This file is indexed.

/usr/share/doc/libjas-java/guide.html is in libjas-java 2.5.4408-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
    "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
  <head>
    <link rel="stylesheet" type="text/css" href="html.css" />
    <title>JAS project users guide</title>
  </head>
  <body class="main">
    <h1>Interactive users guide</h1>

<p>
This document contains a first how-to and usage information for the JAS project.
JAS can be used as any other Java library by adding <code>jas.jar</code> 
to the classpath and creating and using objects from JAS classes.
JAS can also be used interactively via the Python Java interpreter
<code>jython</code> (or the Ruby Java interpreter <code>jruby</code>
or the jruby Android App <code>Ruboto-IRB</code>).
This is explained in this page.
For an introduction the API see the <a href="design.html">API guide</a>.
Since JAS Version 2.2 there is an enhanced interface which allows 
direct input of algebraic expressions, see <a href="#express">here</a>. 
</p>


<h3>Getting started</h3>

<p>
As first example we will discus how to compute a Groebner base with
<code>jython</code>. The jython script will be placed into a file, e.g.
<a href="examples/getstart.py"><code>getstart.py</code></a>. 
This script file is executed by calling
</p>
<pre>
  jython getstart.py
</pre>
<p>
The script file first imports the desired mathematical classes from the 
<code>jas.py</code> script which does all interfacing to the Java library.
For the Epydoc of it see <a href="doc/jython/index.html" target="jython">here</a>.
</p>
<pre>
  from jas import Ring
  from jas import Ideal
</pre>
<p>
In our case we need <code>Ring</code> to define an appropriate polynomial ring
and <code>Ideal</code> to define sets of polynomials and have methods to 
compute Groebner bases. 
<code>Ring</code> takes a string argument which contains required definitions 
of the polynomial ring: the type of the coefficient ring, the names of 
the used variables and the desired term order.
</p>
<pre>
  r = Ring( "Rat(B,S,T,Z,P,W) L" );
</pre>
<p>
The ring definition is stored in the variable <code>r</code> for later use.
The string <code>"Rat(B,S,T,Z,P,W) L"</code> defines the coefficient ring 
to be the rational numbers <code>Rat</code>,
the polynomial ring consists of the variables <code>B, S, T, Z, P, W</code>
and the term order <code>L</code> means a lexicographic term order.
For some historical reason the term order orders the variables as 
<code>B &lt; S &lt; T &lt; Z &lt; P &lt; W</code> and not the other way. 
I.e. the highest or largest variable is always on the left of the list of
variables not on the right as in some other algebra systems.
With 
</p>
<pre>
  print "Ring: " + str(r);
</pre>
<p>
you can print out the ring definition. 
<code>str(r)</code> is the usual python way of producing string representations
of objects, which in our case calls the respective Java method 
<code>toString()</code> of the JAS ring object. It produces
</p>
<pre>
Ring: BigRational(B, S, T, Z, P, W) INVLEX
</pre>
<p>
i.e. the coefficients are from the jas class <code>BigRational</code>
and the term order is <code>INVLEX</code> 
(<code>INV</code> because the largest variable is on the left).
Next we need to enter the generating polynomials for the ideal. 
We do this in two steps, first define a python string with the polynomials 
and then the creation of the ideal using the ring definition from before 
and the polynomial string.
</p>
<pre>
ps = """
( 
 ( 45 P + 35 S - 165 B - 36 ), 
 ( 35 P + 40 Z + 25 T - 27 S ), 
 ( 15 W + 25 S P + 30 Z - 18 T - 165 B**2 ), 
 ( - 9 W + 15 T P + 20 S Z ), 
 ( P W + 2 T Z - 11 B**3 ), 
 ( 99 W - 11 B S + 3 B**2 ),
 ( B**2 + 33/50 B + 2673/10000 )
) 
""";
</pre>
<p>
The polynomial string can be generated by any means python allows for 
string manipulation. 
In our example we use python multiline strings, which are delimited by 
triple quotes <code>""" ... """</code>.
The list of polynomials is delimited by parenthesis <code>( ... )</code>,
as well as every polynomial is delimited by parenthesis, e.g.
<code>( B**2 + 33/50 B + 2673/10000 )</code>.
The polynomials are separated by commas.
The syntax for polynomials is a sequence of monimals consisting 
of coefficients and terms (as products of powers of variables).
The terms can optionally be written with multiplication sign,  
i.e. <code>25 S P</code> can be written <code>25*S*P</code>. 
Variable names must be delimited by white space or some operator,
i.e. you can not write <code>25 SP</code> because <code>SP</code>
is not a listed variable name in the polynomial ring definition.
Coefficients may not contain white space, i.e. the <code>/</code>
separating the nominator from the denominator may not be surrounded 
by spaces, i.e. writing <code>33 / 50</code> is not allowed.
Powers of variables can be written with <code>**</code> or <code>^</code>,
i.e. the square of <code>B</code> is written as <code>B**2</code>
or <code>B^2</code>.
The ideal is the defined with
</p>
<pre>
  f = Ideal( r, ps );
</pre>
<p>
The ideal is contained the the polynomial ring <code>r</code>
and consists of the polynomials from the string <code>ps</code>.
Ideals can be printed with
</p>
<pre>
  print "Ideal: " + str(f);
</pre>
<p>
In this example it produces the following output.
</p>
<pre>
Ideal: BigRational(B, S, T, Z, P, W) INVLEX
(
( B^2 + 33/50 B + 2673/10000  ),
( 45 P + 35 S - 165 B - 36  ),
( 35 P + 40 Z + 25 T - 27 S ),
( 15 W + 25 S * P + 30 Z - 18 T - 165 B^2 ),
( -9 W + 15 T * P + 20 S * Z ),
( 99 W - 11 B * S + 3 B^2 ),
( P * W + 2 T * Z - 11 B^3 )
)
</pre>
<p>
The polynomial terms are now sorted with respect to the lexicographical 
term order. The highest term is first in a polynomial.
Also the polynomials are sorted with respect to the term order, but
with smallest polynomial first in the list.
Finaly we can go to the computation of the Groebner basis of this ideal.
</p>
<pre>
  g = f.GB();
</pre>
<p>
The ideal <code>f</code> has a method <code>GB()</code> which 
computes the Groebner base. The computed Groebner base is stored
in the variable <code>g</code> which is also an ideal.
It can be printed as the ideal <code>f</code>
</p>
<pre>
  print "Groebner base:", g;
</pre>
<p>
The output first shows the output from calling the <code>GB()</code> method
and the the ideal basis.
</p>
<pre>
sequential executed in 136 ms

Groebner base: BigRational(B, S, T, Z, P, W) INVLEX
(
( B^2 + 33/50 B + 2673/10000  ),
( S - 5/2 B - 9/200  ),
( T - 37/15 B + 27/250  ),
( Z + 49/36 B + 1143/2000  ),
( P - 31/18 B - 153/200  ),
( W + 19/120 B + 1323/20000  )
)
</pre>
<p>I.e. the Groebner base was computed in 135 ms and consists 
of six polynomials. The polynomials are now monic, 
i.e. the leading coefficient is 1 and omitted during print out.
This concludes the getting started section.
</p>


<h3>Overview of jas.py classes and methods</h3>

<p>
The jython interface to the JAS library consists of the 
following jython classes.
For the Epydoc of them see <a href="doc/jython/index.html" target="jython">here</a>.
</p>
<ul>
<li><p><code>Ring</code>, <code>Ideal</code> and <code>ParamIdeal</code> <br />
    define polynomial rings, ideals and ideals over rings with coefficient parameters. 
    <br />
    <code>Ideal</code> has methods for sequential, parallel and distributed 
    Groebner bases computation, for example 
    <code>GB()</code>, <code>isGB()</code>,
    <code>parGB()</code>,  <code>distGB()</code>,  
    <code>NF()</code> and  <code>intersect()</code>.
    <br />
    <code>ParamIdeal</code> has methods for comprehensive  
    Groebner bases computation, for example
    <code>CGB()</code>,  <code>CGBsystem()</code>,  <code>regularGB()</code>,  
    </p>
</li>
<li><p><code>SolvableRing</code> and <code>SolvableIdeal</code> <br />
    define solvable polynomial rings and left, right and two-sided ideals.<br />
    <code>SolvableIdeal</code> has methods for left, right and two-sided
    Groebner bases computation, e.g.
    <code>leftGB()</code>,  <code>rightGB()</code>,  <code>twosidedGB()</code>,  
    <code>intersect()</code>.
    </p>
</li>
<li><p><code>Module</code> and <code>SubModule</code> <br />
    define modules over polynomial rings and sub modules. <br />
    <code>Module</code> has a method for sequential Groebner bases computation, 
    e.g. <code>GB()</code>.  
    </p>
</li>
<li><p><code>SolvableModule</code> and <code>SolvableSubModule</code> <br />
    define modules over solvable polynomial rings and sub modules. <br />
    <code>SolvableModule</code> has methods for left, right and two-sided
    Groebner bases computation, e.g.
    <code>leftGB()</code>,  <code>rightGB()</code>,  <code>twosidedGB()</code>.
    </p>
</li>
</ul>


<h3>Algebraic expressions</h3>

<p><a name="express"></a>Since JAS Version 2.2 there is an enhanced
interface which allows direct input of algebraic expressions.
For example the above example looks as follows.
</p>
<pre>
r = Ring( "Z(B,S,T,Z,P,W) L" );
print "Ring: " + str(r); 

[B,S,T,Z,P,W] = r.gens();

f1 = 45 * P + 35 * S - 165 * B - 36;
f2 = 35 * P + 40 * Z + 25 * T - 27 * S;
f3 = 15 * W + 25 * S * P + 30 * Z - 18 * T - 165 * B**2;
f4 = - 9 * W + 15 * T * P + 20 * S * Z;
f5 = P * W + 2 * T * Z - 11 * B**3;
f6 = 99 * W - 11 *B * S + 3 * B**2;
f7 = 10000 * B**2 + 6600 * B + 2673;

F = [ f1, f2, f3, f4, f5, f6, f7 ];

I = r.ideal( "", list=F );
</pre>
<p>
The definition of the polynomial ring with
<code>r = Ring( "Z(B,S,T,Z,P,W) L" )</code>
is obligatory as before. As above many coefficient rings,
e.g. <code>Z</code>, and term orders, e.g. <code>L</code>, can be selected.
</p>
<p>
New is the setup of a list of generators of the polynomial ring with
<code>[B,S,T,Z,P,W] = r.gens()</code>. The sequence of jython variable names 
<code>B, S, T, Z, P, W</code> should match the sequence of variables as defined 
in the creation of the ring.
A jython variable defined with this idiom then represents a polynomial 
of the respective ring in the respectively named variable.
For example <code>B</code> is the polynomial in ring <code>r</code>
in the variable named <code>'B'</code>.
</p>
<p>
The so defined polynomial generators can then be used to
build (nearly) arbitrary expressions.
For example the polynomial <code>f5</code> is defined by the expression
<code>P * W + 2 * T * Z - 11 * B**3</code>.
Since Python (and jython) has no built-in rational number support, 
only (arbitrary long) integers can be used as numbers.
As a work around we propose to use python tuples or lists 
with 2 entries as rational numbers.
Floating point numbers are truncated to integer. 
For exponentiation one must use the double star <code>**</code> as the 
carret <code>^</code> has a fixed meaning as as bitwise XOR.
Additionally all operators must explicitly be written, 
even between coefficients and variables.
The literal representation of the polynomial expression does not restrict 
the definition of the ring. So the polynomial ring can be defined with 
rational coefficients but Python integers can be used as operands.
If you need to enter rational numbers you must use  
python tuple or list notation (see below) 
or explicitly the JAS class <code>BigRational</code>.
</p>
<p>Continuing with the example, we build a list of polynomials 
with a Python list <code>F = [ f1, f2, f3, f4, f5, f6, f7 ]</code>. 
Finally the ideal is created as usual with the 
<code>ideal</code> method of <code>r</code> as 
<code>I = r.ideal( "", list=F )</code>.
</p>
<p>
When python tuples or lists of integers are used as operands of JAS ring elements
they are interpreted as rational or complex rational numbers. 
For example in the construction of Legendre polynomials a 
rational number <code>r = 1/n</code> appears.
As tuple literal it is written <code>(1,n)</code> and 
as list literal it can be written as <code>[1,n]</code>.
</p>
<pre>
p = (2*n-1) * x * P[n-1] - (n-1) * P[n-2];
r = (1,n); # no rational numbers in python, use tuple notation
p = r * p; 
</pre>
<p>
In the same way complex rational numbers can be written as nested tuples.
For example <code>1/n + 1/2 i</code> can be written as
<code>((1,n),(1,2))</code>. 
If the second list element is omited it is asumed to be one.
In this case it can however not be written as tuple, 
since one nesting level would be removed as expression parenthesis.
If the tuples or lists contain more than 2 elements, the rest is 
silently ignored.
For example <code>1/n</code> as complex number can be written as
<code>[(1,n)]</code> (but not as <code>((1,n))</code>). 
Different nesting levels are allowed, i.e.
<code>((1,n),2)</code> or <code>(0,(1,n))</code> are legal.
</p>
<p>In case the types (nesting levels) of operands do not match, 
for example when adding a rational to a complex number 
(low level) class cast errors will be thrown.
For example in <code>(1,n) + (0,(1,n))</code> the exception 
<code>edu.jas.arith.BigComplex cannot be cast to edu.jas.arith.BigRational</code> 
will be thrown.
</p>
<p>Further examples can be found in the jython files
<a href="examples/polynomial.py" target="jython"><code>polynomial.py</code></a>,
<a href="examples/legendre.py" target="jython"><code>legendre.py</code></a>,
<a href="examples/hermite.py" target="jython"><code>hermite.py</code></a> or
<a href="examples/chebyshev.py" target="jython"><code>chebyshev.py</code></a>.
</p>


<h4>Real roots of zero dimensional ideals</h4>

<p>Besides the computation of Gr&ouml;bner bases JAS is able to use them
to solve various other problems. In this sub-section we present the
computation of real roots of systems of (algebraic) equations. When
the system of equations has only finitely many real roots, such
systems define so called zero dimensional ideals, they can be computed
as follows. 
</p>
<pre>
r = PolyRing(QQ(),"x,y,z",PolyRing.lex);
print "Ring: " + str(r);
print;

[one,x,y,z] = r.gens();

f1 = (x**2 - 5)*(x**2 - 3)**2;
f2 = y**2 - 3;
f3 = z**3 - x * y;

F = r.ideal( list=[f1,f2,f3] );

R = F.realRoots();
F.realRootsPrint()
</pre>
<p>
In the above example we compute the real roots of the equations
defined by the polynomials <code>f1, f2, f3</code>. First we define
the polynomial ring and then construct the ideal <code>F</code> from
the given polynomials. The method <code>F.realRoots()</code> computes
the real roots and method <code>F.realRootsPrint()</code> prints a
decimal approximation of tuples of real roots. The output of the last
method call looks as follows.
</p>
<pre>
[-1.7320508076809346675872802734375, -1.7320508076809346675872802734375, 1.4422495705075562000274658203125]
[1.7320508076809346675872802734375, 1.7320508076809346675872802734375, 1.4422495705075562000274658203125]

[1.7320508076809346675872802734375, -1.7320508076809346675872802734375, -1.4422495705075562000274658203125]
[-1.7320508076809346675872802734375, 1.7320508076809346675872802734375, -1.4422495705075562000274658203125]

[0.50401716955821029841899871826171875, 2.236067977384664118289947509765625, -1.7320508076809346675872802734375, -1.5704178023152053356170654296875]
[-0.50401716955821029841899871826171875, -2.236067977384664118289947509765625, 1.7320508076809346675872802734375, -1.5704178023152053356170654296875]
[-3.96811878503649495542049407958984375, -2.236067977384664118289947509765625, -1.7320508076809346675872802734375, 1.5704178023152053356170654296875]
[3.96811878503649495542049407958984375, 2.236067977384664118289947509765625, 1.7320508076809346675872802734375, 1.5704178023152053356170654296875]
</pre>
<p>
The roots in the tuples <code>[-1.7320508076809346675872802734375,
-1.7320508076809346675872802734375,
1.4422495705075562000274658203125]</code> correspond to the roots in
the variables <code>[x, y, z]</code>.  The last four tuples have four
entries <code>[0.50401716955821029841899871826171875,
2.236067977384664118289947509765625,
-1.7320508076809346675872802734375,
-1.5704178023152053356170654296875]</code>, where the first entry
stems from an internal field extension, which was needed to correctly
identify the roots of the ideal and are to be ignored. That is the
tuple <code>[2.236067977384664118289947509765625,
-1.7320508076809346675872802734375,
-1.5704178023152053356170654296875]</code> without the first entry is
a real root of the ideal.  That is, the decimal approximation of the
real roots are the following 8 tuples.
</p>
<pre>
[-1.7320508076809346675872802734375, -1.7320508076809346675872802734375, 1.4422495705075562000274658203125]
[1.7320508076809346675872802734375, 1.7320508076809346675872802734375, 1.4422495705075562000274658203125]

[1.7320508076809346675872802734375, -1.7320508076809346675872802734375, -1.4422495705075562000274658203125]
[-1.7320508076809346675872802734375, 1.7320508076809346675872802734375, -1.4422495705075562000274658203125]

[2.236067977384664118289947509765625, -1.7320508076809346675872802734375, -1.5704178023152053356170654296875]
[-2.236067977384664118289947509765625, 1.7320508076809346675872802734375, -1.5704178023152053356170654296875]
[-2.236067977384664118289947509765625, -1.7320508076809346675872802734375, 1.5704178023152053356170654296875]
[2.236067977384664118289947509765625, 1.7320508076809346675872802734375, 1.5704178023152053356170654296875]
</pre>
<p>More details and further examples can be found in the jython file
<a href="examples/0dim_real_roots.py" target="jython"><code>0dim_real_roots.py</code></a>.
</p>

<!--
<code></code>
<code></code>
<code></code>
<p>
</p>
<p>
</p>
-->

<h4>Univariate power series</h4>

<p>Univariate power series can be constructed via 
the <code>SeriesRing</code> class. 
In the following example we create a new power series ring 
<code>pr</code> in the variable <code>y</code> over the rational numbers.
The creation of power series is done in the same way as 
polynomials are created. There are additional methods like 
<code>r.exp()</code> or <code>r.sin()</code> to create the 
exponential power series or the power series for the sinus function.
</p>
<pre>
pr = SeriesRing("Q(y)");
print "pr:", pr;

one = pr.one();
r1 = pr.random(4);
r2 = pr.random(4);

print "one:", one;
print "r1:", r1;
print "r2:", r2;

r4 = r1 * r2 + one;
e = pr.exp();
r5 = r1 * r2 + e;

print "e:", e;
print "r4:", r4;
print "r5:", r5;
</pre>
<p>Once power series are created, for example 
<code>r1, r2, e</code> above, it is possible to use 
arithmetic operators to built expressions of power series like
'<code>r1 * r2 + one</code>' or '<code>r1 * r2 + e</code>'.
</p>
<pre>
pr: BigRational((y))

one: 1  + BigO(y^11)
r1:  - 14/3 * y + 3/5 * y^6 + 1/12 * y^8 + 1/7 * y^10 + BigO(y^11)
r2:  - 9/11  - 11/9 * y - 4/3 * y^4 + 7/9 * y^5 + 3 * y^6 - 3/2 * y^8 + BigO(y^11)

e: 1  + 1 * y + 1/2 * y^2 + 1/6 * y^3 + 1/24 * y^4 + 1/120 * y^5 + 1/720 * y^6 + 1/5040 * y^7 + 1/40320 * y^8 + 1/362880 * y^9 + 1/3628800 * y^10 + BigO(y^11)
r4: 1  + 42/11 * y + 154/27 * y^2 + 56/9 * y^5 - 6119/1485 * y^6 - 221/15 * y^7 - 3/44 * y^8 + 745/108 * y^9 - 353/385 * y^10 + BigO(y^11)
r5: 1  + 53/11 * y + 335/54 * y^2 + 1/6 * y^3 + 1/24 * y^4 + 2243/360 * y^5 - 97871/23760 * y^6 - 14851/1008 * y^7 - 30229/443520 * y^8 + 2503201/362880 * y^9 - 36599029/39916800 * y^10 + BigO(y^11)
</pre>
<p>
It is also possible to create power series by defining a generating function 
or by defining a fixed point with respect to a map between power series. 
</p>
<pre>
def g(a):
    return a+a;
ps1 = pr.create(g);

class coeff( Coefficients ):
    def generate(self,i):
        ...
ps6 = pr.create( clazz=coeff( pr.ring.coFac ) );

class cosmap( PowerSeriesMap ):
    def map(self,ps):
        ...
ps8 = pr.fixPoint( cosmap( pr.ring.coFac ) );
</pre>
<p>More details and further examples can be found in the jython file
<a href="examples/powerseries.py" target="jython"><code>powerseries.py</code></a>.
</p>


<h3>Overview of jas.rb classes and methods</h3>

<p>
The jruby interface to the JAS library consists essentially of the 
same classes as the jython interface, but the ruby language, syntax and semantics is used.
For the Rdoc of them see <a href="doc/jruby/index.html" target="jruby">here</a>.
</p>

<p>For the Android app the main screen with the "trinks.rb" example and its output looks as follows.
</p>
<p><a href="images/device-2012-11-18-jas-trinks.png" ><img src="images/device-2012-11-18-jas-trinks-thumb.png" /></a> &nbsp;
   <a href="images/device-2012-11-18-jas-trinks-out.png" ><img src="images/device-2012-11-18-jas-trinks-out-thumb.png" /></a> &nbsp;
   <a href="images/device-2012-11-18-jas-trinks-out-big.png" ><img src="images/device-2012-11-18-jas-trinks-out-big-thumb.png" /></a>
</p>

<p>The Trinks example from above looks in Ruby as follows.
</p>
<pre>
require "examples/jas"

r = PolyRing.new( QQ(),"B,S,T,Z,P,W", PolyRing.lex);
puts "Ring: " + r.to_s;
puts;

one,B,S,T,Z,P,W = r.gens(); 

f1 = 45 * P + 35 * S - 165 * B - 36;
f2 = 35 * P + 40 * Z + 25 * T - 27 * S;
f3 = 15 * W + 25 * S * P + 30 * Z - 18 * T - 165 * B**2;
f4 = - 9 * W + 15 * T * P + 20 * S * Z;
f5 = P * W + 2 * T * Z - 11 * B**3;
f6 = 99 * W - 11 *B * S + 3 * B**2;
f7 = B**2 + 33/50 * B + 2673/10000; # fractions work with ruby

F = [ f1, f2, f3, f4, f5, f6, f7 ]; # smaller, faster
puts "F = " + F.map { |f| f.to_s }.join(",");
puts

f = r.ideal( "", F );
puts "Ideal: " + f.to_s;
puts;

rg = f.GB();
puts "seq Output:", rg;
puts;
</pre>
<p>
The definition of the polynomial ring with
<code>r = PolyRing.new( QQ(),"B,S,T,Z,P,W", PolyRing.lex)</code>
is obligatory as before. As above many coefficient rings,
e.g. <code>QQ</code>, and term orders, e.g. <code>PolyRing.lex</code>, can be selected.
</p>
<p>
The setup of a list of generators of the polynomial ring is in Ruby 
<code>one,B,S,T,Z,P,W = r.gens()</code>. The sequence of jruby variable names 
<code>B, S, T, Z, P, W</code> should match the sequence of variables as defined 
in the creation of the ring.
A jruby variable defined with this idiom then represents a polynomial 
of the respective ring in the respectively named variable.
For example <code>B</code> is the polynomial in ring <code>r</code>
in the variable named <code>'B'</code>.
</p>
<p>
The so defined polynomial generators can then be used to
build (nearly) arbitrary expressions.
For example the polynomial <code>f5</code> is defined by the expression
<code>P * W + 2 * T * Z - 11 * B**3</code>.
Since Ruby (and jruby) has built-in rational number support, 
also integer fractions can be used as coefficients.
For exponentiation one uses the double star <code>**</code> as with Python.
Additionally all operators must explicitly be written, 
even between coefficients and variables.
</p>
<p>Continuing with the example, we build a list of polynomials 
with a Ruby list <code>F = [ f1, f2, f3, f4, f5, f6, f7 ]</code>. 
Finally the ideal is created as usual with the 
<code>ideal</code> method of <code>r</code> as 
<code>f = r.ideal( "", F )</code> in the same way as in Python.
</p>



<h3>Solvable polynomial rings</h3>

<p>
Solvable polynomial rings are non commutative polynomial rings 
where the non commutativity is expressed by commutator relations.
Commutator relations are stored in a data structure called relation table.
In the definition of a solvable polynomial ring this relation table must be 
defined. E.g the definition for the ring of a Weyl algebra is
</p>
<pre>
Rat(a,b,e1,e2,e3) L
RelationTable
(
 ( e3 ), ( e1 ), ( e1 e3 - e1 ),
 ( e3 ), ( e2 ), ( e2 e3 - e2 )
)
</pre>
<p>
The relation table must be build from triples of (commutative) polynomials.
A triple <code>p1, p2, p3</code> is interpreted as non commutative 
multiplication relation <code>p1 .*. p2 = p3</code>. 
Currently <code>p1</code> and <code>p2</code> must be single term, single variable
polynomials. The term order must be choosen such that 
leadingTerm(<code>p1 p2</code>) equals leadingTerm(<code>p3</code>)
and <code>p1 &gt; p2</code> for each triple.
Polynomial <code>p3</code> must be in commutative form, 
i.e. multiplication operators occuring in it are commutative.
Variables for which there are no commutator relations are assumed to 
commute with each other and with all other variables, 
e.g. the variables <code>a, b</code> in the example.
Polynomials in the generating set of an ideal are also assumed to be 
in commutative form. This will be changed in the future to allow the 
multiplication operator to mean non-commutative multiplication.
</p>

<p>A complete example is contained in the python script 
<a href="examples/solvable.py"><code>solvable.py</code></a>.
Running the script computes a left, right and twosided Groebner base
for the following ideal
</p>
<pre>
(
 ( e1 e3^3 + e2^10 - a ),
 ( e1^3 e2^2 + e3 ),
 ( e3^3 + e3^2 - b )
)
</pre>
<p>The left Groebner base is
</p>
<pre>
(
 ( a ), ( b ),
 ( e1^3 * e2^2 ), ( e2^10 ), ( e3 )
)
</pre>
<p>the twosided Groebner base is
</p>
<pre>
(
 ( a ), ( b ), ( e1 ), ( e2 ), ( e3 )
)
</pre>
<p>and the right Groebner base is
</p>
<pre>
(
 ( a ), ( b ), ( e1 ), ( e2^10 ), ( e3 )
)
</pre>


<p>A module example is in 
<a href="examples/armbruster.py"><code>armbruster.py</code></a> 
and a solvable module example is in
<a href="examples/solvablemodule.py"><code>solvablemodule.py</code></a>.
</p>


<!--
<h3>Some internals of jas.py</h3>
--> 


<!--
<li><p><code></code><code></code>
    </p>
</li>

<pre>
</pre>

<p>
</p>
<pre>
</pre>

<p>
</p>
<pre>
</pre>
-->

<hr />
<address><a href="mailto:kredel@at@rz.uni-mannheim.de">Heinz Kredel</a></address>
<p>
<!-- Created: Sun Feb 19 15:49:14 CET 2006 -->
<!-- hhmts start -->
Last modified: Sat Dec  1 19:25:47 CET 2012
<!-- hhmts end -->
</p>
<!--p align="right" >
$Id: guide.html 4308 2012-12-01 18:26:46Z kredel $
</p-->
  </body>
</html>