, "Index set's globalindex not sorted correctly");
}
}
#endif
if(verbose){
oocomm.communicator().barrier();
if(oocomm.communicator().rank()==0)
std::cout<<" Adding overlap indices took "<<
time.elapsed()<<std::endl;
}
time.reset();
if(color != MPI_UNDEFINED){
outcomm->remoteIndices().setNeighbours(tneighbors);
outcomm->remoteIndices().template rebuild<true>();
}
// release the memory
delete[] sendTo;
if(verbose){
oocomm.communicator().barrier();
if(oocomm.communicator().rank()==0)
std::cout<<" Storing indexsets took "<<
time.elapsed()<<std::endl;
}
#ifdef PERF_REPART
// stop the time for step 4) and print the results
t4=MPI_Wtime()-t4;
tSum = t1 + t2 + t3 + t4;
std::cout<<std::endl
<<mype<<": WTime for step 1): "<<t1
<<" 2): "<<t2
<<" 3): "<<t3
<<" 4): "<<t4
<<" total: "<<tSum
<<std::endl;
#endif
return color!=MPI_UNDEFINED;
}
#else
template<class G, class P,class T1, class T2, class R>
bool graphRepartition(const G& graph, P& oocomm, int nparts,
P*& outcomm,
R& redistInf,
bool v=false)
{
if(nparts!=oocomm.size())
DUNE_THROW(NotImplemented, "only available for MPI programs");
}
template<class G, class P,class T1, class T2, class R>
bool commGraphRepartition(const G& graph, P& oocomm, int nparts,
P*& outcomm,
R& redistInf,
bool v=false)
{
if(nparts!=oocomm.size())
DUNE_THROW(NotImplemented, "only available for MPI programs");
}
#endif // HAVE_MPI
} // end of namespace Dune
#endif
|