This file is indexed.

/usr/share/perl5/Math/PlanePath/Corner.pm is in libmath-planepath-perl 113-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
# Copyright 2010, 2011, 2012, 2013 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# cf Matthew Szudzik ElegantPairing.pdf going inwardly.
#
#   5 | 25--...
#     |
#   4 | 16--17--18--19  24
#     |                  |
#   3 |  9--10--11  15  23
#     |              |   |
#   2 |  4-- 5   8  14  22
#     |          |   |   |
#   1 |  1   4   7  13  21
#     |      |   |   |   |
# Y=0 |  0   2   6  12  20
#     +---------------------
#      X=0   1   2   3   4
#
# cf A185728 where diagonal is last in each gnomon
#    A185725 gnomon sides alternately starting from ends
#    A185726 gnomon sides alternately starting from diagonal
#
# corner going alternately up and down
#    A081344,A194280 by diagonals
#    A081345 X axis, A081346 Y axis
#
# corner alternately up and down, starting with 3-wide
#   A080335  N on diagonal
#   A081347  N on axis
#   A081348  N on axis
#
# cf A004120 ??
#

package Math::PlanePath::Corner;
use 5.004;
use strict;
use List::Util 'min';

use vars '$VERSION', '@ISA';
$VERSION = 113;
use Math::PlanePath;
@ISA = ('Math::PlanePath');

use Math::PlanePath::Base::Generic
  'round_nearest';

# uncomment this to run the ### lines
#use Devel::Comments;


use constant class_x_negative => 0;
use constant class_y_negative => 0;
use constant n_frac_discontinuity => .5;
*xy_is_visited = \&Math::PlanePath::Base::Generic::xy_is_visited_quad1;

use Math::PlanePath::SquareSpiral;
*parameter_info_array = \&Math::PlanePath::SquareSpiral::parameter_info_array;

use constant dx_maximum => 1;
use constant dy_minimum => -1;

# dSum east  dX=1,dY=0  for dSum=+1
#      south dX=0,dY=-1 for dSum=-1
# gnomon up to start of next gnomon is
#    X=wider+k,Y=0 to X=0,Y=k+1
#    dSum = 0-(wider+k) + (k+1)-0
#         = -wider-k + k + 1
#         = 1-wider
sub dsumxy_minimum {
  my ($self) = @_;
  return min(-1, 1-$self->{'wider'});
}
use constant dsumxy_maximum => 1;  # East along top

# dDiffXY east  dX=1,dY=0  for dDiffXY=1-0    = 1
#         south dX=0,dY=-1 for dDiffXY=0-(-1) = 1
# gnomon up to start of next gnomon is
#    X=wider+k,Y=0 to X=0,Y=k+1
#    dDiffXY = 0-(wider+k) - ((k+1)-0)
#            = -wider - 2*k - 1  unbounded negative
use constant ddiffxy_maximum => 1; # East along top

use constant dir_maximum_dxdy => (0,-1); # South


#------------------------------------------------------------------------------

# same as PyramidSides, just 45 degress around

sub new {
  my $self = shift->SUPER::new (@_);
  if (! defined $self->{'n_start'}) {
    $self->{'n_start'} = $self->default_n_start;
  }
  $self->{'wider'} ||= 0;  # default
  return $self;
}

sub n_to_xy {
  my ($self, $n) = @_;
  ### Corner n_to_xy: $n

  # adjust to N=1 at origin X=0,Y=0
  $n = $n - $self->{'n_start'} + 1;

  # comparing $n<0.5, but done in integers for the benefit of Math::BigInt
  if (2*$n < 1) {
    return;
  }

  my $wider = $self->{'wider'};

  # wider==0
  #   vertical at X=0 has N=1, 2, 5, 10, 17, 26
  #   but start 0.5 back so at X=-0.5 have N=0.5, 1.5, 4.5, 9.5, 16.5, 25.5
  #   N = (Y^2 + 1/2)
  #   Y = floor sqrt(N - 1/2)
  #     = floor sqrt(4*N - 2)/2   staying in integers for the sqrt()
  #
  # wider==1
  #   0.5 back so at X=-0.5 have N=0.5, 2.5, 6.5, 12.5
  #   N = (Y^2 + Y + 1/2)
  #   Y = floor -1/2 + sqrt(N - 1/4)
  #     = floor (-1 + sqrt(4*N - 1))/2
  #
  # wider==2
  #   0.5 back so at X=-0.5 have N=0.5, 3.5, 8.5, 15.5
  #   N = (Y^2 + 2 Y + 1/2)
  #   Y = floor -1 + sqrt(N + 1/2)
  #     = floor (-2 + sqrt(4*N + 2))/2
  #
  # wider==3
  #   0.5 back so at X=-0.5 have N=0.5, 4.5, 10.5, 18.5
  #   N = (Y^2 + 3 Y + 1/2)
  #   Y = floor -3/2 + sqrt(N + 7/4)
  #     = floor (-3 + sqrt(4*N + 7))/2
  #
  # 0,1,4,9
  # my $y = int((sqrt(4*$n + -1) - $wider) / 2);
  # ### y frac: (sqrt(4*$n + -1) - $wider) / 2

  my $y = int((sqrt(int(4*$n) + $wider*$wider - 2) - $wider) / 2);
  ### y frac: (sqrt(int(4*$n) + $wider*$wider - 2) - $wider) / 2
  ### $y

  # diagonal at X=Y has N=1, 3, 7, 13, 21
  # N = ((Y + 1)*Y + (Y+1)*wider + 1)
  #   = ((Y + 1 + wider)*Y + wider + 1)
  # so subtract that leaving N negative on the horizontal part, or positive
  # for the downward vertical part
  #
  $n -= $y*($y+1+$wider) + $wider + 1;
  ### corner n: $y*($y+1+$wider) + $wider + 1
  ### rem: $n
  ### assert: $n!=$n || $n >= -($y+$wider+0.5)
  # ### assert: $n <= ($y+0.5)

  if ($n < 0) {
    # top horizontal
    return ($n + $y+$wider,
            $y);
  } else {
    # right vertical
    return ($y+$wider,
            -$n + $y);
  }
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### Corner xy_to_n(): "$x,$y"

  $x = round_nearest ($x);
  $y = round_nearest ($y);
  if ($x < 0 || $y < 0) {
    return undef;
  }

  my $wider = $self->{'wider'};
  my $xw = $x - $wider;
  if ($y >= $xw) {
    ### top edge, N left is: $y*$y + $wider*$y + 1
    return ($y*$y + $wider*$y      # Y axis N value
            + $x                   # plus X offset across
            + $self->{'n_start'});
  } else {
    ### right vertical, N diag is: $xw*$xw + $xw*$wider
    ### $xw
    # Ndiag = Nleft + Y+w
    # N = xw*xw + w*xw + 1 + xw+w + (xw - y)
    #   = xw*xw + w*xw + 1 + xw+w + xw - y
    #   = xw*xw + xw*(w+2) + 1 + w - y
    #   = xw*(xw + w+2) + w+1 - y
    return ($xw*($xw+$wider+2) + $wider
            - $y
            +  $self->{'n_start'});
  }
}

# exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### Corner rect_to_n_range(): "$x1,$y1, $x2,$y2"

  $x1 = round_nearest ($x1);
  $y1 = round_nearest ($y1);
  $x2 = round_nearest ($x2);
  $y2 = round_nearest ($y2);
  if ($x1 > $x2) { ($x1,$x2) = ($x2,$x1); }
  if ($y1 > $y2) { ($y1,$y2) = ($y2,$y1); }

  if ($y2 < 0 || $x2 < 0) {
    return (1, 0); # rect all negative, no N
  }

  if ($x1 < 0) { $x1 *= 0; }   # "*=" to preserve bigint x1 or y1
  if ($y1 < 0) { $y1 *= 0; }

  my $wider = $self->{'wider'};
  my $ylo = $y1;
  my $xw = $x1 - $wider;

  if ($y1 <= $xw) {
    # left column is partly or wholly below X=Y diagonal
    #
    # make x1,y1 the min pos
    $y1 = ($y2 < $xw

           # wholly below diag, min "*" is at top y2 of the x1 column
           #
           # |        /
           # |       /
           # |      / *------+  y2
           # |     /  |      |
           # |    /   +------+  y1
           # |   /   x1     x2
           # +------------------
           #    ^.....^
           #    wider  xw
           #
           ? $y2

           # only partly below diag, min "*" is the X=Y+wider diagonal at x1
           #
           #            /
           # |      +------+  y2
           # |      | /    |
           # |      |/     |
           # |      *      |
           # |     /|      |
           # |    / +------+  y1
           # |   /  x1     x2
           # +------------------
           #    ^...^xw
           #    wider
           #
           : $xw);
  }

  if ($y2 <= $x2 - $wider) {
    # right column entirely at or below X=Y+wider diagonal so max is at the
    # ylo bottom end of the column
    #
    # |          /
    # |       --/---+  y2
    # |      | /    |
    # |      |/     |
    # |      /      |
    # |     /|      |
    # |    / +------+  ylo
    # |   /         x2
    # +------------------
    #    ^
    #    wider
    #
    $y2 = $ylo;   # x2,y2 now the max pos
  }

  ### min xy: "$x1,$y1"
  ### max xy: "$x2,$y2"
  return ($self->xy_to_n ($x1,$y1),
          $self->xy_to_n ($x2,$y2));
}

1;
__END__

=for stopwords pronic PlanePath Ryde Math-PlanePath ie OEIS gnomon Nstart

=head1 NAME

Math::PlanePath::Corner -- points shaped around in a corner

=head1 SYNOPSIS

 use Math::PlanePath::Corner;
 my $path = Math::PlanePath::Corner->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This path puts points in layers working outwards from the corner of the
first quadrant.

=cut

# math-image --path=Corner --output=numbers_dash --all --size=30x14

=pod

      5 | 26--...
        |
      4 | 17--18--19--20--21
        |                  |
      3 | 10--11--12--13  22
        |              |   |
      2 |  5-- 6-- 7  14  23
        |          |   |   |
      1 |  2-- 3   8  15  24
        |  |   |   |   |   |
    Y=0 |  1   4   9  16  25
        +---------------------
         X=0   1   2   3   4

X<Gnomon>X<Square numbers>The horizontal 1,4,9,16,etc along Y=0 is the
perfect squares.  This is since each further row/column "gnomon" added to a
square makes a one-bigger square,

                            10 11 12 13
               5  6  7       5  6  7 14
    2  3       2  3  8       2  3  8 15
    1  4       1  4  9       1  4  9 16

     2x2        3x3           4x4

N=2,6,12,20,etc on the diagonal X=Y-1 up from X=0,Y=1 is the
X<Pronic numbers>pronic numbers k*(k+1) which are half way between the
squares.

Each gnomon is 2 longer than the previous.  This is similar to the
C<PyramidRows>, C<PyramidSides> and C<SacksSpiral> paths.  The C<Corner> and
the C<PyramidSides> are the same but C<PyramidSides> is stretched to two
quadrants instead of one for the C<Corner> here.

=head2 Wider

An optional C<wider =E<gt> $integer> makes the path wider horizontally,
becoming a rectangle.  For example

    $path = Math::PlanePath::Corner->new (wider => 3);

gives

=cut

# math-image --path=Corner,wider=3 --all --output=numbers_dash --size=38x12

=pod

     4  |  29--30--31--...
        |
     3  |  19--20--21--22--23--24--25
        |                           |
     2  |  11--12--13--14--15--16  26
        |                       |   |
     1  |   5---6---7---8---9  17  27
        |                   |   |   |
    Y=0 |   1---2---3---4  10  18  28
        |
         -----------------------------
            ^
           X=0  1   2   3   4   5   6

Each gnomon has the horizontal part C<wider> many steps longer.  Each gnomon
is still 2 longer than the previous since this widening is a constant amount
in each.

=head2 N Start

The default is to number points starting N=1 as shown above.  An optional
C<n_start> can give a different start with the same shape etc.  For example
to start at 0,

=cut

# math-image --path=Corner,n_start=0 --all --output=numbers --size=35x5

=pod

    n_start => 0

      5  |  25 ...
      4  |  16 17 18 19 20
      3  |   9 10 11 12 21
      2  |   4  5  6 13 22
      1  |   1  2  7 14 23
    Y=0  |   0  3  8 15 24
          -----------------
           X=0   1   2   3

In Nstart=0 the squares are on the Y axis and the pronic numbers are on the
X=Y leading diagonal.

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::Corner-E<gt>new ()>

=item C<$path = Math::PlanePath::Corner-E<gt>new (wider =E<gt> $w, n_start =E<gt> $n)>

Create and return a new path object.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.

For C<$n < n_start()-0.5> the return is an empty list.  There's an extra 0.5
before Nstart, but nothing further before there.

=item C<$n = $path-E<gt>xy_to_n ($x,$y)>

Return the point number for coordinates C<$x,$y>.

C<$x> and C<$y> are each rounded to the nearest integer, which has the
effect of treating each point as a square of side 1, so the quadrant x>=-0.5
and y>=-0.5 is entirely covered.

=item C<($n_lo, $n_hi) = $path-E<gt>rect_to_n_range ($x1,$y1, $x2,$y2)>

The returned range is exact, meaning C<$n_lo> and C<$n_hi> are the smallest
and biggest in the rectangle.

=back

=head1 FORMULAS

=head2 N to X,Y

Counting d=0 for the first L-shaped gnomon at Y=0, then the start of the
gnomon is

    StartN(d) = d^2 + 1 = 1,2,5,10,17,etc

The current C<n_to_xy()> code extends to the left by an extra 0.5 for
fractional N, so for example N=9.5 is at X=-0.5,Y=3.  With this the starting
N for each gnomon d is

    StartNfrac(d) = d^2 + 0.5

Inverting gives the gnomon d number for an N,

    d = floor(sqrt(N - 0.5))

Subtracting the gnomon start gives an offset into that gnomon

    OffStart = N - StartNfrac(d)

The corner point 1,3,7,13,etc where the gnomon turns down is at d+0.5 into
that remainder, and it's convenient to subtract that so negative for the
horizontal and positive for the vertical,

    Off = OffStart - (d+0.5)
        = N - (d*(d+1) + 1)

Then the X,Y coordinates are

    if (Off < 0)  then  X=d+Off, Y=d
    if (Off >= 0) then  X=d,     Y=d-Off

=head2 X,Y to N

For a given X,Y the bigger of X or Y determines the d gnomon.

If YE<gt>=X then X,Y is on the horizontal part.  At X=0 have N=StartN(d) per
the Start(N) formula above, and any further X is an offset from there.

    if Y >= X then
      d=Y
      N = StartN(d) + X
        = Y^2 + 1 + X

Otherwise if YE<lt>X then X,Y is on the vertical part.  At Y=0 N is the last
point on the gnomon, and one back from the start of the following gnomon,

    if Y <= X then
      d=X
      LastN(d) = StartN(d+1) - 1
               = (d+1)^2
      N = LastN(d) - Y
        = (X+1)^2 - Y

=head2 Rectangle N Range

For C<rect_to_n_range()>, in each row increasing X is increasing N so the
smallest N is in the leftmost column and the biggest N in the rightmost
column.

    |
    |  ------>  N increasing
    |
     -----------------------

Going up a column, N values are increasing away from the X=Y diagonal up or
down, and all N values above X=Y are bigger than the ones below.

    |    ^  N increasing up from X=Y diagonal
    |    |
    |    |/
    |    /
    |   /|
    |  / |  N increasing down from X=Y diagonal
    | /  v
    |/
     -----------------------

This means the biggest N is the top right corner if that corner is YE<gt>=X,
otherwise the bottom right corner.

                                           max N at top right
    |      /                          | --+     if corner Y>=X
    |     / --+                       |   | /
    |    /    |                       |   |/
    |   /     |                       |   |
    |  /  ----v                       |  /|
    | /     max N at bottom right     | --+
    |/        if corner Y<=X          |/
     ----------                        -------

For the smallest N, if the bottom left corner has YE<gt>X then it's in the
"increasing" part and that bottom left corner is the smallest N.  Otherwise
YE<lt>=X means some of the "decreasing" part is covered and the smallest N
is at Y=min(X,Ymax), ie. either the Y=X diagonal if it's in the rectangle or
the top right corner otherwise.

    |      /
    | |   /
    | |  /  min N at bottom left
    | +----  if corner Y>X
    |  /
    | /
    |/
     ----------

    |      /                           |      /
    |   | /                            |     /
    |   |/  min N at X=Y               |    /
    |   *    if diagonal crossed       |   / +-- min N at top left
    |  /|                              |  /  |    if corner Y<X
    | / +-----                         | /   |
    |/                                 |/    
     ----------                         ----------

    min N at Xmin,Ymin            if Ymin >= Xmin
             Xmin,min(Xmin,Ymax)  if Ymin <= Xmin


=head1 OEIS

This path is in Sloane's Online Encyclopedia of Integer Sequences as,

=over

L<http://oeis.org/A196199> (etc)

=back

    wider=0, n_start=1 (the defaults)
      A213088    X+Y sum
      A196199    X-Y diff, being runs -n to +n
      A053615    abs(X-Y), runs n to 0 to n, distance to next pronic

      A000290    N on X axis, perfect squares starting from 1
      A002522    N on Y axis, Y^2+1
      A002061    N on X=Y diagonal, extra initial 1
      A004201    N on and below X=Y diagonal, so X>=Y

      A020703    permutation N at transpose Y,X
      A060734    permutation N by diagonals up from X axis
      A064790     inverse
      A060736    permutation N by diagonals down from Y axis
      A064788     inverse

      A027709    boundary length of N points
      A078633    grid sticks of N points

    n_start=0
      A000196    max(X,Y), being floor(sqrt(N))

      A005563    N on X axis, n*(n+2)
      A000290    N on Y axis, perfect squares
      A002378    N on X=Y diagonal, pronic numbers

    n_start=2
      A059100    N on Y axis, Y^2+2
      A014206    N on X=Y diagonal, pronic+2

    wider=1
      A053188    abs(X-Y), dist to nearest square, extra initial 0
    wider=1, n_start=0
      A002378    N on Y axis, pronic numbers
      A005563    N on X=Y diagonal, n*(n+2)
    wider=1, n_start=2
      A014206    N on Y axis, pronic+2

    wider=2, n_start=0
      A005563    N on Y axis, (Y+1)^2-1
      A028552    N on X=Y diagonal, k*(k+3)

    wider=3, n_start=0
      A028552    N on Y axis, k*(k+3)

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::PyramidSides>,
L<Math::PlanePath::PyramidRows>,
L<Math::PlanePath::SacksSpiral>,
L<Math::PlanePath::Diagonals>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2010, 2011, 2012, 2013 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut