/usr/include/dune/localfunctions/monom/monomlocalbasis.hh is in libdune-localfunctions-dev 2.2.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 | // -*- tab-width: 4; indent-tabs-mode: nil -*-
#ifndef DUNE_MONOMLOCALBASIS_HH
#define DUNE_MONOMLOCALBASIS_HH
#include <cassert>
#include <dune/common/fmatrix.hh>
#include"../common/localbasis.hh"
namespace Dune
{
namespace MonomImp {
/** template meta program to calculate the number of shape functions
* \internal
*/
template<int d, int k>
struct Size {
enum { val = Size<d,k-1>::val+Size<d-1,k>::val };
};
template<int d>
struct Size<d, 0> {
enum { val = 1 };
};
template<int k>
struct Size<0, k> {
enum { val = 1 };
};
template<>
struct Size<0, 0> {
enum { val = 1 };
};
template<class T>
T ipow(T base, int exp)
{
T result(1);
while (exp)
{
if (exp & 1)
result *= base;
exp >>= 1;
base *= base;
}
return result;
}
//! Access output vector of evaluateFunction() and evaluate()
template <typename Traits>
class EvalAccess {
std::vector<typename Traits::RangeType> &out;
#ifndef NDEBUG
unsigned int first_unused_index;
#endif
public:
EvalAccess(std::vector<typename Traits::RangeType> &out_)
: out(out_)
#ifndef NDEBUG
, first_unused_index(0)
#endif
{ }
#ifndef NDEBUG
~EvalAccess() {
assert(first_unused_index == out.size());
}
#endif
typename Traits::RangeFieldType &operator[](unsigned int index)
{
assert(index < out.size());
#ifndef NDEBUG
if(first_unused_index <= index)
first_unused_index = index+1;
#endif
return out[index][0];
}
};
//! Access output vector of evaluateJacobian()
template <typename Traits>
class JacobianAccess {
std::vector<typename Traits::JacobianType> &out;
unsigned int row;
#ifndef NDEBUG
unsigned int first_unused_index;
#endif
public:
JacobianAccess(std::vector<typename Traits::JacobianType> &out_,
unsigned int row_)
: out(out_), row(row_)
#ifndef NDEBUG
, first_unused_index(0)
#endif
{ }
#ifndef NDEBUG
~JacobianAccess() {
assert(first_unused_index == out.size());
}
#endif
typename Traits::RangeFieldType &operator[](unsigned int index)
{
assert(index < out.size());
#ifndef NDEBUG
if(first_unused_index <= index)
first_unused_index = index+1;
#endif
return out[index][0][row];
}
};
/** Template Metaprogramm for evaluating monomial shapefunctions
* \internal
*
* \tparam Traits The Traits class of the monomial shape functions to
* evaluate -- used to get DomainType etc.
* \tparam c The "codim of the next dimension to try for factors".
* Unfortunately, we cannot recurs over that dimension
* directly, since the end of the recursion cannot be
* specialized for dimDomain-1, but we can recurs over
* dimDomain minus that dimension, since it can be
* specialized for 1.
*/
template <typename Traits, int c>
struct Evaluate
{
enum {
//! The next dimension to try for factors
d = Traits::dimDomain - c
};
/** \todo
*
* \tparam Access Wrapper around the result vector, so we don't have to
* copy the output and can still use the same code for
* both the usual drivatives and for the Jacobian
*/
template <typename Access>
static void eval (//! The point at which to evaluate
const typename Traits::DomainType &in,
//! The number of partial derivatives, one entry for
//! each dimension
const array<int, Traits::dimDomain> &derivatives,
//! The product accumulated for the dimensions which
//! have already been handled
typename Traits::RangeFieldType prod,
//! The number of factors still to go
int bound,
//! The index of the next entry in the output to fill
int& index,
//! The wrapper used to access the output vector
Access &access)
{
// start with the highest exponent for this dimension, then work down
for (int e = bound; e >= 0; --e)
{
// the rest rest of the available exponents, to be used by the other
// dimensions
int newbound = bound - e;
if(e < derivatives[d])
Evaluate<Traits,c-1>::
eval(in, derivatives, 0, newbound, index, access);
else {
int coeff = 1;
for(int i = e - derivatives[d] + 1; i <= e; ++i)
coeff *= i;
// call the evaluator for the next dimension
Evaluate<Traits,c-1>::
eval(// pass the coordinate and the derivatives unchanged
in, derivatives,
// also pass the product accumulated so far, but also
// include the current dimension
prod * ipow(in[d], e-derivatives[d]) * coeff,
// pass the number of remaining exponents to the next
// dimension
newbound,
// pass the next index to fill and the output access
// wrapper
index, access);
}
}
}
};
/** \copydoc Evaluate
* \brief Specializes the end of the recursion
* \internal
*/
template <typename Traits>
struct Evaluate<Traits, 1>
{
enum { d = Traits::dimDomain-1 };
//! \copydoc Evaluate::eval
template <typename Access>
static void eval (const typename Traits::DomainType &in,
const array<int, Traits::dimDomain> &derivatives,
typename Traits::RangeFieldType prod,
int bound, int& index, Access &access)
{
if(bound < derivatives[d])
prod = 0;
else {
int coeff = 1;
for(int i = bound - derivatives[d] + 1; i <= bound; ++i)
coeff *= i;
prod *= ipow(in[d], bound-derivatives[d]) * coeff;
}
access[index] = prod;
++index;
}
};
} //namespace MonomImp
/**@ingroup LocalBasisImplementation
\brief Constant shape function
Defines the constant scalar shape function in d dimensions. Is
valid on any type of reference element.
\tparam D Type to represent the field in the domain.
\tparam R Type to represent the field in the range.
\tparam d Domain dimension
\tparam p polynomial order of the shapefunctions
\tparam diffOrder Maximum differentiation order to report in the traits.
\nosubgrouping
*/
template<class D, class R, unsigned int d, unsigned int p, unsigned diffOrder = p>
class MonomLocalBasis
{
enum { static_size = MonomImp::Size<d,p>::val };
public:
//! \brief export type traits for function signature
typedef LocalBasisTraits<D,d,Dune::FieldVector<D,d>,R,1,Dune::FieldVector<R,1>,
Dune::FieldMatrix<R,1,d>,diffOrder> Traits;
//! \brief number of shape functions
unsigned int size () const
{
return static_size;
}
//! \brief Evaluate all shape functions
inline void evaluateFunction (const typename Traits::DomainType& in,
std::vector<typename Traits::RangeType>& out) const
{
evaluate<0>(array<int, 0>(), in, out);
}
//! return given derivative of all components
template<unsigned int k>
inline void evaluate (const array<int,k>& directions,
const typename Traits::DomainType& in,
std::vector<typename Traits::RangeType>& out) const
{
out.resize(size());
int index = 0;
array<int, d> derivatives;
for(unsigned int i = 0; i < d; ++i) derivatives[i] = 0;
for(unsigned int i = 0; i < k; ++i) ++derivatives[directions[i]];
MonomImp::EvalAccess<Traits> access(out);
for(unsigned int lp = 0; lp <= p; ++lp)
MonomImp::Evaluate<Traits, d>::eval(in, derivatives, 1, lp, index,
access);
}
//! \brief Evaluate Jacobian of all shape functions
inline void
evaluateJacobian (const typename Traits::DomainType& in, // position
std::vector<typename Traits::JacobianType>& out) const // return value
{
out.resize(size());
array<int, d> derivatives;
for(unsigned int i = 0; i < d; ++i)
derivatives[i] = 0;
for(unsigned int i = 0; i < d; ++i)
{
derivatives[i] = 1;
int index = 0;
MonomImp::JacobianAccess<Traits> access(out, i);
for(unsigned int lp = 0; lp <= p; ++lp)
MonomImp::Evaluate<Traits, d>::eval(in, derivatives, 1, lp, index, access);
derivatives[i] = 0;
}
}
//! \brief Polynomial order of the shape functions
unsigned int order () const
{
return p;
}
};
}
#endif // DUNE_MONOMLOCALBASIS_HH
|