This file is indexed.

/usr/share/doc/libghc-conduit-doc/html/conduit.txt is in libghc-conduit-doc 1.0.13-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
-- Hoogle documentation, generated by Haddock
-- See Hoogle, http://www.haskell.org/hoogle/


-- | Streaming data processing library.
--   
--   <tt>conduit</tt> is a solution to the streaming data problem, allowing
--   for production, transformation, and consumption of streams of data in
--   constant memory. It is an alternative to lazy I/O which guarantees
--   deterministic resource handling, and fits in the same general solution
--   space as <tt>enumerator</tt>/<tt>iteratee</tt> and <tt>pipes</tt>. For
--   a tutorial, please visit
--   <a>https://haskell.fpcomplete.com/user/snoyberg/library-documentation/conduit-overview</a>.
--   
--   Release history:
--   
--   <ul>
--   <li><i>1.0</i> Simplified the user-facing interface back to the
--   Source, Sink, and Conduit types, with Producer and Consumer for
--   generic code. Error messages have been simplified, and optional
--   leftovers and upstream terminators have been removed from the external
--   API. Some long-deprecated functions were finally removed.</li>
--   <li><i>0.5</i> The internals of the package are now separated to the
--   .Internal module, leaving only the higher-level interface in the
--   advertised API. Internally, switched to a <tt>Leftover</tt>
--   constructor and slightly tweaked the finalization semantics.</li>
--   <li><i>0.4</i> Inspired by the design of the pipes package: we now
--   have a single unified type underlying <tt>Source</tt>, <tt>Sink</tt>,
--   and <tt>Conduit</tt>. This type is named <tt>Pipe</tt>. There are type
--   synonyms provided for the other three types. Additionally,
--   <tt>BufferedSource</tt> is no longer provided. Instead, the
--   connect-and-resume operator, <tt>$$+</tt>, can be used for the same
--   purpose.</li>
--   <li><i>0.3</i> ResourceT has been greatly simplified, specialized for
--   IO, and moved into a separate package. Instead of hard-coding
--   ResourceT into the conduit datatypes, they can now live around any
--   monad. The Conduit datatype has been enhanced to better allow
--   generation of streaming output. The SourceResult, SinkResult, and
--   ConduitResult datatypes have been removed entirely.</li>
--   <li><i>0.2</i> Instead of storing state in mutable variables, we now
--   use CPS. A <tt>Source</tt> returns the next <tt>Source</tt>, and
--   likewise for <tt>Sink</tt>s and <tt>Conduit</tt>s. Not only does this
--   take better advantage of GHC's optimizations (about a 20% speedup),
--   but it allows some operations to have a reduction in algorithmic
--   complexity from exponential to linear. This also allowed us to remove
--   the <tt>Prepared</tt> set of types. Also, the <tt>State</tt> functions
--   (e.g., <tt>sinkState</tt>) use better constructors for return types,
--   avoiding the need for a dummy state on completion.</li>
--   <li><i>0.1</i> <tt>BufferedSource</tt> is now an abstract type, and
--   has a much more efficient internal representation. The result was a
--   41% speedup on microbenchmarks (note: do not expect speedups anywhere
--   near that in real usage). In general, we are moving towards
--   <tt>BufferedSource</tt> being a specific tool used internally as
--   needed, but using <tt>Source</tt> for all external APIs.</li>
--   <li><i>0.0</i> Initial release.</li>
--   </ul>
@package conduit
@version 1.0.13

module Data.Conduit.Internal

-- | The underlying datatype for all the types in this package. In has six
--   type parameters:
--   
--   <ul>
--   <li><i>l</i> is the type of values that may be left over from this
--   <tt>Pipe</tt>. A <tt>Pipe</tt> with no leftovers would use
--   <tt>Void</tt> here, and one with leftovers would use the same type as
--   the <i>i</i> parameter. Leftovers are automatically provided to the
--   next <tt>Pipe</tt> in the monadic chain.</li>
--   <li><i>i</i> is the type of values for this <tt>Pipe</tt>'s input
--   stream.</li>
--   <li><i>o</i> is the type of values for this <tt>Pipe</tt>'s output
--   stream.</li>
--   <li><i>u</i> is the result type from the upstream <tt>Pipe</tt>.</li>
--   <li><i>m</i> is the underlying monad.</li>
--   <li><i>r</i> is the result type.</li>
--   </ul>
--   
--   A basic intuition is that every <tt>Pipe</tt> produces a stream of
--   output values (<i>o</i>), and eventually indicates that this stream is
--   terminated by sending a result (<i>r</i>). On the receiving end of a
--   <tt>Pipe</tt>, these become the <i>i</i> and <i>u</i> parameters.
--   
--   Since 0.5.0
data Pipe l i o u m r

-- | Provide new output to be sent downstream. This constructor has three
--   fields: the next <tt>Pipe</tt> to be used, a finalization function,
--   and the output value.
HaveOutput :: (Pipe l i o u m r) -> (m ()) -> o -> Pipe l i o u m r

-- | Request more input from upstream. The first field takes a new input
--   value and provides a new <tt>Pipe</tt>. The second takes an upstream
--   result value, which indicates that upstream is producing no more
--   results.
NeedInput :: (i -> Pipe l i o u m r) -> (u -> Pipe l i o u m r) -> Pipe l i o u m r

-- | Processing with this <tt>Pipe</tt> is complete, providing the final
--   result.
Done :: r -> Pipe l i o u m r

-- | Require running of a monadic action to get the next <tt>Pipe</tt>.
PipeM :: (m (Pipe l i o u m r)) -> Pipe l i o u m r

-- | Return leftover input, which should be provided to future operations.
Leftover :: (Pipe l i o u m r) -> l -> Pipe l i o u m r

-- | Core datatype of the conduit package. This type represents a general
--   component which can consume a stream of input values <tt>i</tt>,
--   produce a stream of output values <tt>o</tt>, perform actions in the
--   <tt>m</tt> monad, and produce a final result <tt>r</tt>. The type
--   synonyms provided here are simply wrappers around this type.
--   
--   Since 1.0.0
newtype ConduitM i o m r
ConduitM :: Pipe i i o () m r -> ConduitM i o m r
unConduitM :: ConduitM i o m r -> Pipe i i o () m r

-- | Provides a stream of output values, without consuming any input or
--   producing a final result.
--   
--   Since 0.5.0
type Source m o = ConduitM () o m ()

-- | A component which produces a stream of output values, regardless of
--   the input stream. A <tt>Producer</tt> is a generalization of a
--   <tt>Source</tt>, and can be used as either a <tt>Source</tt> or a
--   <tt>Conduit</tt>.
--   
--   Since 1.0.0
type Producer m o = forall i. ConduitM i o m ()

-- | Consumes a stream of input values and produces a final result, without
--   producing any output.
--   
--   <pre>
--   type Sink i m r = ConduitM i Void m r
--   </pre>
--   
--   Since 0.5.0
type Sink i = ConduitM i Void

-- | A component which consumes a stream of input values and produces a
--   final result, regardless of the output stream. A <tt>Consumer</tt> is
--   a generalization of a <tt>Sink</tt>, and can be used as either a
--   <tt>Sink</tt> or a <tt>Conduit</tt>.
--   
--   Since 1.0.0
type Consumer i m r = forall o. ConduitM i o m r

-- | Consumes a stream of input values and produces a stream of output
--   values, without producing a final result.
--   
--   Since 0.5.0
type Conduit i m o = ConduitM i o m ()

-- | A <tt>Source</tt> which has been started, but has not yet completed.
--   
--   This type contains both the current state of the <tt>Source</tt>, and
--   the finalizer to be run to close it.
--   
--   Since 0.5.0
data ResumableSource m o
ResumableSource :: (Source m o) -> (m ()) -> ResumableSource m o

-- | Wait for a single input value from upstream.
--   
--   Since 0.5.0
await :: Pipe l i o u m (Maybe i)

-- | This is similar to <tt>await</tt>, but will return the upstream result
--   value as <tt>Left</tt> if available.
--   
--   Since 0.5.0
awaitE :: Pipe l i o u m (Either u i)

-- | Wait for input forever, calling the given inner <tt>Pipe</tt> for each
--   piece of new input. Returns the upstream result type.
--   
--   Since 0.5.0
awaitForever :: Monad m => (i -> Pipe l i o r m r') -> Pipe l i o r m r

-- | Send a single output value downstream. If the downstream <tt>Pipe</tt>
--   terminates, this <tt>Pipe</tt> will terminate as well.
--   
--   Since 0.5.0
yield :: Monad m => o -> Pipe l i o u m ()

-- | Similar to <tt>yield</tt>, but additionally takes a finalizer to be
--   run if the downstream <tt>Pipe</tt> terminates.
--   
--   Since 0.5.0
yieldOr :: Monad m => o -> m () -> Pipe l i o u m ()

-- | Provide a single piece of leftover input to be consumed by the next
--   pipe in the current monadic binding.
--   
--   <i>Note</i>: it is highly encouraged to only return leftover values
--   from input already consumed from upstream.
--   
--   Since 0.5.0
leftover :: l -> Pipe l i o u m ()

-- | Perform some allocation and run an inner <tt>Pipe</tt>. Two guarantees
--   are given about resource finalization:
--   
--   <ol>
--   <li>It will be <i>prompt</i>. The finalization will be run as early as
--   possible.</li>
--   <li>It is exception safe. Due to usage of <tt>resourcet</tt>, the
--   finalization will be run in the event of any exceptions.</li>
--   </ol>
--   
--   Since 0.5.0
bracketP :: MonadResource m => IO a -> (a -> IO ()) -> (a -> Pipe l i o u m r) -> Pipe l i o u m r

-- | Add some code to be run when the given <tt>Pipe</tt> cleans up.
--   
--   Since 0.4.1
addCleanup :: Monad m => (Bool -> m ()) -> Pipe l i o u m r -> Pipe l i o u m r

-- | The identity <tt>Pipe</tt>.
--   
--   Since 0.5.0
idP :: Monad m => Pipe l a a r m r

-- | Compose a left and right pipe together into a complete pipe. The left
--   pipe will be automatically closed when the right pipe finishes.
--   
--   Since 0.5.0
pipe :: Monad m => Pipe l a b r0 m r1 -> Pipe Void b c r1 m r2 -> Pipe l a c r0 m r2

-- | Same as <a>pipe</a>, but automatically applies <a>injectLeftovers</a>
--   to the right <tt>Pipe</tt>.
--   
--   Since 0.5.0
pipeL :: Monad m => Pipe l a b r0 m r1 -> Pipe b b c r1 m r2 -> Pipe l a c r0 m r2

-- | Connect a <tt>Source</tt> to a <tt>Sink</tt> until the latter closes.
--   Returns both the most recent state of the <tt>Source</tt> and the
--   result of the <tt>Sink</tt>.
--   
--   We use a <tt>ResumableSource</tt> to keep track of the most recent
--   finalizer provided by the <tt>Source</tt>.
--   
--   Since 0.5.0
connectResume :: Monad m => ResumableSource m o -> Sink o m r -> m (ResumableSource m o, r)

-- | Run a pipeline until processing completes.
--   
--   Since 0.5.0
runPipe :: Monad m => Pipe Void () Void () m r -> m r

-- | Transforms a <tt>Pipe</tt> that provides leftovers to one which does
--   not, allowing it to be composed.
--   
--   This function will provide any leftover values within this
--   <tt>Pipe</tt> to any calls to <tt>await</tt>. If there are more
--   leftover values than are demanded, the remainder are discarded.
--   
--   Since 0.5.0
injectLeftovers :: Monad m => Pipe i i o u m r -> Pipe l i o u m r

-- | Fuse together two <tt>Pipe</tt>s, connecting the output from the left
--   to the input of the right.
--   
--   Notice that the <i>leftover</i> parameter for the <tt>Pipe</tt>s must
--   be <tt>Void</tt>. This ensures that there is no accidental data loss
--   of leftovers during fusion. If you have a <tt>Pipe</tt> with
--   leftovers, you must first call <a>injectLeftovers</a>.
--   
--   Since 0.5.0
(>+>) :: Monad m => Pipe l a b r0 m r1 -> Pipe Void b c r1 m r2 -> Pipe l a c r0 m r2

-- | Same as <a>&gt;+&gt;</a>, but reverse the order of the arguments.
--   
--   Since 0.5.0
(<+<) :: Monad m => Pipe Void b c r1 m r2 -> Pipe l a b r0 m r1 -> Pipe l a c r0 m r2
sourceToPipe :: Monad m => Source m o -> Pipe l i o u m ()
sinkToPipe :: Monad m => Sink i m r -> Pipe l i o u m r
conduitToPipe :: Monad m => Conduit i m o -> Pipe l i o u m ()

-- | Generalize a <a>Source</a> to a <a>Producer</a>.
--   
--   Since 1.0.0
toProducer :: Monad m => Source m a -> Producer m a

-- | Generalize a <a>Sink</a> to a <a>Consumer</a>.
--   
--   Since 1.0.0
toConsumer :: Monad m => Sink a m b -> Consumer a m b

-- | See <a>catchC</a> for more details.
--   
--   Since 1.0.11
catchP :: (MonadBaseControl IO m, Exception e) => Pipe l i o u m r -> (e -> Pipe l i o u m r) -> Pipe l i o u m r

-- | The same as <tt>flip catchP</tt>.
--   
--   Since 1.0.11
handleP :: (MonadBaseControl IO m, Exception e) => (e -> Pipe l i o u m r) -> Pipe l i o u m r -> Pipe l i o u m r

-- | See <a>tryC</a> for more details.
--   
--   Since 1.0.11
tryP :: (MonadBaseControl IO m, Exception e) => Pipe l i o u m r -> Pipe l i o u m (Either e r)

-- | Catch all exceptions thrown by the current component of the pipeline.
--   
--   Note: this will <i>not</i> catch exceptions thrown by other
--   components! For example, if an exception is thrown in a
--   <tt>Source</tt> feeding to a <tt>Sink</tt>, and the <tt>Sink</tt> uses
--   <tt>catchC</tt>, the exception will <i>not</i> be caught.
--   
--   Due to this behavior (as well as lack of async exception handling),
--   you should not try to implement combinators such as
--   <tt>onException</tt> in terms of this primitive function.
--   
--   Note also that the exception handling will <i>not</i> be applied to
--   any finalizers generated by this conduit.
--   
--   Since 1.0.11
catchC :: (MonadBaseControl IO m, Exception e) => ConduitM i o m r -> (e -> ConduitM i o m r) -> ConduitM i o m r

-- | The same as <tt>flip catchC</tt>.
--   
--   Since 1.0.11
handleC :: (MonadBaseControl IO m, Exception e) => (e -> ConduitM i o m r) -> ConduitM i o m r -> ConduitM i o m r

-- | A version of <tt>try</tt> for use within a pipeline. See the comments
--   in <tt>catchC</tt> for more details.
--   
--   Since 1.0.11
tryC :: (MonadBaseControl IO m, Exception e) => ConduitM i o m r -> ConduitM i o m (Either e r)

-- | Transform the monad that a <tt>Pipe</tt> lives in.
--   
--   Note that the monad transforming function will be run multiple times,
--   resulting in unintuitive behavior in some cases. For a fuller
--   treatment, please see:
--   
--   
--   <a>https://github.com/snoyberg/conduit/wiki/Dealing-with-monad-transformers</a>
--   
--   This function is just a synonym for <a>hoist</a>.
--   
--   Since 0.4.0
transPipe :: Monad m => (forall a. m a -> n a) -> Pipe l i o u m r -> Pipe l i o u n r

-- | Apply a function to all the output values of a <tt>Pipe</tt>.
--   
--   This mimics the behavior of <a>fmap</a> for a <a>Source</a> and
--   <a>Conduit</a> in pre-0.4 days.
--   
--   Since 0.4.1
mapOutput :: Monad m => (o1 -> o2) -> Pipe l i o1 u m r -> Pipe l i o2 u m r

-- | Same as <a>mapOutput</a>, but use a function that returns
--   <tt>Maybe</tt> values.
--   
--   Since 0.5.0
mapOutputMaybe :: Monad m => (o1 -> Maybe o2) -> Pipe l i o1 u m r -> Pipe l i o2 u m r

-- | Apply a function to all the input values of a <tt>Pipe</tt>.
--   
--   Since 0.5.0
mapInput :: Monad m => (i1 -> i2) -> (l2 -> Maybe l1) -> Pipe l2 i2 o u m r -> Pipe l1 i1 o u m r

-- | Convert a list into a source.
--   
--   Since 0.3.0
sourceList :: Monad m => [a] -> Pipe l i a u m ()

-- | Returns a tuple of the upstream and downstream results. Note that this
--   will force consumption of the entire input stream.
--   
--   Since 0.5.0
withUpstream :: Monad m => Pipe l i o u m r -> Pipe l i o u m (u, r)

-- | Unwraps a <tt>ResumableSource</tt> into a <tt>Source</tt> and a
--   finalizer.
--   
--   A <tt>ResumableSource</tt> represents a <tt>Source</tt> which has
--   already been run, and therefore has a finalizer registered. As a
--   result, if we want to turn it into a regular <tt>Source</tt>, we need
--   to ensure that the finalizer will be run appropriately. By
--   appropriately, I mean:
--   
--   <ul>
--   <li>If a new finalizer is registered, the old one should not be
--   called.</li>
--   <li>If the old one is called, it should not be called again.</li>
--   </ul>
--   
--   This function returns both a <tt>Source</tt> and a finalizer which
--   ensures that the above two conditions hold. Once you call that
--   finalizer, the <tt>Source</tt> is invalidated and cannot be used.
--   
--   Since 0.5.2
unwrapResumable :: MonadIO m => ResumableSource m o -> m (Source m o, m ())
enumFromTo :: (Enum o, Eq o, Monad m) => o -> o -> Pipe l i o u m ()

-- | Combines two sinks. The new sink will complete when both input sinks
--   have completed.
--   
--   Any leftovers are discarded.
--   
--   Since 0.4.1
zipSinks :: Monad m => Sink i m r -> Sink i m r' -> Sink i m (r, r')

-- | Combines two sources. The new source will stop producing once either
--   source has been exhausted.
--   
--   Since 1.0.13
zipSources :: Monad m => Source m a -> Source m b -> Source m (a, b)

-- | Combines two sources. The new source will stop producing once either
--   source has been exhausted.
--   
--   Since 1.0.13
zipSourcesApp :: Monad m => Source m (a -> b) -> Source m a -> Source m b
instance Monad m => Functor (ConduitM i o m)
instance Monad m => Applicative (ConduitM i o m)
instance Monad m => Monad (ConduitM i o m)
instance MonadIO m => MonadIO (ConduitM i o m)
instance MonadTrans (ConduitM i o)
instance MonadThrow m => MonadThrow (ConduitM i o m)
instance MonadActive m => MonadActive (ConduitM i o m)
instance MonadResource m => MonadResource (ConduitM i o m)
instance MFunctor (ConduitM i o)
instance MFunctor (Pipe l i o u)
instance MFunctor ResumableSource
instance Monad m => Monoid (ConduitM i o m ())
instance MonadBase base m => MonadBase base (ConduitM i o m)
instance MonadError e m => MonadError e (ConduitM i o m)
instance MonadRWS r w s m => MonadRWS r w s (ConduitM i o m)
instance MonadState s m => MonadState s (ConduitM i o m)
instance MonadWriter w m => MonadWriter w (ConduitM i o m)
instance MonadReader r m => MonadReader r (ConduitM i o m)
instance MonadError e m => MonadError e (Pipe l i o u m)
instance MonadRWS r w s m => MonadRWS r w s (Pipe l i o u m)
instance MonadState s m => MonadState s (Pipe l i o u m)
instance MonadWriter w m => MonadWriter w (Pipe l i o u m)
instance MonadReader r m => MonadReader r (Pipe l i o u m)
instance MonadResource m => MonadResource (Pipe l i o u m)
instance Monad m => Monoid (Pipe l i o u m ())
instance MonadActive m => MonadActive (Pipe l i o u m)
instance MonadThrow m => MonadThrow (Pipe l i o u m)
instance MonadIO m => MonadIO (Pipe l i o u m)
instance MonadTrans (Pipe l i o u)
instance MonadBase base m => MonadBase base (Pipe l i o u m)
instance Monad m => Monad (Pipe l i o u m)
instance Monad m => Applicative (Pipe l i o u m)
instance Monad m => Functor (Pipe l i o u m)


-- | Various utility functions versions of <tt>conduit</tt>.
module Data.Conduit.Util

-- | Deprecated synonym for <a>zipSources</a>.
--   
--   Since 0.3.0

-- | <i>Deprecated: Use zipSources instead </i>
zip :: Monad m => Source m a -> Source m b -> Source m (a, b)

-- | Combines two sources. The new source will stop producing once either
--   source has been exhausted.
--   
--   Since 1.0.13
zipSources :: Monad m => Source m a -> Source m b -> Source m (a, b)

-- | Combines two sinks. The new sink will complete when both input sinks
--   have completed.
--   
--   Any leftovers are discarded.
--   
--   Since 0.4.1
zipSinks :: Monad m => Sink i m r -> Sink i m r' -> Sink i m (r, r')

-- | Turn a <tt>Sink</tt> into a <tt>Conduit</tt> in the following way:
--   
--   <ul>
--   <li>All input passed to the <tt>Sink</tt> is yielded downstream.</li>
--   <li>When the <tt>Sink</tt> finishes processing, the result is passed
--   to the provided to the finalizer function.</li>
--   </ul>
--   
--   Note that the <tt>Sink</tt> will stop receiving input as soon as the
--   downstream it is connected to shuts down.
--   
--   An example usage would be to write the result of a <tt>Sink</tt> to
--   some mutable variable while allowing other processing to continue.
--   
--   Since 1.0.10
passthroughSink :: Monad m => Sink i m r -> (r -> m ()) -> Conduit i m i


-- | If this is your first time with conduit, you should probably start
--   with the tutorial:
--   <a>https://haskell.fpcomplete.com/user/snoyberg/library-documentation/conduit-overview</a>.
module Data.Conduit

-- | Provides a stream of output values, without consuming any input or
--   producing a final result.
--   
--   Since 0.5.0
type Source m o = ConduitM () o m ()

-- | Consumes a stream of input values and produces a stream of output
--   values, without producing a final result.
--   
--   Since 0.5.0
type Conduit i m o = ConduitM i o m ()

-- | Consumes a stream of input values and produces a final result, without
--   producing any output.
--   
--   <pre>
--   type Sink i m r = ConduitM i Void m r
--   </pre>
--   
--   Since 0.5.0
type Sink i = ConduitM i Void

-- | Core datatype of the conduit package. This type represents a general
--   component which can consume a stream of input values <tt>i</tt>,
--   produce a stream of output values <tt>o</tt>, perform actions in the
--   <tt>m</tt> monad, and produce a final result <tt>r</tt>. The type
--   synonyms provided here are simply wrappers around this type.
--   
--   Since 1.0.0
data ConduitM i o m r

-- | The connect operator, which pulls data from a source and pushes to a
--   sink. If you would like to keep the <tt>Source</tt> open to be used
--   for other operations, use the connect-and-resume operator <a>$$+</a>.
--   
--   Since 0.4.0
($$) :: Monad m => Source m a -> Sink a m b -> m b

-- | Left fuse, combining a source and a conduit together into a new
--   source.
--   
--   Both the <tt>Source</tt> and <tt>Conduit</tt> will be closed when the
--   newly-created <tt>Source</tt> is closed.
--   
--   Leftover data from the <tt>Conduit</tt> will be discarded.
--   
--   Since 0.4.0
($=) :: Monad m => Source m a -> Conduit a m b -> Source m b

-- | Right fuse, combining a conduit and a sink together into a new sink.
--   
--   Both the <tt>Conduit</tt> and <tt>Sink</tt> will be closed when the
--   newly-created <tt>Sink</tt> is closed.
--   
--   Leftover data returned from the <tt>Sink</tt> will be discarded.
--   
--   Since 0.4.0
(=$) :: Monad m => Conduit a m b -> Sink b m c -> Sink a m c

-- | Fusion operator, combining two <tt>Conduit</tt>s together into a new
--   <tt>Conduit</tt>.
--   
--   Both <tt>Conduit</tt>s will be closed when the newly-created
--   <tt>Conduit</tt> is closed.
--   
--   Leftover data returned from the right <tt>Conduit</tt> will be
--   discarded.
--   
--   Since 0.4.0
(=$=) :: Monad m => Conduit a m b -> ConduitM b c m r -> ConduitM a c m r

-- | Wait for a single input value from upstream. If no data is available,
--   returns <tt>Nothing</tt>.
--   
--   Since 0.5.0
await :: Monad m => Consumer i m (Maybe i)

-- | Send a value downstream to the next component to consume. If the
--   downstream component terminates, this call will never return control.
--   If you would like to register a cleanup function, please use
--   <a>yieldOr</a> instead.
--   
--   Since 0.5.0
yield :: Monad m => o -> ConduitM i o m ()

-- | Provide a single piece of leftover input to be consumed by the next
--   component in the current monadic binding.
--   
--   <i>Note</i>: it is highly encouraged to only return leftover values
--   from input already consumed from upstream.
--   
--   Since 0.5.0
leftover :: i -> ConduitM i o m ()

-- | Perform some allocation and run an inner component. Two guarantees are
--   given about resource finalization:
--   
--   <ol>
--   <li>It will be <i>prompt</i>. The finalization will be run as early as
--   possible.</li>
--   <li>It is exception safe. Due to usage of <tt>resourcet</tt>, the
--   finalization will be run in the event of any exceptions.</li>
--   </ol>
--   
--   Since 0.5.0
bracketP :: MonadResource m => IO a -> (a -> IO ()) -> (a -> ConduitM i o m r) -> ConduitM i o m r

-- | Add some code to be run when the given component cleans up.
--   
--   The supplied cleanup function will be given a <tt>True</tt> if the
--   component ran to completion, or <tt>False</tt> if it terminated early
--   due to a downstream component terminating.
--   
--   Note that this function is not exception safe. For that, please use
--   <a>bracketP</a>.
--   
--   Since 0.4.1
addCleanup :: Monad m => (Bool -> m ()) -> ConduitM i o m r -> ConduitM i o m r

-- | Similar to <a>yield</a>, but additionally takes a finalizer to be run
--   if the downstream component terminates.
--   
--   Since 0.5.0
yieldOr :: Monad m => o -> m () -> ConduitM i o m ()

-- | Catch all exceptions thrown by the current component of the pipeline.
--   
--   Note: this will <i>not</i> catch exceptions thrown by other
--   components! For example, if an exception is thrown in a
--   <tt>Source</tt> feeding to a <tt>Sink</tt>, and the <tt>Sink</tt> uses
--   <tt>catchC</tt>, the exception will <i>not</i> be caught.
--   
--   Due to this behavior (as well as lack of async exception handling),
--   you should not try to implement combinators such as
--   <tt>onException</tt> in terms of this primitive function.
--   
--   Note also that the exception handling will <i>not</i> be applied to
--   any finalizers generated by this conduit.
--   
--   Since 1.0.11
catchC :: (MonadBaseControl IO m, Exception e) => ConduitM i o m r -> (e -> ConduitM i o m r) -> ConduitM i o m r

-- | The same as <tt>flip catchC</tt>.
--   
--   Since 1.0.11
handleC :: (MonadBaseControl IO m, Exception e) => (e -> ConduitM i o m r) -> ConduitM i o m r -> ConduitM i o m r

-- | A version of <tt>try</tt> for use within a pipeline. See the comments
--   in <tt>catchC</tt> for more details.
--   
--   Since 1.0.11
tryC :: (MonadBaseControl IO m, Exception e) => ConduitM i o m r -> ConduitM i o m (Either e r)

-- | A component which produces a stream of output values, regardless of
--   the input stream. A <tt>Producer</tt> is a generalization of a
--   <tt>Source</tt>, and can be used as either a <tt>Source</tt> or a
--   <tt>Conduit</tt>.
--   
--   Since 1.0.0
type Producer m o = forall i. ConduitM i o m ()

-- | A component which consumes a stream of input values and produces a
--   final result, regardless of the output stream. A <tt>Consumer</tt> is
--   a generalization of a <tt>Sink</tt>, and can be used as either a
--   <tt>Sink</tt> or a <tt>Conduit</tt>.
--   
--   Since 1.0.0
type Consumer i m r = forall o. ConduitM i o m r

-- | Generalize a <a>Source</a> to a <a>Producer</a>.
--   
--   Since 1.0.0
toProducer :: Monad m => Source m a -> Producer m a

-- | Generalize a <a>Sink</a> to a <a>Consumer</a>.
--   
--   Since 1.0.0
toConsumer :: Monad m => Sink a m b -> Consumer a m b

-- | Wait for input forever, calling the given inner component for each
--   piece of new input. Returns the upstream result type.
--   
--   This function is provided as a convenience for the common pattern of
--   <tt>await</tt>ing input, checking if it's <tt>Just</tt> and then
--   looping.
--   
--   Since 0.5.0
awaitForever :: Monad m => (i -> ConduitM i o m r) -> ConduitM i o m ()

-- | Transform the monad that a <tt>ConduitM</tt> lives in.
--   
--   Note that the monad transforming function will be run multiple times,
--   resulting in unintuitive behavior in some cases. For a fuller
--   treatment, please see:
--   
--   
--   <a>https://github.com/snoyberg/conduit/wiki/Dealing-with-monad-transformers</a>
--   
--   This function is just a synonym for <a>hoist</a>.
--   
--   Since 0.4.0
transPipe :: Monad m => (forall a. m a -> n a) -> ConduitM i o m r -> ConduitM i o n r

-- | Apply a function to all the output values of a <tt>ConduitM</tt>.
--   
--   This mimics the behavior of <a>fmap</a> for a <a>Source</a> and
--   <a>Conduit</a> in pre-0.4 days. It can also be simulated by fusing
--   with the <tt>map</tt> conduit from <a>Data.Conduit.List</a>.
--   
--   Since 0.4.1
mapOutput :: Monad m => (o1 -> o2) -> ConduitM i o1 m r -> ConduitM i o2 m r

-- | Same as <a>mapOutput</a>, but use a function that returns
--   <tt>Maybe</tt> values.
--   
--   Since 0.5.0
mapOutputMaybe :: Monad m => (o1 -> Maybe o2) -> ConduitM i o1 m r -> ConduitM i o2 m r

-- | Apply a function to all the input values of a <tt>ConduitM</tt>.
--   
--   Since 0.5.0
mapInput :: Monad m => (i1 -> i2) -> (i2 -> Maybe i1) -> ConduitM i2 o m r -> ConduitM i1 o m r

-- | A <tt>Source</tt> which has been started, but has not yet completed.
--   
--   This type contains both the current state of the <tt>Source</tt>, and
--   the finalizer to be run to close it.
--   
--   Since 0.5.0
data ResumableSource m o

-- | The connect-and-resume operator. This does not close the
--   <tt>Source</tt>, but instead returns it to be used again. This allows
--   a <tt>Source</tt> to be used incrementally in a large program, without
--   forcing the entire program to live in the <tt>Sink</tt> monad.
--   
--   Mnemonic: connect + do more.
--   
--   Since 0.5.0
($$+) :: Monad m => Source m a -> Sink a m b -> m (ResumableSource m a, b)

-- | Continue processing after usage of <tt>$$+</tt>.
--   
--   Since 0.5.0
($$++) :: Monad m => ResumableSource m a -> Sink a m b -> m (ResumableSource m a, b)

-- | Complete processing of a <tt>ResumableSource</tt>. This will run the
--   finalizer associated with the <tt>ResumableSource</tt>. In order to
--   guarantee process resource finalization, you <i>must</i> use this
--   operator after using <tt>$$+</tt> and <tt>$$++</tt>.
--   
--   Since 0.5.0
($$+-) :: Monad m => ResumableSource m a -> Sink a m b -> m b

-- | Unwraps a <tt>ResumableSource</tt> into a <tt>Source</tt> and a
--   finalizer.
--   
--   A <tt>ResumableSource</tt> represents a <tt>Source</tt> which has
--   already been run, and therefore has a finalizer registered. As a
--   result, if we want to turn it into a regular <tt>Source</tt>, we need
--   to ensure that the finalizer will be run appropriately. By
--   appropriately, I mean:
--   
--   <ul>
--   <li>If a new finalizer is registered, the old one should not be
--   called.</li>
--   <li>If the old one is called, it should not be called again.</li>
--   </ul>
--   
--   This function returns both a <tt>Source</tt> and a finalizer which
--   ensures that the above two conditions hold. Once you call that
--   finalizer, the <tt>Source</tt> is invalidated and cannot be used.
--   
--   Since 0.5.2
unwrapResumable :: MonadIO m => ResumableSource m o -> m (Source m o, m ())

-- | Provide for a stream of data that can be flushed.
--   
--   A number of <tt>Conduit</tt>s (e.g., zlib compression) need the
--   ability to flush the stream at some point. This provides a single
--   wrapper datatype to be used in all such circumstances.
--   
--   Since 0.3.0
data Flush a
Chunk :: a -> Flush a
Flush :: Flush a

-- | A wrapper for defining an <a>Applicative</a> instance for <a>Sink</a>s
--   which allows to combine sinks together, generalizing
--   <a>zipSources</a>. A combined sources will take input yielded from
--   each of its <tt>Source</tt>s until any of them stop producing output.
--   
--   Since 1.0.13
newtype ZipSource m o
ZipSource :: Source m o -> ZipSource m o
getZipSource :: ZipSource m o -> Source m o

-- | Coalesce all values yielding by all of the <tt>Source</tt>s.
--   
--   Implemented on top of <tt>ZipSource</tt>, see that data type for more
--   details.
--   
--   Since 1.0.13
sequenceSources :: (Traversable f, Monad m) => f (Source m o) -> Source m (f o)

-- | A wrapper for defining an <a>Applicative</a> instance for <a>Sink</a>s
--   which allows to combine sinks together, generalizing <a>zipSinks</a>.
--   A combined sink distributes the input to all its participants and when
--   all finish, produces the result. This allows to define functions like
--   
--   <pre>
--   sequenceSinks :: (Monad m)
--             =&gt; [Sink i m r] -&gt; Sink i m [r]
--   sequenceSinks = getZipSink . sequenceA . fmap ZipSink
--   </pre>
--   
--   Note that the standard <a>Applicative</a> instance for conduits works
--   differently. It feeds one sink with input until it finishes, then
--   switches to another, etc., and at the end combines their results.
--   
--   Since 1.0.13
newtype ZipSink i m r
ZipSink :: Sink i m r -> ZipSink i m r
getZipSink :: ZipSink i m r -> Sink i m r

-- | Send incoming values to all of the <tt>Sink</tt> providing, and
--   ultimately coalesce together all return values.
--   
--   Implemented on top of <tt>ZipSink</tt>, see that data type for more
--   details.
--   
--   Since 1.0.13
sequenceSinks :: (Traversable f, Monad m) => f (Sink i m r) -> Sink i m (f r)

-- | The Resource transformer. This transformer keeps track of all
--   registered actions, and calls them upon exit (via
--   <a>runResourceT</a>). Actions may be registered via <a>register</a>,
--   or resources may be allocated atomically via <a>allocate</a>.
--   <tt>allocate</tt> corresponds closely to <tt>bracket</tt>.
--   
--   Releasing may be performed before exit via the <a>release</a>
--   function. This is a highly recommended optimization, as it will ensure
--   that scarce resources are freed early. Note that calling
--   <tt>release</tt> will deregister the action, so that a release action
--   will only ever be called once.
--   
--   Since 0.3.0
data ResourceT (m :: * -> *) a :: (* -> *) -> * -> *

-- | A <tt>Monad</tt> which allows for safe resource allocation. In theory,
--   any monad transformer stack included a <tt>ResourceT</tt> can be an
--   instance of <tt>MonadResource</tt>.
--   
--   Note: <tt>runResourceT</tt> has a requirement for a
--   <tt>MonadBaseControl IO m</tt> monad, which allows control operations
--   to be lifted. A <tt>MonadResource</tt> does not have this requirement.
--   This means that transformers such as <tt>ContT</tt> can be an instance
--   of <tt>MonadResource</tt>. However, the <tt>ContT</tt> wrapper will
--   need to be unwrapped before calling <tt>runResourceT</tt>.
--   
--   Since 0.3.0
class (MonadThrow m, MonadUnsafeIO m, MonadIO m, Applicative m) => MonadResource (m :: * -> *)

-- | A <tt>Monad</tt> which can throw exceptions. Note that this does not
--   work in a vanilla <tt>ST</tt> or <tt>Identity</tt> monad. Instead, you
--   should use the <a>ExceptionT</a> transformer in your stack if you are
--   dealing with a non-<tt>IO</tt> base monad.
--   
--   Since 0.3.0
class Monad m => MonadThrow (m :: * -> *)
monadThrow :: (MonadThrow m, Exception e) => e -> m a

-- | A <tt>Monad</tt> based on some monad which allows running of some
--   <a>IO</a> actions, via unsafe calls. This applies to <a>IO</a> and
--   <a>ST</a>, for instance.
--   
--   Since 0.3.0
class Monad m => MonadUnsafeIO (m :: * -> *)
unsafeLiftIO :: MonadUnsafeIO m => IO a -> m a

-- | Unwrap a <a>ResourceT</a> transformer, and call all registered release
--   actions.
--   
--   Note that there is some reference counting involved due to
--   <a>resourceForkIO</a>. If multiple threads are sharing the same
--   collection of resources, only the last call to <tt>runResourceT</tt>
--   will deallocate the resources.
--   
--   Since 0.3.0
runResourceT :: MonadBaseControl IO m => ResourceT m a -> m a

-- | The express purpose of this transformer is to allow
--   non-<tt>IO</tt>-based monad stacks to catch exceptions via the
--   <a>MonadThrow</a> typeclass.
--   
--   Since 0.3.0
newtype ExceptionT (m :: * -> *) a :: (* -> *) -> * -> *
ExceptionT :: m (Either SomeException a) -> ExceptionT a
runExceptionT :: ExceptionT a -> m (Either SomeException a)

-- | Same as <a>runExceptionT</a>, but immediately <a>throw</a> any
--   exception returned.
--   
--   Since 0.3.0
runExceptionT_ :: Monad m => ExceptionT m a -> m a

-- | Run an <tt>ExceptionT Identity</tt> stack.
--   
--   Since 0.4.2
runException :: ExceptionT Identity a -> Either SomeException a

-- | Run an <tt>ExceptionT Identity</tt> stack, but immediately
--   <a>throw</a> any exception returned.
--   
--   Since 0.4.2
runException_ :: ExceptionT Identity a -> a
class MonadBase b m => MonadBaseControl (b :: * -> *) (m :: * -> *) | m -> b
instance Show a => Show (Flush a)
instance Eq a => Eq (Flush a)
instance Ord a => Ord (Flush a)
instance Monad m => Applicative (ZipSink i m)
instance Monad m => Functor (ZipSink i m)
instance Monad m => Applicative (ZipSource m)
instance Monad m => Functor (ZipSource m)
instance Functor Flush


-- | Higher-level functions to interact with the elements of a stream. Most
--   of these are based on list functions.
--   
--   Note that these functions all deal with individual elements of a
--   stream as a sort of "black box", where there is no introspection of
--   the contained elements. Values such as <tt>ByteString</tt> and
--   <tt>Text</tt> will likely need to be treated specially to deal with
--   their contents properly (<tt>Word8</tt> and <tt>Char</tt>,
--   respectively). See the <a>Data.Conduit.Binary</a> and
--   <a>Data.Conduit.Text</a> modules.
module Data.Conduit.List
sourceList :: Monad m => [a] -> Producer m a

-- | A source that outputs no values. Note that this is just a
--   type-restricted synonym for <a>mempty</a>.
--   
--   Since 0.3.0
sourceNull :: Monad m => Producer m a

-- | Generate a source from a seed value.
--   
--   Since 0.4.2
unfold :: Monad m => (b -> Maybe (a, b)) -> b -> Producer m a

-- | Enumerate from a value to a final value, inclusive, via <a>succ</a>.
--   
--   This is generally more efficient than using <tt>Prelude</tt>'s
--   <tt>enumFromTo</tt> and combining with <tt>sourceList</tt> since this
--   avoids any intermediate data structures.
--   
--   Since 0.4.2
enumFromTo :: (Enum a, Eq a, Monad m) => a -> a -> Producer m a

-- | Produces an infinite stream of repeated applications of f to x.
iterate :: Monad m => (a -> a) -> a -> Producer m a

-- | A strict left fold.
--   
--   Since 0.3.0
fold :: Monad m => (b -> a -> b) -> b -> Consumer a m b

-- | A monoidal strict left fold.
--   
--   Since 0.5.3
foldMap :: (Monad m, Monoid b) => (a -> b) -> Consumer a m b

-- | Take some values from the stream and return as a list. If you want to
--   instead create a conduit that pipes data to another sink, see
--   <a>isolate</a>. This function is semantically equivalent to:
--   
--   <pre>
--   take i = isolate i =$ consume
--   </pre>
--   
--   Since 0.3.0
take :: Monad m => Int -> Consumer a m [a]

-- | Ignore a certain number of values in the stream. This function is
--   semantically equivalent to:
--   
--   <pre>
--   drop i = take i &gt;&gt; return ()
--   </pre>
--   
--   However, <tt>drop</tt> is more efficient as it does not need to hold
--   values in memory.
--   
--   Since 0.3.0
drop :: Monad m => Int -> Consumer a m ()

-- | Take a single value from the stream, if available.
--   
--   Since 0.3.0
head :: Monad m => Consumer a m (Maybe a)

-- | Look at the next value in the stream, if available. This function will
--   not change the state of the stream.
--   
--   Since 0.3.0
peek :: Monad m => Consumer a m (Maybe a)

-- | Consume all values from the stream and return as a list. Note that
--   this will pull all values into memory. For a lazy variant, see
--   <a>Data.Conduit.Lazy</a>.
--   
--   Since 0.3.0
consume :: Monad m => Consumer a m [a]

-- | Ignore the remainder of values in the source. Particularly useful when
--   combined with <a>isolate</a>.
--   
--   Since 0.3.0
sinkNull :: Monad m => Consumer a m ()

-- | A monoidal strict left fold in a Monad.
--   
--   Since 1.0.8
foldMapM :: (Monad m, Monoid b) => (a -> m b) -> Consumer a m b

-- | A monadic strict left fold.
--   
--   Since 0.3.0
foldM :: Monad m => (b -> a -> m b) -> b -> Consumer a m b

-- | Apply the action to all values in the stream.
--   
--   Since 0.3.0
mapM_ :: Monad m => (a -> m ()) -> Consumer a m ()

-- | Apply a transformation to all values in a stream.
--   
--   Since 0.3.0
map :: Monad m => (a -> b) -> Conduit a m b

-- | Apply a transformation that may fail to all values in a stream,
--   discarding the failures.
--   
--   Since 0.5.1
mapMaybe :: Monad m => (a -> Maybe b) -> Conduit a m b

-- | Generalization of <a>mapMaybe</a> and <a>concatMap</a>. It applies
--   function to all values in a stream and send values inside resulting
--   <tt>Foldable</tt> downstream.
--   
--   Since 1.0.6
mapFoldable :: (Monad m, Foldable f) => (a -> f b) -> Conduit a m b

-- | Filter the <tt>Just</tt> values from a stream, discarding the
--   <tt>Nothing</tt> values.
--   
--   Since 0.5.1
catMaybes :: Monad m => Conduit (Maybe a) m a

-- | Generalization of <a>catMaybes</a>. It puts all values from
--   <a>Foldable</a> into stream.
--   
--   Since 1.0.6
concat :: (Monad m, Foldable f) => Conduit (f a) m a

-- | Apply a transformation to all values in a stream, concatenating the
--   output values.
--   
--   Since 0.3.0
concatMap :: Monad m => (a -> [b]) -> Conduit a m b

-- | <a>concatMap</a> with an accumulator.
--   
--   Since 0.3.0
concatMapAccum :: Monad m => (a -> accum -> (accum, [b])) -> accum -> Conduit a m b

-- | Analog of <a>scanl</a> for lists.
--   
--   Since 1.0.6
scanl :: Monad m => (a -> s -> (s, b)) -> s -> Conduit a m b

-- | Grouping input according to an equality function.
--   
--   Since 0.3.0
groupBy :: Monad m => (a -> a -> Bool) -> Conduit a m [a]

-- | Ensure that the inner sink consumes no more than the given number of
--   values. Note this this does <i>not</i> ensure that the sink consumes
--   all of those values. To get the latter behavior, combine with
--   <a>sinkNull</a>, e.g.:
--   
--   <pre>
--   src $$ do
--       x &lt;- isolate count =$ do
--           x &lt;- someSink
--           sinkNull
--           return x
--       someOtherSink
--       ...
--   </pre>
--   
--   Since 0.3.0
isolate :: Monad m => Int -> Conduit a m a

-- | Keep only values in the stream passing a given predicate.
--   
--   Since 0.3.0
filter :: Monad m => (a -> Bool) -> Conduit a m a

-- | Apply a monadic transformation to all values in a stream.
--   
--   If you do not need the transformed values, and instead just want the
--   monadic side-effects of running the action, see <a>mapM_</a>.
--   
--   Since 0.3.0
mapM :: Monad m => (a -> m b) -> Conduit a m b

-- | Apply a monadic action on all values in a stream.
--   
--   This <tt>Conduit</tt> can be used to perform a monadic side-effect for
--   every value, whilst passing the value through the <tt>Conduit</tt>
--   as-is.
--   
--   <pre>
--   iterM f = mapM (\a -&gt; f a &gt;&gt;= \() -&gt; return a)
--   </pre>
--   
--   Since 0.5.6
iterM :: Monad m => (a -> m ()) -> Conduit a m a

-- | Monadic scanl.
--   
--   Since 1.0.6
scanlM :: Monad m => (a -> s -> m (s, b)) -> s -> Conduit a m b

-- | Apply a monadic transformation that may fail to all values in a
--   stream, discarding the failures.
--   
--   Since 0.5.1
mapMaybeM :: Monad m => (a -> m (Maybe b)) -> Conduit a m b

-- | Monadic variant of <a>mapFoldable</a>.
--   
--   Since 1.0.6
mapFoldableM :: (Monad m, Foldable f) => (a -> m (f b)) -> Conduit a m b

-- | Apply a monadic transformation to all values in a stream,
--   concatenating the output values.
--   
--   Since 0.3.0
concatMapM :: Monad m => (a -> m [b]) -> Conduit a m b

-- | <a>concatMapM</a> with an accumulator.
--   
--   Since 0.3.0
concatMapAccumM :: Monad m => (a -> accum -> m (accum, [b])) -> accum -> Conduit a m b

-- | Run a <tt>Pipe</tt> repeatedly, and output its result value
--   downstream. Stops when no more input is available from upstream.
--   
--   Since 0.5.0
sequence :: Monad m => Consumer i m o -> Conduit i m o


-- | Functions for interacting with bytes.
module Data.Conduit.Binary

-- | Stream the contents of a file as binary data.
--   
--   Since 0.3.0
sourceFile :: MonadResource m => FilePath -> Producer m ByteString

-- | Stream the contents of a <a>Handle</a> as binary data. Note that this
--   function will <i>not</i> automatically close the <tt>Handle</tt> when
--   processing completes, since it did not acquire the <tt>Handle</tt> in
--   the first place.
--   
--   Since 0.3.0
sourceHandle :: MonadIO m => Handle -> Producer m ByteString

-- | Same as <tt>sourceHandle</tt>, but instead of allocating a new buffer
--   for each incoming chunk of data, reuses the same buffer. Therefore,
--   the <tt>ByteString</tt>s yielded by this function are not
--   referentially transparent between two different <tt>yield</tt>s.
--   
--   This function will be slightly more efficient than
--   <tt>sourceHandle</tt> by avoiding allocations and reducing garbage
--   collections, but should only be used if you can guarantee that you do
--   not reuse a <tt>ByteString</tt> (or any slice thereof) between two
--   calls to <tt>await</tt>.
--   
--   Since 1.0.12
sourceHandleUnsafe :: MonadIO m => Handle -> Source m ByteString

-- | An alternative to <a>sourceHandle</a>. Instead of taking a pre-opened
--   <a>Handle</a>, it takes an action that opens a <a>Handle</a> (in read
--   mode), so that it can open it only when needed and closed it as soon
--   as possible.
--   
--   Since 0.3.0
sourceIOHandle :: MonadResource m => IO Handle -> Producer m ByteString

-- | Stream the contents of a file as binary data, starting from a certain
--   offset and only consuming up to a certain number of bytes.
--   
--   Since 0.3.0
sourceFileRange :: MonadResource m => FilePath -> Maybe Integer -> Maybe Integer -> Producer m ByteString

-- | Stream the contents of a handle as binary data, starting from a
--   certain offset and only consuming up to a certain number of bytes.
--   
--   Since 1.0.8
sourceHandleRange :: MonadIO m => Handle -> Maybe Integer -> Maybe Integer -> Producer m ByteString

-- | Stream all incoming data to the given file.
--   
--   Since 0.3.0
sinkFile :: MonadResource m => FilePath -> Consumer ByteString m ()

-- | Stream all incoming data to the given <a>Handle</a>. Note that this
--   function will <i>not</i> automatically close the <tt>Handle</tt> when
--   processing completes.
--   
--   Since 0.3.0
sinkHandle :: MonadIO m => Handle -> Consumer ByteString m ()

-- | An alternative to <a>sinkHandle</a>. Instead of taking a pre-opened
--   <a>Handle</a>, it takes an action that opens a <a>Handle</a> (in write
--   mode), so that it can open it only when needed and close it as soon as
--   possible.
--   
--   Since 0.3.0
sinkIOHandle :: MonadResource m => IO Handle -> Consumer ByteString m ()

-- | Stream the contents of the input to a file, and also send it along the
--   pipeline. Similar in concept to the Unix command <tt>tee</tt>.
--   
--   Since 0.3.0
conduitFile :: MonadResource m => FilePath -> Conduit ByteString m ByteString

-- | Stream the contents of the input to a <tt>Handle</tt>, and also send
--   it along the pipeline. Similar in concept to the Unix command
--   <tt>tee</tt>. Like <tt>sourceHandle</tt>, does not close the handle on
--   completion. Related to: <tt>conduitFile</tt>.
--   
--   Since 1.0.9
conduitHandle :: MonadIO m => Handle -> Conduit ByteString m ByteString

-- | Stream the chunks from a lazy bytestring.
--   
--   Since 0.5.0
sourceLbs :: Monad m => ByteString -> Producer m ByteString

-- | Return the next byte from the stream, if available.
--   
--   Since 0.3.0
head :: Monad m => Consumer ByteString m (Maybe Word8)

-- | Ignore all bytes while the predicate returns <tt>True</tt>.
--   
--   Since 0.3.0
dropWhile :: Monad m => (Word8 -> Bool) -> Consumer ByteString m ()

-- | Take the given number of bytes, if available.
--   
--   Since 0.3.0
take :: Monad m => Int -> Consumer ByteString m ByteString

-- | Drop up to the given number of bytes.
--   
--   Since 0.5.0
drop :: Monad m => Int -> Consumer ByteString m ()

-- | Stream the input data into a temp file and count the number of bytes
--   present. When complete, return a new <tt>Source</tt> reading from the
--   temp file together with the length of the input in bytes.
--   
--   All resources will be cleaned up automatically.
--   
--   Since 1.0.5
sinkCacheLength :: (MonadResource m1, MonadResource m2) => Sink ByteString m1 (Word64, Source m2 ByteString)

-- | Consume a stream of input into a lazy bytestring. Note that no lazy
--   I/O is performed, but rather all content is read into memory strictly.
--   
--   Since 1.0.5
sinkLbs :: Monad m => Sink ByteString m ByteString

-- | Perform a computation on each <tt>Word8</tt> in a stream.
--   
--   Since 1.0.10
mapM_ :: Monad m => (Word8 -> m ()) -> Consumer ByteString m ()

-- | Ensure that only up to the given number of bytes are consume by the
--   inner sink. Note that this does <i>not</i> ensure that all of those
--   bytes are in fact consumed.
--   
--   Since 0.3.0
isolate :: Monad m => Int -> Conduit ByteString m ByteString

-- | Return all bytes while the predicate returns <tt>True</tt>.
--   
--   Since 0.3.0
takeWhile :: Monad m => (Word8 -> Bool) -> Conduit ByteString m ByteString

-- | Split the input bytes into lines. In other words, split on the LF byte
--   (10), and strip it from the output.
--   
--   Since 0.3.0
lines :: Monad m => Conduit ByteString m ByteString


-- | Handle streams of text.
--   
--   Parts of this code were taken from enumerator and adapted for
--   conduits.
module Data.Conduit.Text

-- | A specific character encoding.
--   
--   Since 0.3.0
data Codec

-- | Convert text into bytes, using the provided codec. If the codec is not
--   capable of representing an input character, an exception will be
--   thrown.
--   
--   Since 0.3.0
encode :: MonadThrow m => Codec -> Conduit Text m ByteString

-- | Convert bytes into text, using the provided codec. If the codec is not
--   capable of decoding an input byte sequence, an exception will be
--   thrown.
--   
--   Since 0.3.0
decode :: MonadThrow m => Codec -> Conduit ByteString m Text

-- | Since 0.3.0
utf8 :: Codec

-- | Since 0.3.0
utf16_le :: Codec

-- | Since 0.3.0
utf16_be :: Codec

-- | Since 0.3.0
utf32_le :: Codec

-- | Since 0.3.0
utf32_be :: Codec

-- | Since 0.3.0
ascii :: Codec

-- | Since 0.3.0
iso8859_1 :: Codec

-- | Emit each line separately
--   
--   Since 0.4.1
lines :: Monad m => Conduit Text m Text

-- | Variant of the lines function with an integer parameter. The text
--   length of any emitted line never exceeds the value of the paramater.
--   Whenever this is about to happen a LengthExceeded exception is thrown.
--   This function should be used instead of the lines function whenever we
--   are dealing with user input (e.g. a file upload) because we can't be
--   sure that user input won't have extraordinarily large lines which
--   would require large amounts of memory if consumed.
linesBounded :: MonadThrow m => Int -> Conduit Text m Text

-- | Since 0.3.0
data TextException
DecodeException :: Codec -> Word8 -> TextException
EncodeException :: Codec -> Char -> TextException
LengthExceeded :: Int -> TextException
TextException :: SomeException -> TextException

-- | Since 1.0.8
takeWhile :: Monad m => (Char -> Bool) -> Conduit Text m Text

-- | Since 1.0.8
dropWhile :: Monad m => (Char -> Bool) -> Consumer Text m ()

-- | Since 1.0.8
take :: Monad m => Int -> Conduit Text m Text

-- | Since 1.0.8
drop :: Monad m => Int -> Consumer Text m ()

-- | Since 1.0.8
foldLines :: Monad m => (a -> ConduitM Text o m a) -> a -> ConduitM Text o m a

-- | Since 1.0.8
withLine :: Monad m => Sink Text m a -> Consumer Text m (Maybe a)
instance Typeable TextException
instance Show TextException
instance Exception TextException
instance Show Codec


-- | Use lazy I/O for consuming the contents of a source. Warning: All
--   normal warnings of lazy I/O apply. In particular, if you are using
--   this with a <tt>ResourceT</tt> transformer, you must force the list to
--   be evaluated before exiting the <tt>ResourceT</tt>.
module Data.Conduit.Lazy

-- | Use lazy I/O to consume all elements from a <tt>Source</tt>.
--   
--   This function relies on <a>monadActive</a> to determine if the
--   underlying monadic state has been closed.
--   
--   Since 0.3.0
lazyConsume :: (MonadBaseControl IO m, MonadActive m) => Source m a -> m [a]


-- | Allow monad transformers to be run<i>eval</i>exec in a section of
--   conduit rather then needing to run across the whole conduit. The
--   circumvents many of the problems with breaking the monad transformer
--   laws. For more information, see the announcement blog post:
--   <a>http://www.yesodweb.com/blog/2014/01/conduit-transformer-exception</a>
--   
--   This module was added in conduit 1.0.11.
module Data.Conduit.Lift

-- | Run <a>ErrorT</a> in the base monad
--   
--   Since 1.0.11
errorC :: (Monad m, Monad (t (ErrorT e m)), MonadTrans t, Error e, MFunctor t) => t m (Either e b) -> t (ErrorT e m) b

-- | Run <a>ErrorT</a> in the base monad
--   
--   Since 1.0.11
runErrorC :: (Monad m, Error e) => ConduitM i o (ErrorT e m) r -> ConduitM i o m (Either e r)

-- | Catch an error in the base monad
--   
--   Since 1.0.11
catchErrorC :: (Monad m, Error e) => ConduitM i o (ErrorT e m) r -> (e -> ConduitM i o (ErrorT e m) r) -> ConduitM i o (ErrorT e m) r

-- | Wrap the base monad in <a>MaybeT</a>
--   
--   Since 1.0.11
maybeC :: (Monad m, Monad (t (MaybeT m)), MonadTrans t, MFunctor t) => t m (Maybe b) -> t (MaybeT m) b

-- | Run <a>MaybeT</a> in the base monad
--   
--   Since 1.0.11
runMaybeC :: Monad m => ConduitM i o (MaybeT m) r -> ConduitM i o m (Maybe r)

-- | Wrap the base monad in <a>ReaderT</a>
--   
--   Since 1.0.11
readerC :: (Monad m, Monad (t1 (ReaderT t m)), MonadTrans t1, MFunctor t1) => (t -> t1 m b) -> t1 (ReaderT t m) b

-- | Run <a>ReaderT</a> in the base monad
--   
--   Since 1.0.11
runReaderC :: Monad m => r -> ConduitM i o (ReaderT r m) res -> ConduitM i o m res

-- | Wrap the base monad in <a>StateT</a>
--   
--   Since 1.0.11
stateC :: (Monad m, Monad (t1 (StateT t m)), MonadTrans t1, MFunctor t1) => (t -> t1 m (b, t)) -> t1 (StateT t m) b

-- | Run <a>StateT</a> in the base monad
--   
--   Since 1.0.11
runStateC :: Monad m => s -> ConduitM i o (StateT s m) r -> ConduitM i o m (r, s)

-- | Evaluate <a>StateT</a> in the base monad
--   
--   Since 1.0.11
evalStateC :: Monad m => s -> ConduitM i o (StateT s m) r -> ConduitM i o m r

-- | Execute <a>StateT</a> in the base monad
--   
--   Since 1.0.11
execStateC :: Monad m => s -> ConduitM i o (StateT s m) r -> ConduitM i o m s

-- | Wrap the base monad in <a>StateT</a>
--   
--   Since 1.0.11
stateSC :: (Monad m, Monad (t1 (StateT t m)), MonadTrans t1, MFunctor t1) => (t -> t1 m (b, t)) -> t1 (StateT t m) b

-- | Run <a>StateT</a> in the base monad
--   
--   Since 1.0.11
runStateSC :: Monad m => s -> ConduitM i o (StateT s m) r -> ConduitM i o m (r, s)

-- | Evaluate <a>StateT</a> in the base monad
--   
--   Since 1.0.11
evalStateSC :: Monad m => s -> ConduitM i o (StateT s m) r -> ConduitM i o m r

-- | Execute <a>StateT</a> in the base monad
--   
--   Since 1.0.11
execStateSC :: Monad m => s -> ConduitM i o (StateT s m) r -> ConduitM i o m s

-- | Wrap the base monad in <a>WriterT</a>
--   
--   Since 1.0.11
writerC :: (Monad m, Monad (t (WriterT w m)), MonadTrans t, Monoid w, MFunctor t) => t m (b, w) -> t (WriterT w m) b

-- | Run <a>WriterT</a> in the base monad
--   
--   Since 1.0.11
runWriterC :: (Monad m, Monoid w) => ConduitM i o (WriterT w m) r -> ConduitM i o m (r, w)

-- | Execute <a>WriterT</a> in the base monad
--   
--   Since 1.0.11
execWriterC :: (Monad m, Monoid w) => ConduitM i o (WriterT w m) r -> ConduitM i o m w

-- | Wrap the base monad in <a>WriterT</a>
--   
--   Since 1.0.11
writerSC :: (Monad m, Monad (t (WriterT w m)), MonadTrans t, Monoid w, MFunctor t) => t m (b, w) -> t (WriterT w m) b

-- | Run <a>WriterT</a> in the base monad
--   
--   Since 1.0.11
runWriterSC :: (Monad m, Monoid w) => ConduitM i o (WriterT w m) r -> ConduitM i o m (r, w)

-- | Execute <a>WriterT</a> in the base monad
--   
--   Since 1.0.11
execWriterSC :: (Monad m, Monoid w) => ConduitM i o (WriterT w m) r -> ConduitM i o m w

-- | Wrap the base monad in <a>RWST</a>
--   
--   Since 1.0.11
rwsC :: (Monad m, Monad (t1 (RWST t w t2 m)), MonadTrans t1, Monoid w, MFunctor t1) => (t -> t2 -> t1 m (b, t2, w)) -> t1 (RWST t w t2 m) b

-- | Run <a>RWST</a> in the base monad
--   
--   Since 1.0.11
runRWSC :: (Monad m, Monoid w) => r -> s -> ConduitM i o (RWST r w s m) res -> ConduitM i o m (res, s, w)

-- | Evaluate <a>RWST</a> in the base monad
--   
--   Since 1.0.11
evalRWSC :: (Monad m, Monoid w) => r -> s -> ConduitM i o (RWST r w s m) res -> ConduitM i o m (res, w)

-- | Execute <a>RWST</a> in the base monad
--   
--   Since 1.0.11
execRWSC :: (Monad m, Monoid w) => r -> s -> ConduitM i o (RWST r w s m) res -> ConduitM i o m (s, w)

-- | Wrap the base monad in <a>RWST</a>
--   
--   Since 1.0.11
rwsSC :: (Monad m, Monad (t1 (RWST t w t2 m)), MonadTrans t1, Monoid w, MFunctor t1) => (t -> t2 -> t1 m (b, t2, w)) -> t1 (RWST t w t2 m) b

-- | Run <a>RWST</a> in the base monad
--   
--   Since 1.0.11
runRWSSC :: (Monad m, Monoid w) => r -> s -> ConduitM i o (RWST r w s m) res -> ConduitM i o m (res, s, w)

-- | Evaluate <a>RWST</a> in the base monad
--   
--   Since 1.0.11
evalRWSSC :: (Monad m, Monoid w) => r -> s -> ConduitM i o (RWST r w s m) res -> ConduitM i o m (res, w)

-- | Execute <a>RWST</a> in the base monad
--   
--   Since 1.0.11
execRWSSC :: (Monad m, Monoid w) => r -> s -> ConduitM i o (RWST r w s m) res -> ConduitM i o m (s, w)
distribute :: (Monad (t (ConduitM b o m)), Monad m, Monad (t m), MonadTrans t, MFunctor t) => ConduitM b o (t m) () -> t (ConduitM b o m) ()