This file is indexed.

/usr/include/dune/localfunctions/utility/polynomialbasis.hh is in libdune-localfunctions-dev 2.2.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
#ifndef DUNE_POLYNOMIALBASIS_HH
#define DUNE_POLYNOMIALBASIS_HH

#include <fstream>

#include <dune/common/fmatrix.hh>

#include <dune/localfunctions/common/localbasis.hh>

#include <dune/localfunctions/utility/coeffmatrix.hh>
#include <dune/localfunctions/utility/monomialbasis.hh>
#include <dune/localfunctions/utility/multiindex.hh>
#include <dune/localfunctions/utility/basisevaluator.hh>

namespace Dune
{

  // PolynomialBasis
  // ---------------

  /** 
   * This is the basis class for a ''polynomial''
   * basis, i.e., a basis consisting of linear
   * combiniations of a underlying second basis set.
   * Examples are standard polynomials where the
   * underlying basis is given by the MonomialBasis
   * class. The basis evaluation is given by the matrix
   * vector multiplication between the coefficient
   * matrix and the vector filled by evaluating the
   * underlying basis set. 
   * This class is constructed using a reference of
   * the underlying basis and the coefficient matrix.
   * A specialization holding an instance
   * of the coefficient matrix is provided by the class
   * template< class Eval, class CM = SparseCoeffMatrix<typename Eval::Field,Eval::dimRange> >
   * class PolynomialBasisWithMatrix; 
   *
   * \tparam B Basis set with 
   *           static const int dimension  -> dimension of reference element
   *           typedef DomainVector        -> coordinates in reference element
   *           int size(int order) const   -> number of basis functions
   *           void evaluate( order, x, val ) const
   *              int order
   *              DomainVector x
   *              Container val
   * \tparam CM stroage for coefficience with
   *           typedef Field -> field of coefficience
   *           static const int dimRange -> coeficience are of type
   *                                        FieldMatrix<Field,dimRange,dimRange> 
   *           void mult( val, y )
   *              Container val
   *              std::vector<RangeVector> y  
   * \tparam Container access to basis functions through forward iterator
   *           typedef value_type
   *           typedef const_iterator
   *           const_iterator begin()
   **/
  template< class Eval, class CM, class D=double, class R=double >
  class PolynomialBasis 
  {
    typedef PolynomialBasis< Eval, CM > This;
    typedef Eval Evaluator;

  public:
    typedef CM CoefficientMatrix;

    typedef typename CoefficientMatrix::Field StorageField;

    static const unsigned int dimension = Evaluator::dimension;
    static const unsigned int dimRange = Evaluator::dimRange*CoefficientMatrix::blockSize;
    typedef LocalBasisTraits<D,dimension,FieldVector<D,dimension>,
                               R,dimRange,FieldVector<R,dimRange>,
                               FieldMatrix<R,dimRange,dimension> > Traits;
    typedef typename Evaluator::Basis Basis;
    typedef typename Evaluator::DomainVector DomainVector;

    PolynomialBasis (const Basis &basis, 
                     const CoefficientMatrix &coeffMatrix,
                     unsigned int size)
    : basis_(basis),
      coeffMatrix_(&coeffMatrix),
      eval_(basis), 
      order_(basis.order()),
      size_(size)
    {
      // assert(coeffMatrix_);
      // assert(size_ <= coeffMatrix.size()); // !!!
    }

    const Basis &basis () const
    {
      return basis_;
    }

    const CoefficientMatrix &matrix () const
    {
      return *coeffMatrix_;
    }

    const unsigned int order () const 
    {
      return order_;
    }

    const unsigned int size () const
    {
      return size_;
    }

    //! \brief Evaluate all shape functions
    void evaluateFunction (const typename Traits::DomainType& x,
                           std::vector<typename Traits::RangeType>& out) const
    { 
      out.resize(size());
      evaluate(x,out);
    }

    //! \brief Evaluate Jacobian of all shape functions
    void evaluateJacobian (const typename Traits::DomainType& x,         // position
                           std::vector<typename Traits::JacobianType>& out) const      // return value
    {  
      out.resize(size());
      jacobian(x,out);
    }

    template< unsigned int deriv, class F >
    void evaluate ( const DomainVector &x, F *values ) const
    {
      coeffMatrix_->mult( eval_.template evaluate<deriv>( x ), size(), values);
    }
    template< unsigned int deriv, class DVector, class F >
    void evaluate ( const DVector &x, F *values ) const
    {
      assert( DVector::dimension == dimension);
      DomainVector bx;
      for( int d = 0; d < dimension; ++d )
        field_cast( x[ d ], bx[ d ] );
      evaluate<deriv>( bx, values );
    }

    template <bool dummy,class DVector>
    struct Convert
    {
      static DomainVector apply( const DVector &x )
      {
        assert( DVector::dimension == dimension);
        DomainVector bx;
        for( unsigned int d = 0; d < dimension; ++d )
          field_cast( x[ d ], bx[ d ] );
        return bx;
      }
    };
    template <bool dummy>
    struct Convert<dummy,DomainVector>
    {
      static const DomainVector &apply( const DomainVector &x )
      {
        return x;
      }
    };
    template< unsigned int deriv, class DVector, class RVector >
    void evaluate ( const DVector &x, RVector &values ) const
    {
      assert(values.size()>=size());
      const DomainVector &bx = Convert<true,DVector>::apply(x);
      coeffMatrix_->mult( eval_.template evaluate<deriv>( bx ), values );
    }

    template <class Fy>
    void evaluate ( const DomainVector &x, std::vector<FieldVector<Fy,dimRange> > &values ) const
    {
      evaluate<0>(x,values);
    }
    template< class DVector, class RVector >
    void evaluate ( const DVector &x, RVector &values ) const
    {
      assert( DVector::dimension == dimension);
      DomainVector bx;
      for( unsigned int d = 0; d < dimension; ++d )
        field_cast( x[ d ], bx[ d ] );
      evaluate<0>( bx, values );
    }

    template< unsigned int deriv, class Vector >
    void evaluateSingle ( const DomainVector &x, Vector &values ) const
    {
      assert(values.size()>=size());
      coeffMatrix_->template mult<deriv>( eval_.template evaluate<deriv>( x ), values );
    }
    template< unsigned int deriv, class Fy >
    void evaluateSingle ( const DomainVector &x, 
                          std::vector< FieldVector<FieldVector<Fy,LFETensor<Fy,dimension,deriv>::size>,dimRange> > &values) const
    {
      evaluateSingle<deriv>(x,reinterpret_cast<std::vector< FieldVector<Fy,LFETensor<Fy,dimension,deriv>::size*dimRange> >&>(values));
    }
    template< unsigned int deriv, class Fy >
    void evaluateSingle ( const DomainVector &x, 
                          std::vector< FieldVector<LFETensor<Fy,dimension,deriv>,dimRange> > &values) const
    {
      evaluateSingle<deriv>(x,reinterpret_cast<std::vector< FieldVector<Fy,LFETensor<Fy,dimension,deriv>::size*dimRange> >&>(values));
    }

    template <class Fy>
    void jacobian ( const DomainVector &x, std::vector<FieldMatrix<Fy,dimRange,dimension> > &values ) const
    {
      assert(values.size()>=size());
      evaluateSingle<1>(x,reinterpret_cast<std::vector<FieldVector<Fy,dimRange*dimension> >&>(values));
    }
    template< class DVector, class RVector >
    void jacobian ( const DVector &x, RVector &values ) const
    {
      assert( DVector::dimension == dimension);
      DomainVector bx;
      for( unsigned int d = 0; d < dimension; ++d )
        field_cast( x[ d ], bx[ d ] );
      jacobian( bx, values );
    }

    template <class Fy>
    void integrate ( std::vector<Fy> &values ) const
    {
      assert(values.size()>=size());
      coeffMatrix_->mult( eval_.template integrate(), values );
    }

  protected:
    PolynomialBasis(const PolynomialBasis &other) 
      : basis_(other.basis_),
        coeffMatrix_(other.coeffMatrix_),
        eval_(basis_),
        order_(basis_.order()),
        size_(other.size_)
    {
    }
    PolynomialBasis &operator=(const PolynomialBasis&);
    const Basis &basis_;
    const CoefficientMatrix* coeffMatrix_;
    mutable Evaluator eval_;
    unsigned int order_,size_;
  };

  /**
   * Specialized version of PolynomialBasis with FieldMatrix for matrix
   * coefficience and std::vector for container type with FieldVector as
   * value type. This class stores the coefficient matrix with can be
   * constructed via the fill method
   */
  template< class Eval, class CM = SparseCoeffMatrix<typename Eval::Field,Eval::dimRange>,
            class D=double, class R=double>
  class PolynomialBasisWithMatrix 
  : public PolynomialBasis< Eval, CM, D, R >
  {
  public:
    typedef CM CoefficientMatrix;

  private:
    typedef Eval Evaluator;

    typedef PolynomialBasisWithMatrix< Evaluator, CM > This;
    typedef PolynomialBasis<Evaluator,CM> Base;

  public:
    typedef typename Base::Basis Basis;

    PolynomialBasisWithMatrix (const Basis &basis)
    : Base(basis,coeffMatrix_,0)
    {}

    template <class Matrix>
    void fill(const Matrix& matrix)
    {
      coeffMatrix_.fill(matrix);
      this->size_ = coeffMatrix_.size();
    }
    template <class Matrix>
    void fill(const Matrix& matrix,int size)
    {
      coeffMatrix_.fill(matrix);
      assert(size<=coeffMatrix_.size());
      this->size_ = size;
    }

  private:
    PolynomialBasisWithMatrix(const PolynomialBasisWithMatrix &);
    PolynomialBasisWithMatrix &operator=(const PolynomialBasisWithMatrix &);
    CoefficientMatrix coeffMatrix_;
  };
}
#endif // DUNE_POLYNOMIALBASIS_HH