This file is indexed.

/usr/include/eigen3/Eigen/OrderingMethods is in libeigen3-dev 3.2.0-8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#ifndef EIGEN_ORDERINGMETHODS_MODULE_H
#define EIGEN_ORDERINGMETHODS_MODULE_H

#include "SparseCore"

#include "src/Core/util/DisableStupidWarnings.h"

/** 
  * \defgroup OrderingMethods_Module OrderingMethods module
  *
  * This module is currently for internal use only
  * 
  * It defines various built-in and external ordering methods for sparse matrices. 
  * They are typically used to reduce the number of elements during 
  * the sparse matrix decomposition (LLT, LU, QR).
  * Precisely, in a preprocessing step, a permutation matrix P is computed using 
  * those ordering methods and applied to the columns of the matrix. 
  * Using for instance the sparse Cholesky decomposition, it is expected that 
  * the nonzeros elements in LLT(A*P) will be much smaller than that in LLT(A).
  * 
  * 
  * Usage : 
  * \code
  * #include <Eigen/OrderingMethods>
  * \endcode
  * 
  * A simple usage is as a template parameter in the sparse decomposition classes : 
  * 
  * \code 
  * SparseLU<MatrixType, COLAMDOrdering<int> > solver;
  * \endcode 
  * 
  * \code 
  * SparseQR<MatrixType, COLAMDOrdering<int> > solver;
  * \endcode
  * 
  * It is possible as well to call directly a particular ordering method for your own purpose, 
  * \code 
  * AMDOrdering<int> ordering;
  * PermutationMatrix<Dynamic, Dynamic, int> perm;
  * SparseMatrix<double> A; 
  * //Fill the matrix ...
  * 
  * ordering(A, perm); // Call AMD
  * \endcode
  * 
  * \note Some of these methods (like AMD or METIS), need the sparsity pattern 
  * of the input matrix to be symmetric. When the matrix is structurally unsymmetric, 
  * Eigen computes internally the pattern of \f$A^T*A\f$ before calling the method.
  * If your matrix is already symmetric (at leat in structure), you can avoid that
  * by calling the method with a SelfAdjointView type.
  * 
  * \code
  *  // Call the ordering on the pattern of the lower triangular matrix A
  * ordering(A.selfadjointView<Lower>(), perm);
  * \endcode
  */

#ifndef EIGEN_MPL2_ONLY
#include "src/OrderingMethods/Amd.h"
#endif

#include "src/OrderingMethods/Ordering.h"
#include "src/Core/util/ReenableStupidWarnings.h"

#endif // EIGEN_ORDERINGMETHODS_MODULE_H