This file is indexed.

/usr/share/perl5/Image/MetaData/JPEG/parsers/image.pl is in libimage-metadata-jpeg-perl 0.153-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
###########################################################
# A Perl package for showing/modifying JPEG (meta)data.   #
# Copyright (C) 2004,2005,2006 Stefano Bettelli           #
# See the COPYING and LICENSE files for license terms.    #
###########################################################
use Image::MetaData::JPEG::data::Tables qw();
no  integer;
use strict;
use warnings;

###########################################################
# This method parses a Quantization Table (DQT) segment,  #
# which can specify one or more quantization tables. The  #
# structure is the following:                             #
#------ multiple times -----------------------------------#
#  4 bits   quantization table element precision          #
#  4 bits   quantization table destination identifier     #
# 64 times  quantization table elements                   #
#---------------------------------------------------------#
# Quantization table elements span either 1 or 2 bytes,   #
# depending on the precision (0 -> 1 byte, 1 -> 2 bytes). #
###########################################################
# Ref: "Digital compression and coding of continuous-tone #
#       still images: requirements and guidelines", CCITT #
#       recommendation T.81, 09/1992, pag. 39-40.         #
###########################################################
sub parse_dqt {
    my ($this) = @_;
    my $offset = 0;
    # there can be multiple quantization tables
    while ($offset < $this->size()) {
	# read a byte, containing the quantization table element
	# precision (first nibble) and the destination identifier.
	my $precision = $this->store_record
	    ('PrecisionAndIdentifier', $NIBBLES, $offset)->get_value(0);
        # Then decode the first four bits to get the size
	# of the table (64 bytes or 128 bytes).
	my $element_size = ($precision == 0) ? 1 : 2;
	my $table_size = $element_size * 64;
	# check that there is enough data
	$this->test_size($offset + $table_size);
	# read the table in (always 64 elements, but bytes or shorts)
	$this->store_record('QuantizationTable',
			    $element_size == 1 ? $BYTE : $SHORT, $offset, 64);
    }
}

###########################################################
# This method parses a Huffman table (DHT) segment, which #
# can specify one or more Huffman tables. The structure   #
# is the following:                                       #
#------ multiple times -----------------------------------#
#  4 bits   table class                                   #
#  4 bits   destination identifier                        #
# 16 bytes  number of Huffman codes of given length for   #
#           each of the 16 possible lengths.              #
#  .....    values associated with each Huffman code;     #
#           each value needs a byte, and the total number #
#           of values is the sum of the previous 16 bytes #
###########################################################
# Ref: "Digital compression and coding of continuous-tone #
#       still images: requirements and guidelines", CCITT #
#       recommendation T.81, 09/1992, pag. 40-41.         #
###########################################################
sub parse_dht {
    my ($this) = @_;
    my $offset = 0;
    my $huffman_codes = 16;
    # there can be multiple Huffman tables
    while ($offset < $this->size()) {
	# read a byte, containing the table class and destination
	$this->store_record('ClassAndIdentifier', $NIBBLES, $offset);
	# read the number of Huffman codes of length i
	# (i in 1..16) as a single multi-valued record,
	# then extract the sum of all these values
	my $huffman_size = $this->store_record
	    ('CodeLengths', $BYTE, $offset, $huffman_codes)->get_value();
	# extract of values associated with all Huffman codes
	# as a single multi-valued record
	$this->store_record('CodeData', $BYTE, $offset, $huffman_size);
    }
    # be sure there is no size mismatch
    $this->test_size($offset);
}

###########################################################
# This method parses an Arithmetic Coding table (DAC)     #
# segment, which can specify one or more arithmetic co-   #
# ding conditioning tables (replacing the default one set #
# up by the SOI segment). The structure is the following: #
#------ multiple times -----------------------------------#
#  4 bits   table class                                   #
#  4 bits   destination identifier                        #
#  1 byte   conditioning table value                      #
#---------------------------------------------------------#
# It seems the arithmetic coding is covered by three pa-  #
# tents by three different companies; since its gain over #
# the Huffman coding scheme is only 5-10%, in practise    #
# you will never find this segment in your lifetime.      #
###########################################################
# Ref: "Digital compression and coding of continuous-tone #
#       still images: requirements and guidelines", CCITT #
#       recommendation T.81, 09/1992, sec.B.2.43, pag.42. #
###########################################################
sub parse_dac {
    my ($this) = @_;
    my $offset = 0;
    # there can be multiple Huffman tables
    while ($offset < $this->size()) {
	# read a byte, containing the table class and destination,
	# then another byte with the conditioning table value
	$this->store_record('ClassAndIdentifier'    , $NIBBLES, $offset);
	$this->store_record('ConditioningTableValue', $BYTE,    $offset);
    }
    # be sure there is no size mismatch
    $this->test_size($offset);
}

###########################################################
# This method parses an EXPansion segment (EXP), which    #
# specifies horizontal and vertical expansion parameters  #
# for the next frame. The structure is the following:     #
#------ multiple times -----------------------------------#
#  4 bits   horizontal expansion coefficient              #
#  4 bits   vertical expansion coefficient                #
###########################################################
# Ref: "Digital compression and coding of continuous-tone #
#       still images: requirements and guidelines", CCITT #
#       recommendation T.81, 09/1992, sec.B.3.3, pag.46.  #
###########################################################
sub parse_exp {
    my ($this) = @_;
    # this segments contains exactly one data byte
    $this->test_size(-1);
    # read a byte, containing both expansion coefficients
    $this->store_record('ExpansionCoefficients', $NIBBLES, 0);
}

###########################################################
# This method parses a Define Num of Lines (DNL) segment. #
# Such a segment provides a mechanism for defining or re- #
# defining the number of lines in the frame at the end of #
# the first scan. This marker segment is mandatory if the #
# number of lines specified in the frame header has the   #
# value zero. The structure is the following:             #
#---------------------------------------------------------#
#  2 bytes  number of lines in the frame.                 #
###########################################################
# Ref: "Digital compression and coding of continuous-tone #
#       still images: requirements and guidelines", CCITT #
#       recommendation T.81, 09/1992, sec.B.2.5, pag.45.  #
###########################################################
sub parse_dnl {
    my ($this) = @_;
    # exactly two bytes, plese
    $this->test_size(-2);
    # read the number of lines
    $this->store_record('NumberOfLines', $SHORT, 0);
}

###########################################################
# This method parses a Define Restart Interval (DRI) seg- #
# ment. There is only one parameter in this segment, and  #
# it specifies the number of MCU (minimum coding units)   #
# in the restart interval; a value equal to zero disables #
# the mechanism. The structure is the following:          #
#---------------------------------------------------------#
#  2 bytes  number of MCU in the restart interval.        #
###########################################################
# Ref: "Digital compression and coding of continuous-tone #
#       still images: requirements and guidelines", CCITT #
#       recommendation T.81, 09/1992, sec.B.2.4.4, pag.43.#
###########################################################
sub parse_dri {
    my ($this) = @_;
    # exactly two bytes, plese
    $this->test_size(-2);
    # read the number of MCU in the interval
    $this->store_record('NumMCU_inInterval', $SHORT, 0);
}

###########################################################
# This method parses a Start Of Frame (SOF) segment (but  #
# also a DHP segment, see note at the end). Such a seg-   #
# ment specifies the source image characteristics, the    #
# components in the frame, and the sampling factors for   #
# each components, and specifies the destinations from    #
# which the quantised tables to be used with each compo-  #
# nent are retrieved. The structure is:                   #
#---------------------------------------------------------#
#  1 byte   sample precision (in bits)                    #
#  2 bytes  maximum number of lines in source image       #
#  2 bytes  max. num. of samples per line in source image #
#  1 byte   number N of image components in frame         #
#------ N times ------------------------------------------#
#  1 byte   component identifier                          #
#  4 bits   horizontal sampling factor                    #
#  4 bits   vertical sampling factor                      #
#  1 byte   quantisation table destination selector       #
#=========================================================#
# A DHP segment defines the image components, size and    #
# sampling factors for the completed hierarchical sequence#
# of frames. It precedes the first frame, and its struc-  #
# ture is identical to the frame header syntax, except    #
# that the quantisation table destination selector is 0.  #
#=========================================================#
# The meaning of the different SOF segments is this:      #
#                                                         #
#   / Baseline \     (extended)   Progressive   Lossless  #
#   \  SOF_0   /     sequential                           #
#                                                         #
# (normal)             SOF_1         SOF_2        SOF_3   #
# Differential         SOF_5         SOF_6        SOF_7   #
# Arithmetic coding    SOF_9         SOF_A        SOF_B   #
# Diff., arithm.cod.   SOF_D         SOF_E        SOF_F   #
#=========================================================#
# Ref: "Digital compression and coding of continuous-tone #
#       still images: requirements and guidelines", CCITT #
#       recommendation T.81, 09/1992, sec.B.2.2, pag.35-36#
#       (DHP --> sec. B.3.2, pag. 46).                    #
###########################################################
sub parse_sof {
    my ($this) = @_;
    my $offset = 0;
    my $minimum_size = 6;
    # at least six bytes, plese
    $this->test_size($minimum_size);
    # read the first four values (the last value is
    # the number of image components in this frame)
    $this->store_record('SamplePrecision'  , $BYTE , $offset);
    $this->store_record('MaxLineNumber'    , $SHORT, $offset);
    $this->store_record('MaxSamplesPerLine', $SHORT, $offset);
    my $components = $this->store_record
	('ImageComponents', $BYTE , $offset)->get_value();
    # the number of image components allows us to calculate
    # the size of the remaining part of the segment
    $this->test_size($offset + 3*$components, "in component block");
    # scan all the frame component
    for (1..$components) {
	# three values per component
	$this->store_record('ComponentIdentifier'  , $BYTE   , $offset);
	$this->store_record('SamplingFactors'      , $NIBBLES, $offset);
	$this->store_record('QTDestinationSelector', $BYTE   , $offset);
    }
}

###########################################################
# This method parses the Start Of Scan (SOS) segment: it  #
# gives various scan-related parameters and introduces    #
# the JPEG raw data. The structure is the following:      #
#---------------------------------------------------------#
#  1 byte   number n of components in scan                #
#------------ n times ----------------------------------- #
#  1 byte   scan component selector                       #
#  4 bits   DC entropy coding table destination selector  #
#  4 bits   AC entropy coding table destination selector  #
#---------------------------------------------------------#
#  1 byte   start of spectral or prediction selection     #
#  1 byte   end of spectral selection                     #
#  2 nibbles Successive approximation bit position        #
###########################################################
# Ref: "Digital compression and coding of continuous-tone #
#       still images: requirements and guidelines", CCITT #
#       recommendation T.81, 09/1992, pag. 37-38.         #
###########################################################
sub parse_sos {
    my ($this) = @_;
    my $offset = 0;
    # read the number of components in the scan and calculate
    # the length of this segment; then, compare with what we
    # have in reality and produce an error if they differ
    my $components = $this->store_record
	('ScanComponents', $BYTE, $offset)->get_value();
    $this->test_size(-(1 + $components * 2 + 3));
    # Read two bytes for each component. The first byte is the
    # scan component selector (as numbered in the frame header);
    # the second byte contains the DC/AC entropy coding table
    # destination selector (a nibble each).
    for (1..$components) {
	$this->store_record('ComponentSelector', $BYTE,    $offset);
	$this->store_record('EntropySelector'  , $NIBBLES, $offset); }
    # the meaning of the last three bytes is the following:
    # 1) Start of spectral or prediction selection
    # 2) End of spectral selection
    # 3) Successive approximation bit position (2 nibbles)
    $this->store_record('SpectralSelectionStart'     , $BYTE,    $offset);
    $this->store_record('SpectralSelectionEnd'       , $BYTE,    $offset);
    $this->store_record('SuccessiveApproxBitPosition', $NIBBLES, $offset);
}

# successful load
1;