/usr/include/dune/istl/schwarz.hh is in libdune-istl-dev 2.2.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 | // -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_SCHWARZ_HH
#define DUNE_SCHWARZ_HH
#include <iostream> // for input/output to shell
#include <fstream> // for input/output to files
#include <vector> // STL vector class
#include <sstream>
#include <cmath> // Yes, we do some math here
#include <dune/common/timer.hh>
#include"io.hh"
#include"bvector.hh"
#include"vbvector.hh"
#include"bcrsmatrix.hh"
#include"io.hh"
#include"gsetc.hh"
#include"ilu.hh"
#include"operators.hh"
#include"solvers.hh"
#include"preconditioners.hh"
#include"scalarproducts.hh"
#include"owneroverlapcopy.hh"
namespace Dune {
/**
* @defgroup ISTL_Parallel Parallel Solvers
* @ingroup ISTL_Solvers
* Instead of using parallel data structures (matrices and vectors) that
* (implicitly) know the data distribution and communication patterns,
* there is a clear separation of the parallel data composition together
* with the communication APIs from the data structures. This allows for
* implementing overalapping and nonoverlapping domain decompositions as
* well as data parallel parallelisation aproaches.
*
* The \ref ISTL_Solvers "solvers" can easily be turned into parallel solvers
* initializing them with matching parallel subclasses of the the base classes
* ScalarProduct, Preconditioner and LinearOperator.
*
* The information of the data distribution is provided by OwnerOverlapCopyCommunication
* of \ref ISTL_Comm "communication API".
*
* Currently only data parallel versions are shipped with dune-istl. Domain
* decomposition can be found in module dune-dd.
*/
/**
@addtogroup ISTL_Operators
@{
*/
/**
* @brief An overlapping schwarz operator.
*/
template<class M, class X, class Y, class C>
class OverlappingSchwarzOperator : public AssembledLinearOperator<M,X,Y>
{
public:
//! \brief The type of the matrix we operate on.
typedef M matrix_type;
//! \brief The type of the domain.
typedef X domain_type;
//! \brief The type of the range.
typedef Y range_type;
//! \brief The field type of the range
typedef typename X::field_type field_type;
//! \brief The type of the communication object
typedef C communication_type;
enum {
//! \brief The solver category.
category=SolverCategory::overlapping
};
/**
* @brief constructor: just store a reference to a matrix.
*
* @param A The assembled matrix.
* @param com The communication object for syncing overlap and copy
* data points. (E.~g. OwnerOverlapCommunication )
*/
OverlappingSchwarzOperator (const matrix_type& A, const communication_type& com)
: _A_(A), communication(com)
{}
//! apply operator to x: \f$ y = A(x) \f$
virtual void apply (const X& x, Y& y) const
{
y = 0;
_A_.umv(x,y); // result is consistent on interior+border
communication.project(y); // we want this here to avoid it before the preconditioner
// since there d is const!
}
//! apply operator to x, scale and add: \f$ y = y + \alpha A(x) \f$
virtual void applyscaleadd (field_type alpha, const X& x, Y& y) const
{
_A_.usmv(alpha,x,y); // result is consistent on interior+border
communication.project(y); // we want this here to avoid it before the preconditioner
// since there d is const!
}
//! get matrix via *
virtual const matrix_type& getmat () const
{
return _A_;
}
private:
const matrix_type& _A_;
const communication_type& communication;
};
/** @} */
/**
* @addtogroup ISTL_SP
* @{
*/
/**
* \brief Scalar product for overlapping schwarz methods.
*
* Consistent vectors in interior and border are assumed.
*/
template<class X, class C>
class OverlappingSchwarzScalarProduct : public ScalarProduct<X>
{
public:
//! \brief The type of the domain.
typedef X domain_type;
//! \brief The type of the range
typedef typename X::field_type field_type;
//! \brief The type of the communication object
typedef C communication_type;
//! define the category
enum {category=SolverCategory::overlapping};
/*! \brief Constructor needs to know the grid
* \param com The communication object for syncing overlap and copy
* data points. (E.~g. OwnerOverlapCommunication )
*/
OverlappingSchwarzScalarProduct (const communication_type& com)
: communication(com)
{}
/*! \brief Dot product of two vectors.
It is assumed that the vectors are consistent on the interior+border
partition.
*/
virtual field_type dot (const X& x, const X& y)
{
field_type result;
communication.dot(x,y,result);
return result;
}
/*! \brief Norm of a right-hand side vector.
The vector must be consistent on the interior+border partition
*/
virtual double norm (const X& x)
{
return communication.norm(x);
}
private:
const communication_type& communication;
};
template<class X, class C>
struct ScalarProductChooser<X,C,SolverCategory::overlapping>
{
/** @brief The type of the scalar product for the overlapping case. */
typedef OverlappingSchwarzScalarProduct<X,C> ScalarProduct;
/** @brief The type of the communication object to use. */
typedef C communication_type;
enum{
/** @brief The solver category. */
solverCategory=SolverCategory::overlapping
};
static ScalarProduct* construct(const communication_type& comm)
{
return new ScalarProduct(comm);
}
};
/**
* @}
*
* @addtogroup ISTL_Prec
* @{
*/
//! \brief A parallel SSOR preconditioner.
template<class M, class X, class Y, class C>
class ParSSOR : public Preconditioner<X,Y> {
public:
//! \brief The matrix type the preconditioner is for.
typedef M matrix_type;
//! \brief The domain type of the preconditioner.
typedef X domain_type;
//! \brief The range type of the preconditioner.
typedef Y range_type;
//! \brief The field type of the preconditioner.
typedef typename X::field_type field_type;
//! \brief The type of the communication object.
typedef C communication_type;
// define the category
enum {
//! \brief The category the precondtioner is part of.
category=SolverCategory::overlapping};
/*! \brief Constructor.
constructor gets all parameters to operate the prec.
\param A The matrix to operate on.
\param n The number of iterations to perform.
\param w The relaxation factor.
\param c The communication object for syncing overlap and copy
* data points. (E.~g. OwnerOverlapCommunication )
*/
ParSSOR (const matrix_type& A, int n, field_type w, const communication_type& c)
: _A_(A), _n(n), _w(w), communication(c)
{ }
/*!
\brief Prepare the preconditioner.
\copydoc Preconditioner::pre(X&,Y&)
*/
virtual void pre (X& x, Y& b)
{
communication.copyOwnerToAll(x,x); // make dirichlet values consistent
}
/*!
\brief Apply the precondtioner
\copydoc Preconditioner::apply(X&,const Y&)
*/
virtual void apply (X& v, const Y& d)
{
for (int i=0; i<_n; i++){
bsorf(_A_,v,d,_w);
bsorb(_A_,v,d,_w);
}
communication.copyOwnerToAll(v,v);
}
/*!
\brief Clean up.
\copydoc Preconditioner::post(X&)
*/
virtual void post (X& x) {}
private:
//! \brief The matrix we operate on.
const matrix_type& _A_;
//! \brief The number of steps to do in apply
int _n;
//! \brief The relaxation factor to use
field_type _w;
//! \brief the communication object
const communication_type& communication;
};
namespace Amg
{
template<class T> class ConstructionTraits;
}
/**
* @brief Block parallel preconditioner.
*
* This is essentially a wrapper that take a sequential
* preconditoner. In each step the sequential preconditioner
* is applied and then all owner data points are updates on
* all other processes.
*/
template<class X, class Y, class C, class T=Preconditioner<X,Y> >
class BlockPreconditioner : public Preconditioner<X,Y> {
friend class Amg::ConstructionTraits<BlockPreconditioner<X,Y,C,T> >;
public:
//! \brief The domain type of the preconditioner.
typedef X domain_type;
//! \brief The range type of the preconditioner.
typedef Y range_type;
//! \brief The field type of the preconditioner.
typedef typename X::field_type field_type;
//! \brief The type of the communication object.
typedef C communication_type;
// define the category
enum {
//! \brief The category the precondtioner is part of.
category=SolverCategory::overlapping};
/*! \brief Constructor.
constructor gets all parameters to operate the prec.
\param p The sequential preconditioner.
\param c The communication object for syncing overlap and copy
data points. (E.~g. OwnerOverlapCommunication )
*/
BlockPreconditioner (T& p, const communication_type& c)
: preconditioner(p), communication(c)
{ }
/*!
\brief Prepare the preconditioner.
\copydoc Preconditioner::pre(X&,Y&)
*/
virtual void pre (X& x, Y& b)
{
communication.copyOwnerToAll(x,x); // make dirichlet values consistent
preconditioner.pre(x,b);
}
/*!
\brief Apply the preconditioner
\copydoc Preconditioner::apply(X&,const Y&)
*/
virtual void apply (X& v, const Y& d)
{
preconditioner.apply(v,d);
communication.copyOwnerToAll(v,v);
}
template<bool forward>
void apply (X& v, const Y& d)
{
preconditioner.template apply<forward>(v,d);
communication.copyOwnerToAll(v,v);
}
/*!
\brief Clean up.
\copydoc Preconditioner::post(X&)
*/
virtual void post (X& x)
{
preconditioner.post(x);
}
private:
//! \brief a sequential preconditioner
T& preconditioner;
//! \brief the communication object
const communication_type& communication;
};
/** @} end documentation */
} // end namespace
#endif
|