This file is indexed.

/usr/share/perl5/Math/PlanePath/CCurve.pm is in libmath-planepath-perl 113-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
# Copyright 2011, 2012, 2013 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# math-image --path=CCurve --output=numbers_dash
#
# pos(2^et+r) = (i+1)^et + i*pos(r)
# N=2^e0+2^e1+...+2^e(t-1)+2^et  e0 high bit
# pos = (i+1)^e0 + i*(i+1)^e1 + ... + i^(t-1)*(i+1)^e(t-1) + i^t*(i+1)^et


package Math::PlanePath::CCurve;
use 5.004;
use strict;
use List::Util 'min','max','sum';

use vars '$VERSION', '@ISA';
$VERSION = 113;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;

use Math::PlanePath::KochCurve;
*_digit_join_hightolow = \&Math::PlanePath::KochCurve::_digit_join_hightolow;

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'round_down_pow',
  'bit_split_lowtohigh',
  'digit_split_lowtohigh';


# Not sure about this yet ... 2 or 4 ?
# use constant parameter_info_array => [ { name      => 'arms',
#                                          share_key => 'arms_2',
#                                          display   => 'Arms',
#                                          type      => 'integer',
#                                          minimum   => 1,
#                                          maximum   => 2,
#                                          default   => 1,
#                                          width     => 1,
#                                          description => 'Arms',
#                                        } ];

use constant n_start => 0;
use constant dx_minimum => -1;
use constant dx_maximum => 1;
use constant dy_minimum => -1;
use constant dy_maximum => 1;
use constant dsumxy_minimum => -1; # straight only
use constant dsumxy_maximum => 1;
use constant ddiffxy_minimum => -1;
use constant ddiffxy_maximum => 1;
use constant dir_maximum_dxdy => (0,-1); # South


#------------------------------------------------------------------------------

sub new {
  my $self = shift->SUPER::new(@_);
  $self->{'arms'} = max(1, min(2, $self->{'arms'} || 1));
  return $self;
}


sub n_to_xy {
  my ($self, $n) = @_;
  ### CCurve n_to_xy(): $n

  if ($n < 0) { return; }
  if (is_infinite($n)) { return ($n, $n); }

  my $zero = ($n * 0);  # inherit bignum 0
  my $x = $zero;
  my $y = $zero;
  {
    my $int = int($n);
    $x = $n - $int;  # inherit possible BigFloat
    $n = $int;        # BigFloat int() gives BigInt, use that
  }

  # initial rotation from arm number $n mod $arms
  my $rot = _divrem_mutate ($n, $self->{'arms'});

  my $len = $zero+1;
  foreach my $digit (digit_split_lowtohigh($n,4)) {
    ### $digit

    if ($digit == 0) {
      ($x,$y) = ($y,-$x);    # rotate -90
    } elsif ($digit == 1) {
      $y -= $len;            # at Y=-len
    } elsif ($digit == 2) {
      $x += $len;            # at X=len,Y=-len
      $y -= $len;
    } else {
      ### assert: $digit == 3
      ($x,$y) = (2*$len - $y,  # at X=2len,Y=-len and rotate +90
                 $x-$len);
    }
    $rot++; # to keep initial direction
    $len *= 2;
  }

  if ($rot & 2) {
    $x = -$x;
    $y = -$y;
  }
  if ($rot & 1) {
    ($x,$y) = (-$y,$x);
  }

  ### final: "$x,$y"
  return ($x,$y);
}

# point N=2^(2k) at XorY=+/-2^k  radius 2^k
#       N=2^(2k-1) at X=Y=+/-2^(k-1) radius sqrt(2)*2^(k-1)
# radius = sqrt(2^level)
# R(l)-R(l-1) = sqrt(2^level) - sqrt(2^(level-1))
#             = sqrt(2^level) * (1 - 1/sqrt(2))
# about 0.29289

# len=1 extent of lower level 0
# len=4 extent of lower level 2
# len=8 extent of lower level 4+1 = 5
# len=16 extent of lower level 8+3
# len/2 + len/4-1

my @digit_to_rot = (-1, 1, 0, 1);

sub xy_to_n {
  return scalar((shift->xy_to_n_list(@_))[0]);
}
sub xy_to_n_list {
  my ($self, $x, $y) = @_;
  ### CCurve xy_to_n(): "$x, $y"

  $x = round_nearest($x);
  $y = round_nearest($y);

  my ($len,$k_limit) = _rect_to_k ($x,$y, $x,$y);
  if (is_infinite($k_limit)) {
    return $k_limit;  # infinity
  }

  ### $len
  ### $k_limit
  ### assert: $len==(0*$x*$y + 2) ** $k_limit

  my $arms_count = $self->{'arms'};
  my $zero = $x*0*$y;
  my @n_list;

  foreach my $arm (0 .. $arms_count-1) {
    my @digits = (-1);
    my $tx = 0;
    my $ty = 0;
    my $rot = $k_limit + 1+2*$arm;
    my @extents = ($len + int($len/2 - 1));

    ### initial extent: $extents[0]

    for (;;) {
      my $digit = ++$digits[-1];
      ### at: "digits=".join(',',@digits)."  txty=$tx,$ty   len=$len rot=$rot"

      if ($digit > 3) {
        pop @digits;
        if (! @digits) {
          ### @n_list
          last;
        }
        ### end of this digit, backtrack ...
        $len *= 2;
        $rot--;
        next;
      }

      ### $digit
      ### rot increment: $digit_to_rot[$digit]
      $rot += $digit_to_rot[$digit];

      if ($#digits >= $k_limit) {
        ### low digit ...
        if ($x == $tx && $y == $ty) {
          ### found: _digit_join_hightolow (\@digits, 4, $zero)
          push @n_list,
            _digit_join_hightolow (\@digits, 4, $zero)
              * $arms_count + $arm;
        }
      } elsif (max(abs($x-$tx),abs($y-$ty)) <= $extents[$#digits]) {
        ### within extent, descend ...
        push @digits, -1;
        $len /= 2;
        $extents[$#digits] ||= ($len + int($len/2 - 1));

        ### new len: $len
        ### digit pos: $#digits
        ### new extent: $extents[$#digits]

        next;
      }

      ### step txty: "rot=".($rot&3)
      if ($rot & 2) {
        if ($rot & 1) {
          $ty -= $len;
        } else {
          $tx -= $len;
        }
      } else {
        if ($rot & 1) {
          $ty += $len;
        } else {
          $tx += $len;
        }
      }
    }
  }
  return @n_list;
}

# f = (1 - 1/sqrt(2) = .292
# 1/f = 3.41
# N = 2^level
# Rend = sqrt(2)^level
# Rmin = Rend / 2  maybe
# Rmin^2 = (2^level)/4
# N = 4 * Rmin^2
#
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### CCurve rect_to_n_range(): "$x1,$y1  $x2,$y2"

  $x1 = round_nearest ($x1);
  $x2 = round_nearest ($x2);
  $y1 = round_nearest ($y1);
  $y2 = round_nearest ($y2);

  ($x1,$x2) = ($x2,$x1) if $x1 > $x2;
  ($y1,$y2) = ($y2,$y1) if $y1 > $y2;

  my ($len,$level) = _rect_to_k ($x1,$y1, $x2,$y2);
  if (is_infinite($level)) {
    return (0, $level);
  }
  return (0, 4*$len*$len*$self->{'arms'} - 1);
}

# N=16 is Y=4 away   k=2
# N=64 is Y=-8+1=-7 away  k=3
# N=256=4^4 is X=2^4=16-3=-7 away  k=4
# dist = 2^k - (2^(k-2)-1)
#      = 2^k - 2^(k-2) + 1
#      = 4*2^(k-2) - 2^(k-2) + 1
#      = 3*2^(k-2) + 1
#   k=2 3*2^(2-2)+1=4   len=4^2=16
#   k=3 3*2^(3-2)+1=7   len=4^3=64
#   k=4 3*2^(4-2)+1=13
# 2^(k-2) = (dist-1)/3
# 2^k = (dist-1)*4/3
#
# up = 3*2^(k-2+1) + 1
# 2^(k+1) = (dist-1)*4/3
# 2^k = (dist-1)*2/3
#
# left = 3*2^(k-2+1) + 1
# 2^(k+1) = (dist-1)*4/3
# 2^k = (dist-1)*2/3
#
# down = 3*2^(k-2+1) + 1
# 2^(k+1) = (dist-1)*4/3
# 2^k = (dist-1)*2/3
#
# m=2 4*(2-1)/3=4/3=1
# m=4 4*(4-1)/3=4
sub _rect_to_k {
  my ($x1,$y1, $x2,$y2) = @_;
  ### _rect_to_k(): $x1,$y1

  {
    my $m = max(abs($x1),abs($y1),abs($x2),abs($y2));
    if ($m < 2) {
      return (2, 1);
    }
    if ($m < 4) {
      return (4, 2);
    }
    ### round_down: 4*($m-1)/3
    my ($len, $k) = round_down_pow (4*($m-1)/3, 2);
    return ($len, $k);
  }

  my $len;
  my $k = 0;

  my $offset = -1;
  foreach my $m ($x2, $y2, -$x1, -$y1) {
    $offset++;
    ### $offset
    ### $m
    next if $m < 0;

    my ($len1, $k1);
    # if ($m < 2) {
    #   $len1 = 1;
    #   $k1 = 0;
    # } else {
    # }

    ($len1, $k1) = round_down_pow (($m-1)/3, 2);
    next if $k1 < $offset;
    my $sub = ($offset-$k1) % 4;
    $k1 -= $sub;  # round down to k1 == offset mod 4

    if ($k1 > $k) {
      $k = $k1;
      $len = $len1 / 2**$sub;
    }
  }

  ### result: "k=$k  len=$len"
  return ($len, 2*$k);
}



my @dir4_to_dx = (1,0,-1,0);
my @dir4_to_dy = (0,1,0,-1);

sub n_to_dxdy {
  my ($self, $n) = @_;
  ### n_to_dxdy(): $n

  my $int = int($n);
  $n -= $int;  # $n fraction part

  my @digits = bit_split_lowtohigh($int);
  my $dir = (sum(@digits)||0) & 3;  # count of 1-bits
  my $dx = $dir4_to_dx[$dir];
  my $dy = $dir4_to_dy[$dir];

  if ($n) {
    # apply fraction part $n

    # count low 1-bits is right turn of N+1, apply as dir-(turn-1) so decr $dir
    while (shift @digits) {
      $dir--;
    }

    # this with turn=count-1 turn which is dir++ worked into swap and negate
    # of dir4_to_dy parts
    $dir &= 3;
    $dx -= $n*($dir4_to_dy[$dir] + $dx);  # with rot-90 instead of $dir+1
    $dy += $n*($dir4_to_dx[$dir] - $dy);

    # this the equivalent with explicit dir++ for turn=count-1
    # $dir++;
    # $dir &= 3;
    # $dx += $n*($dir4_to_dx[$dir] - $dx);
    # $dy += $n*($dir4_to_dy[$dir] - $dy);
  }

  ### result: "$dx, $dy"
  return ($dx,$dy);
}

1;
__END__

=for stopwords eg Ryde Math-PlanePath ie OEIS dX,dY

=head1 NAME

Math::PlanePath::CCurve -- Levy C curve

=head1 SYNOPSIS

 use Math::PlanePath::CCurve;
 my $path = Math::PlanePath::CCurve->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This is an integer version of the Levy "C" curve.


                          11-----10-----9,7-----6------5               3
                           |             |             |
                   13-----12             8             4------3        2
                    |                                         |
            19---14,18----17                                  2        1
             |      |      |                                  |
     21-----20     15-----16                           0------1   <- Y=0
      |
     22                                                               -1
      |
    25,23---24                                                        -2
      |
     26     35-----34-----33                                          -3
      |      |             |
    27,37--28,36          32                                          -4
      |      |             |
     38     29-----30-----31                                          -5
      |
    39,41---40                                                        -6
      |
     42                                              ...              -7
      |                                                |
     43-----44     49-----48                          64-----63       -8
             |      |      |                                  |
            45---46,50----47                                 62       -9
                    |                                         |
                   51-----52            56            60-----61      -10
                           |             |             |
                          53-----54----55,57---58-----59             -11

                                                       ^
     -7     -6     -5     -4     -3     -2     -1     X=0     1

The initial segment N=0 to N=1 is repeated with a turn +90 degrees left to
give N=1 to N=2.  Then N=0to2 is repeated likewise turned +90 degrees to
make N=2to4.  And so on doubling each time.

The 90 degree rotation is always relative to the initial N=0to1 direction
along the X axis.  So at any N=2^level the turn is +90 making the direction
upwards at each of N=1,2,4,8,16,etc.

The curve crosses itself and repeats some X,Y positions.  The first doubled
point is X=-2,Y=3 which is both N=7 and N=9.  The first tripled point is
X=18,Y=-7 which is N=189, N=279 and N=281.  The number of repeats at a given
point is always finite but as N increases there's points where that number
of repeats becomes ever bigger (is that right?).

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for the behaviour common to all path
classes.

=over 4

=item C<$path = Math::PlanePath::CCurve-E<gt>new ()>

Create and return a new path object.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.  Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.

Fractional positions give an X,Y position along a straight line between the
integer positions.

=item C<$n = $path-E<gt>xy_to_n ($x,$y)>

Return the point number for coordinates C<$x,$y>.  If there's nothing at
C<$x,$y> then return C<undef>.

=item C<$n = $path-E<gt>n_start()>

Return 0, the first N in the path.

=back

=head1 FORMULAS

=head2 Direction

The direction or net turn of the curve is the count of 1 bits in N,

    direction = count_1_bits(N) * 90degrees

For example N=11 is binary 1011 has three 1 bits, so direction 3*90=270
degrees, ie. to the south.

This bit count is because at each power-of-2 position the curve is a copy of
the lower bits but turned +90 degrees, so +90 for each 1-bit.

For powers-of-2 N=2,4,8,16, etc, there's only a single 1-bit so the
direction is always +90 degrees there, ie. always upwards.

=head2 Turn

At each point N the curve can turn in any direction: left, right, straight,
or 180 degrees back.  The turn is given by the number of low 0-bits of N,

    turn right = (count_low_0_bits(N) - 1) * 90degrees

For example N=8 is binary 0b100 which is 2 low 0-bits for turn=(2-1)*90=90
degrees to the right.

When N is odd there's no low zero bits and the turn is always (0-1)*90=-90
to the right in that case, which means every second turn is 90 degrees to
the left.

=head2 Next Turn

The turn at the point following N, ie. at N+1, can be calculated from the
bits of N by counting the low 1-bits,

    next turn right = (count_low_1_bits(N) - 1) * 90degrees

For example N=11 is binary 0b1011 which is 2 low one bits for
nextturn=(2-1)*90=90 degrees to the right at the following point, ie. at
N=12.

This works simply because low 1-bits like ..0111 increment to low 0-bits
..1000 to become N+1.  The low 1-bits at N are thus the low 0-bits at N+1.

=head2 N to dX,dY

C<n_to_dxdy()> is implemented using the direction described above.  If N is
an integer then count mod 4 gives the direction for dX,dY.

    dir = count_1_bits(N) mod 4
    dx = dir_to_dx[dir]    # table 0 to 3
    dy = dir_to_dy[dir]

For fractional N the direction at int(N)+1 can be obtained from the
direction at int(N) by applying the turn at int(N)+1, that being the low
1-bits of N per L</Next Turn> above.  Those two directions can then be
combined per L<Math::PlanePath/N to dX,dY -- Fractional>.

    # apply turn to make direction at Nint+1
    turn = count_low_1_bits(N) - 1      # N integer part
    dir = (dir - turn) mod 4            # direction at N+1

    # adjust dx,dy by fractional amount in this direction
    dx += Nfrac * (dir_to_dx[dir] - dx)
    dy += Nfrac * (dir_to_dy[dir] - dy)

A tiny optimization can be made by working the "-1" of the turn formula into
a +90 degree rotation of the C<dir_to_dx[]> and C<dir_to_dy[]> parts by a
swap and sign change,

    turn_plus_1 = count_low_1_bits(N)     # on N integer part
    dir = (dir - turn_plus_1) mod 4       # direction-1 at N+1

    # adjustment including extra +90 degrees on dir
    dx -= $n*(dir_to_dy[dir] + dx)
    dy += $n*(dir_to_dx[dir] - dy)

=head2 X,Y to N

The N values at a given X,Y can be found by traversing the curve.  At a
given digit position if X,Y is within the curve extents at that level and
position then descend to consider the next lower digit position, otherwise
step to the next digit at the current digit position.

It's convenient to work in base-4 digits since that keeps the digit steps
straight rather than diagonals.  The maximum extent of the curve at a given
even numbered level is

    k = level/2
    Lmax(level) = 2^k + floor(2^(k-1) - 1);

For example k=2 is level=4, N=0 to N=2^4=16 has extent Lmax=2^2+2^1-1=5.
That extent can be seen at points N=13,N=14,N=15.

The extents width-ways and backwards are shorter and using them would
tighten the traversal, cutting off some unnecessary descending.  But the
calculations are then a little trickier.

The first N found by this traversal is the smallest.  Continuing the search
gives all the N which are the target X,Y.

=head1 OEIS

Entries in Sloane's Online Encyclopedia of Integer Sequences related to
this path include

=over

L<http://oeis.org/A179868> (etc)

=back

    A010059   abs(dX), count1bits(N) mod 2
    A010060   abs(dY), count1bits(N)+1 mod 2, being Thue-Morse

    A000120   total turn, being count 1-bits
    A179868   direction 0to3, count 1-bits mod 4

    A096268   turn 1=straight,0=left or right
    A007814   turn-1 to the right, being count low 0-bits

    A003159   N positions of left or right turn, ends even num 0 bits
    A036554   N positions of straight or 180 turn, ends odd num 0 bits

    A146559   X at N=2^k, being Re((i+1)^k)
    A009545   Y at N=2^k, being Im((i+1)^k)

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::DragonCurve>,
L<Math::PlanePath::AlternatePaper>,
L<Math::PlanePath::KochCurve>

L<ccurve(6x)> back end of L<xscreensaver(1)> displaying the C curve (and
various other dragon curve and Koch curves).

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut