/usr/share/perl5/TM.pm is in libtm-perl 1.56-7.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 | package TM;
use strict;
use warnings;
require Exporter;
use base qw(Exporter);
our $VERSION = '1.56';
use Data::Dumper;
# !!! HACK to suppress an annoying warning about Data::Dumper's VERSION not being numerical
$Data::Dumper::VERSION = '2.12108';
# !!! END of HACK
use Class::Struct;
use Time::HiRes;
use TM::PSI;
use Log::Log4perl;
Log::Log4perl::init( \ q(
log4perl.rootLogger=DEBUG, Screen
log4perl.appender.Screen=Log::Log4perl::Appender::Screen
log4perl.appender.Screen.layout=Log::Log4perl::Layout::PatternLayout
log4perl.appender.Screen.layout.ConversionPattern=[%r] %F %L %c - %m%n
#log4perl.rootLogger=DEBUG, LOGFILE
#log4perl.appender.LOGFILE=Log::Log4perl::Appender::File
#log4perl.appender.LOGFILE.filename=/tmp/tm.log
#log4perl.appender.LOGFILE.mode=append
#log4perl.appender.LOGFILE.layout=PatternLayout
#log4perl.appender.LOGFILE.layout.ConversionPattern=[%r] %F %L %c - %m%n
) );
our $log = Log::Log4perl->get_logger("TM");
our $infrastructure; # default set = core + topicmaps_inc + astma_inc
=pod
=head1 NAME
TM - Topic Maps, Base Class
=head1 SYNOPSIS
my $tm = new TM (baseuri => 'tm://whatever/'); # empty map
# add a toplet (= minimal topic, only identification, no characteristics)
# by specifying an internal ID
$tm->internalize ('aaa'); # only internal identifier
$tm->internalize ('bbb' => 'http://bbb/'); # with a subject address
$tm->internalize ('ccc' => \ 'http://ccc/'); # with a subject indicator
# without specifying an internal ID (will be auto-generated)
$tm->internalize (undef => 'http://ccc/'); # with a subject address
$tm->internalize (undef => \ 'http://ccc/'); # with a subject indicator
# get rid of toplet(s)
$tm->externalize ('tm://whatever/aaa', ...);
# find full URI of a toplet
my $tid = $tm->tids ('person'); # returns tm://whatever/person
my @tids = $tm->tids ('person', ...) # for a whole list
my $tid = $tm->tids ( 'http://bbb/'); # with subject address
my $tid = $tm->tids (\ 'http://ccc/'); # with subject indicator
my @ts = $tm->toplets; # get all toplets
my @ts = $tm->toplets (\ '+all -infrastructure'); # only those you added
my @as = $tm->asserts (\ '+all -infrastructure'); # only those you added
my @as = $tm->retrieve; # all assertions
my $a = $tm->retrieve ('23ac4637....345'); # returns only that one assertion
my @as = $tm->retrieve ('23ac4637....345', '...'); # returns all these assertions
# create standalone assertion
my $a = Assertion->new (type => 'is-subclass-of',
roles => [ 'subclass', 'superclass' ],
players => [ 'rumsti', 'ramsti' ]);
$tm->assert ($a); # add that to map
# create a name
my $n = Assertion->new (kind => TM->NAME,
type => 'name',
scope => 'us',
roles => [ 'thing', 'value' ],
players => [ 'rumsti', new TM::Literal ('AAA') ])
# create an occurrence
my $o = Assertion->new (kind => TM->OCC,
type => 'occurrence',
scope => 'us',
roles => [ 'thing', 'value' ],
players => [ 'rumsti', new TM::Literal ('http://whatever/') ])
$tm->assert ($n, $o); # throw them in
$tm->retract ($a->[TM->LID], ...); # get rid of assertion(s)
my @as = $tm->retrieve ('id..of...assertion'); # extract particular assertions
# find particular assertions
# generic search patterns
my @as = $tm->match_forall (scope => 'tm://whatever/sss');
my @bs = $tm->match_forall (type => 'tm://whatever/ttt',
roles => [ 'tm://whatever/aaa', 'tm://whatever/bbb' ]);
# specialized search patterns (see TM::Axes)
my @cs = $tm->match_forall (type => 'is-subclass-of',
arole => 'superclass',
aplayer => 'tm://whatever/rumsti',
brole => 'subclass');
my @ds = $tm->match_forall (type => 'isa',
class => 'tm://whatever/person');
# perform merging, cleanup, etc.
$tm->consolidate;
# check internal consistency of the data structure
die "panic" if $tm->insane;
# taxonomy stuff
warn "what a subtle joke" if $tm->is_a ($tm->tids ('gw_bush', 'moron'));
die "what a subtle joke"
unless $tm->is_subclass ($tm->tids ('politician', 'moron'));
# returns Mr. Spock if Volcans are subclassing Aliens
warn "my best friends: ". Dumper [ $tm->instancesT ($tm->tids ('alien')) ];
=head1 ABSTRACT
This class provides read/write access to a data structure according to the Topic Maps paradigm. As
it stands, this class implements directly so-called I<materialized> maps, i.e. those maps which
completely reside in memory. Implementations for non-materialized maps can be derived from it.
=head1 DESCRIPTION
This class implements directly so-called I<materialized> topic maps, i.e. those maps which
completely reside in memory. Non-materialized and non-materializable maps can be implemented by
deriving from this class by overloading one or all of the sub-interfaces. If this is done cleverly,
then any application, even a TMQL query processor can operate on non-materialized (virtual) maps in
the same way as on materialized ones.
=head2 Data Structures
The Topic Maps paradigm knows two abstractions
=over
=item I<TMDM>, Topic Maps Data Model
L<http://www.isotopicmaps.org/sam/sam-model/>
=item I<TMRM>, Topic Maps Reference Model
L<http://www.isotopicmaps.org/tmrm/>
=back
For historical reasons, this package adopts an abstraction which is in between these
two. Accordingly, there are only following types of data structures
=over
=item Toplets:
These are like TMDM topics, but only contain addressing information (subject identifiers and subject
addresses) along with an internal identifier.
=item Assertions:
These are like TMDM associations, but are generalized to host also occurrences and names. Also
associations using predefined association types, such as C<isa> (I<instance-class>) and C<iko>
(I<subtype-supertype>) are represented as assertions.
=item Variants:
No idea what they are good for. They can be probably safely ignored.
=back
The data manipulation interface is very low-level and B<directly> exposes internal data structures.
As long as you do not mess with the information you get and you follow the API rules, this can
provide a convenient, fast, albeit not overly comfortable interface. If you prefer more a TMDM-like
style of accessing a map then have a look at L<TM::DM>.
=head2 Identifiers
Of course, L<TM> supports the subject locator and the subject indicator mechanism as mandated
by the Topic Maps standards.
Additionally, this package also uses I<internal> identifiers to address everything which looks and
smells like a topic, also associations, names and occurrences. For topics the application (or
author) of the topic map will most likely provide these internal identifiers. For the others the
identifiers are generated.
Since v1.31 this package distinguishes between 3 kinds of internal identifiers:
=over
=item I<canonicalized> toplet identifiers
These identifiers are always interpreted local to a map, in that the C<baseuri> of the map is used
as prefix. So, a local identifier
chinese-working-conditions
will become
tm://nirvana/chinese-working-conditions
if the base URI of the map were
tm://nirvana/
So if you want to use identifiers such as these, then you should either use the absolut version
(including the base URI) or use the method C<tids> to find the absolute version.
=item I<sacrosanct> toplet identifiers
All toplets from the infrastructure are declared I<sacrosanct>, i.e. untouchable. Examples are
C<isa>, C<class> or C<us> (universal scope).
These identifiers are always the same in all maps this package system manages. That implies that if
you use such an identifier, then you cannot attach a local meaning to it. And it implies that at
merging time, toplets with these identifiers will merge. Even if there were no subject indicators or
addresses involved.
It is probably a good idea to leave such toplets alone as the software is relying on the stability
of the sacrosanct identifiers.
=item assertion identifiers
Each assertion also has an (internal) identifier. It is a function from the content, so it
is characteristic for the assertion.
=back
=head2 Consistency
An application using a map may expect that a map is I<consolidated>, i.e. that the following
consistency conditions are met:
=over
=item B<A1> (fixed on)
Every identifier appearing in some assertion as type, scope, role or player is also registered as
toplet.
=item B<Indicator_based_Merging> (default: on)
Two (or more) toplets sharing the same I<subject identifier> are treated as one toplet.
=item B<Subject_based_Merging> (default: on)
Two (or more) toplets sharing the same I<subject locator> are treated as one toplet.
=item B<TNC_based_Merging> (default: off)
Two (or more) toplet sharing the same name in the same scope are treated as one toplet.
=back
=cut
use constant {
Subject_based_Merging => 1,
Indicator_based_Merging => 2,
TNC_based_Merging => 3,
};
=pod
While A1 is related with the internal consistency of the data structure (see C<insane>), the others
are a choice the application can make (see C<consistency>).
I<Consistency> is not automatically provided when a map is modified by the application. It is the
applications responsibility to trigger the process to consolidate the map. As that may be
potentially expensive, the control remains at the application.
When an IO driver is consuming a map from a resource, say, loading from an XTM file, then that
driver will ensure that the map is consolidated according to the current settings before it hands it
to the application. The application is then in full control of the map as it can change, add and
delete toplets and assertions. The map can become unconsolidated in this process. The method
C<consolidate> reinstates consistency again.
You can change these defaults by (a) providing an additional option to the constructor
new TM (....,
consistency => [ TM->Subject_based_Merging,
TM->Indicator_based_Merging ]);
or (b) by later using the accessor C<consistency> (see below).
=head1 MAP INTERFACE
=head2 Constructor
I<$tm> = new TM (...)
The constructor will create an empty map, or, to be more exact, it will fill the map with the
taxonomy from L<TM::PSI> which covers basic Topic Maps concepts such as I<topic> or I<associations>.
The constructor understands a number of key/value pair parameters:
=over
=item C<baseuri> (default: C<tm://nirvana/>)
Every toplet in the map has an unique local identifier (e.g. C<shoesize>). The C<baseuri> parameter
controls how an absolute URI is built from this identifier.
=item C<consistency> (default: [ Subject_based_Merging, Indicator_based_Merging ])
This controls the consistency settings. They can be changed later with the C<consistency> method.
=back
=cut
sub new {
my $class = shift;
my %self = @_;
$self{consistency} ||= [ Subject_based_Merging, Indicator_based_Merging ];
$self{baseuri} ||= 'tm://nirvana/';
$self{baseuri} .= '#' unless $self{baseuri} =~ m|[/\#:]$|;
my $self = bless \%self, $class;
unless ($self->{mid2iid}) { # we need to do fast cloning of basic vocabulary
%{ $self->{mid2iid} } = %{ $infrastructure->{mid2iid} }; # shallow clone
%{ $self->{assertions} } = %{ $infrastructure->{assertions} }; # shallow clone
}
$self->{last_mod} = 0; # book keeping
$self->{created} = Time::HiRes::time;
return $self;
}
sub DESTROY {} # not much to do here
=pod
=head2 Methods
=over
=item B<baseuri>
I<$bu> = I<$tm>->baseuri
This methods retrieves the base URI component of the map. This is a read-only method. The base URI
is B<always> defined.
=cut
sub baseuri {
my $self = shift;
return $self->{baseuri};
}
=pod
=item B<consistency>
I<@merging_constraints> = I<$tm>->consistency
I<$tm>->consistency (I<@list_of_consistency_constants>)
This method provides read/write access to the consistency settings.
If no parameters are provided, then the current list of consistency settings is returned. If
parameters are provided, that list must consist of the constants defined under L</Consistency>.
B<NOTE>: Changing the consistency does B<NOT> automatically trigger C<consolidate>.
=cut
sub consistency {
my $self = shift;
my @params = @_;
$self->{consistency} = [ @params ] if @params;
return @{$self->{consistency}};
}
=pod
=item B<last_mod>
Returns the L<Time::HiRes> date of last time the map has been modified (content-wise).
=cut
sub last_mod {
my $self = shift;
return $self->{last_mod};
}
=pod
=item B<consolidate>
I<$tm>->consolidate
I<$tm>->consolidate (I<@list_of_consistency_constants>)
This method I<consolidates> a map by performing the following actions:
=over
=item *
perform merging based on subject address (see TMDM section 5.3.2)
=item *
perform merging based on subject indicators (see TMDM section 5.3.2)
=item *
remove all superfluous toplets (those which do not take part in any assertion)
B<NOTE>: Not implemented yet!
=back
This method will normally use the map's consistency settings. These settings can be overridden by
adding consistency settings as parameters (see L</Consistency>). In that case the map's settings are
B<not> modified, so use this carefully.
B<NOTE>: In all cases the map will be modified.
B<NOTE>: After merging some of the I<lids> might not be reliably point to a topic.
=cut
# NOTE: Below there much is done regarding speed. First the toplets are swept detecting which have
# to be merged. This is not done immediately (as this is an expensive operation), instead a 'merger' hash
# is built. Note how merging information A -> B and A -> C is morphed into A -> B and B -> C using
# the _find_free function.
# That merger hash is then consolidated by following edges until their end, so that there are no
# cycles.
sub consolidate {
my $self = shift;
my $cons = @_ ? [ @_ ] : $self->{consistency}; # override
my $indi = grep ($_ == Indicator_based_Merging, @{$self->{consistency}});
my $subj = grep ($_ == Subject_based_Merging, @{$self->{consistency}});
my $tnc = grep ($_ == TNC_based_Merging, @{$self->{consistency}});
#warn "cond indi $indi subj $subj tnc $tnc";
my %SIDs; # holds subject addresses found
my %SINs; # holds subject indicators found
my %BNs; # holds basename + scope found
#warn Dumper $cons;
#== find merging points and memorize this in mergers =======================================================================
my %mergers; # will contain the merging edges
my $mid2iid = $self->{mid2iid}; # shortcut
my $asserts = $self->{assertions}; # shortcut
my $baseuri = $self->{baseuri}; # shortcut
MERGE:
foreach my $this (keys %{$mid2iid}) {
#warn "looking at $this";
my $thism = $mid2iid->{$this};
#warn "SIDs: ". Dumper \%SIDs;
#warn "SINs: ". Dumper \%SINs;
#-- based on subject indication ------------------------------------------------------------------------------------------
if ($indi) {
foreach my $sin (@{$thism->[TM->INDICATORS]}) { # walk over the subject indicators
if (my $that = $SINs{$sin}) { # $that is now a key pointing to a merging partner
#warn "merging (IND) $this >> $that"; #. Dumper $thism, $thatm;
_add_merge (\%mergers, $baseuri, $this, $that);
} else { # no merging, so enter the sins
$SINs{$sin} = $this;
}
}
}
sub _add_merge {
my $mergers = shift;
my $bu = shift;
my $this = shift;
my $that = shift;
($this, $that) = ($that, $this) if $this =~ /^$bu/; # we swap them to favor that which resembles the baseURI
$mergers->{_find_free ($this, $mergers)} = $that; # find a free place to make that mapping
}
sub _find_free {
my $this = shift;
my $mergers = shift;
my $this2 = $this;
my $this3;
while ($this3 = $mergers->{$this2}) {
if ($this3 eq $this || $this3 eq $this2) { # loop, we do not need it
return $this3;
} else {
$this2 = $this3; # we follow the trail
}
}
return $this2; # this2 was the end of the trail
}
#-- based on subject address ---------------------------------------------------------------------------------------------
if ($subj) {
if (my $sid = $thism->[TM->ADDRESS]) {
if (my $that = $SIDs{$sid}) { # found partner => should be merged
#warn "merging (ADDR) $this >> $that";
_add_merge (\%mergers, $baseuri, $this, $that);
###### old $mergers{_find_free ($this, \%mergers)} = $that;
# must obviously both have the same subject address, so, no reason to touch this
} else { # there is no partner, first one with this subject address
$SIDs{$sid} = $this;
}
}
}
#warn "after 1 on '$this' ";#.Dumper $mid2iid;
}
#-- based on TNC ---------------------------------------------------------------------------------------------
if ($tnc) {
my ($THING, $VALUE) = ('thing', 'value');
foreach my $a (values %$asserts) {
next unless $a->[TM->KIND] == TM->NAME; # we are only interested in basenames
#warn "checking assertion ".Dumper $a;
my ($v) = get_x_players ($self, $a, $VALUE); # if we get back a longer list, bad luck
my $bn_plus_scope = $v->[0] . # the basename is a string reference
$a->[TM->SCOPE]; # relative to the scope
my ($this) = get_x_players ($self, $a, $THING); # thing which plays 'topic'
#warn " --> player is $this";
if (my $that = $BNs{$bn_plus_scope}) { # if we have seen it before
#warn " -> SEEN";
_add_merge (\%mergers, $baseuri, $this, $that);
#### old $mergers{_find_free ($this, \%mergers)} = $that;
} else { # it is new to use, we store it into %BNs
#warn " -> NOT SEEN";
$BNs{$bn_plus_scope} = $this;
#warn "BNs ".Dumper \%BNs;
}
}
}
#== consolidate mergers: no cycles, trail followed through ======================================================
#warn "mergers ".Dumper \%mergers;
for (2..2) { # at most 2, theoretical only one should be sufficient
my $changes = 0;
foreach my $h (keys %mergers) {
#warn "working on $h";
if ($mergers{$h} eq $h) { # micro loop
delete $mergers{$h};
} elsif (defined $mergers{$mergers{$h}} && $mergers{$mergers{$h}} eq $h) {
delete $mergers{$h};
} else {
my $h2 = $mergers{$h};
my %seen = ($h => 1, $h2 => 1); # loop avoidance
#warn "seeen start".Dumper \%seen;
while ($mergers{$h2} and !$seen{$mergers{$h2}}++) { $h2 = $mergers{$h} = $mergers{$h2}; $changes++;}
#warn "half consolidated (chagens $changes)" .Dumper $H;
}
}
# warn "consoli loop $_: changes: $changes";
# warn "early finish" if $_ == 1 and $changes == 0;
last if $changes == 0;
# die "not clean" if $_ == 2 and $changes > 0;
}
#warn "consolidated mergers ".Dumper \%mergers;
#== actual merging ========================================================================================
# recanonicalize affected assertions
{
my $changed = _relabel (\%mergers, $self->baseuri, values %$asserts );
while (my ($k, $a) = each %$changed) {
delete $asserts->{ $k };
# delete $mid2iid->{ $k };
# $mid2iid->{ $a->[TM->LID] } = [ $a->[TM->LID], undef, [] ];
$asserts->{ $a->[TM->LID] } = $a;
}
}
foreach my $that (keys %mergers) {
my $this = $mergers{$that};
my $thism = $mid2iid->{$this};
my $thatm = $mid2iid->{$that}; # shorthand
next if $thatm == $thism; # we already have merged
$log->logdie ("two different subject addresses for two topics to be merged ($this, $that)")
if $thism->[TM->ADDRESS] and $thatm->[TM->ADDRESS] and
$thism->[TM->ADDRESS] ne $thatm->[TM->ADDRESS];
#warn "merge now $that > $this";
$thism->[TM->ADDRESS] ||= $thatm->[TM->ADDRESS]; # first subject address
{ # then indicators
my $Is = $thism->[TM->INDICATORS]; # reference to thism indicators
push @$Is, @{$thatm->[TM->INDICATORS]}; # add the others to it
{ my %X; map { $X{$_}++ } @$Is; @$Is = keys %X; } # make that unique
}
$mid2iid->{$that} = $thism; # finally
}
#warn "after post-merger ". Dumper $mid2iid;
$self->{mid2iid} = $mid2iid; # this makes tie happy, in the case the map is tied
$self->{last_mod} = Time::HiRes::time;
}
=pod
=item B<clear>
I<$tm>->clear
This method removes all toplets and assertions (except the infrastructure). Everything else remains.
=cut
sub clear {
my $self = shift;
my %mid2iid = %{ $infrastructure->{mid2iid} }; # shallow clone
my %assertions = %{ $infrastructure->{assertions} }; # shallow clone
$self->{mid2iid} = \%mid2iid; # making it explicit keeps MLDBM happy
$self->{assertions} = \%assertions; # ditto
$self->{last_mod} = Time::HiRes::time; # book keeping
return $self; # convenience for chaining
}
=pod
=item B<add>
I<$tm>->add (I<$tm2>, ...)
This method accepts a list of L<TM> objects and adds all content from these maps to the current
object.
B<NOTE>: There is B<NO> merging done for user-supplied toplets. Use explicitly method C<consolidate>
for it. Merging is done for all sacrosanct toplets, i.e. those from the infrastructure.
From v1.31 onwards this method tries to favour the I<internal> identifiers (LIDs) of B<this> map
over LIDs of the added maps. This means, firstly, that internal identifiers of B<this> map are
B<not> touched (or re-generated) in any way and that any shorthands (without a baseuri prefix) will
remain valid when using C<tids>. Secondly, LIDs in the added map will be attempted to blend into
B<this> map by changing simply their prefix. If that newly generated LID is already taken by
something in B<this> map, then the original LID will be used. That allows many added LIDs be used
together with C<tids> without (much) change in code. Of course, the only reliable way to reach a
topic is a subject locator or an indicator. This is all about convenience.
B<NOTE>: This procedure implies that some assertions are recomputed, so that also their LID will
change!
=cut
sub add {
my $self = shift;
my $baseuri = $self->{baseuri};
my $mid2iid = $self->{mid2iid}; # shorthand
my $asserts = $self->{assertions};
foreach (@_) { # deal with one store after the other
my $baseuri2 = $_->{baseuri};
my %changes; # will contain old -> new internal identifier mappings
while (my ($k, $v) = each %{$_->{mid2iid}}) {
if ($infrastructure->{mid2iid}->{$k}) { # infrastructure toplets are sacrosanct
} else {
(my $k2 = $k) =~ s/^$baseuri2/$baseuri/; # replace baseuri2 prefix
$k2 = $k if $mid2iid->{$k2}; # if there is a collision, bounce back to original
$k2 .= '1' while $mid2iid->{$k2}; # while there is still a collision ... (this only in case of same baseuris)
# $k2 = $baseuri.sprintf ("uuid-%010d", $TM::toplet_ctr++)
# if $mid2iid->{$k2}; # if there is a collision, create generic one
$changes{$k} = $k2;
$v->[TM->LID] = $k2; # use that key as canonical one
$mid2iid->{$k2} = $v; # ...add what the other has
}
}
#warn Dumper \%changes;
my $changed = _relabel (\%changes, $baseuri, values %{ $_->{assertions} } );
#warn Dumper $changed;
while (my ($k, $a) = each %$changed) {
# delete $mid2iid->{ $k };
# $mid2iid->{ $a->[TM->LID] } = [ $a->[TM->LID], undef, [] ]; # put the new one in here
$asserts->{ $a->[TM->LID] } = $a; # and also in the assertions part
}
}
$self->{mid2iid} = $mid2iid; # make MLDBM happy
$self->{assertions} = $asserts; # ditto
$self->{last_mod} = Time::HiRes::time;
}
sub _relabel {
my $changes = shift;
my $baseuri = shift;
my %changed; # we record here old LID -> newly relabelled assertion
foreach my $a (@_) {
my ($this, $that);
#warn "working on ".Dumper $a;
$a->[TM->SCOPE] = $that if $that = $changes->{ $a->[TM->SCOPE] }; $this ||= $that;
$a->[TM->TYPE] = $that if $that = $changes->{ $a->[TM->TYPE] }; $this ||= $that;
map { $_ = $this = $that if $that = $changes->{ $_ } } @{ $a->[TM->ROLES] };
map { $_ = $this = $that if $that = $changes->{ $_ } } @{ $a->[TM->PLAYERS] };
#warn "$this for ".Dumper $a;
$changed{ $a->[TM->LID] } = $a if $this; # something has changed
$a->[TM->CANON] = 0; canonicalize (undef, $a);
$a->[TM->LID] = mklabel ($a);
}
return \%changed;
}
=pod
=item B<diff>
I<$diff> = I<$new_tm>->diff (I<$old_tm>)
I<$diff> = TM::diff (I<$new_tm>, I<$old_tm>)
I<$diff> = TM::diff (I<$new_tm>, I<$old_tm>,
{consistency => \ @list_of_consistency_consts,
include_changes => 1})
C<diff> compares two topic maps and returns their differences as a hash reference. While it works on
any two maps, it is most useful after one map (the I<old map>) is modified into a I<new map>.
If C<diff> is used in OO-style, the current map is interpreted as the I<new> map and the map in the
arguments as I<the old one>.
By default, the toplet and assertion identifiers for any changes are returned; the option
C<include_changes> causes the return of the actual toplets and assertions themselves. This option
makes C<diff>'s output more self-contained: enabled, one can fully (re)create the new map from the
old one using the diff (or vice versa).
The C<consistency> option uses the same format as the TM constructor (see L</Constructor>) and
describes how corresponding toplets in the two maps are to be identified. Toplets with the same
internal ids are always considered equal. If I<subject based consistency> is active, toplets with
the same I<subject locator> are considered equal (overriding the topic identities). If I<indicator
based consistency> is active, toplets with a matching I<subject indicator> are considered equal
(overriding the previous identities).
B<NOTE>: This overriding of previous conditions for identity is necessary to keep the equality
relationship unique and one-to-one. As an example, consider the following scenario: a toplet I<a>
in the old map is split into multiple new toplets I<a> and I<b> in the new map. If I<a> had a
locator or identifier that is moved to I<b> (and if consistency options were active), then the
identity detector will consider I<b> to be equal to I<a>, and B<not> I<a> in the new map to
correspond to I<a> in the old map. However, this will never lead to loss of information: I<a> in
the new map is flagged as completely new toplet.
The differences between old and new map are returned underneath the keys I<plus>, I<minus>,
I<identities> and I<modified>. If C<include_changes> is on, the extra keys I<plus_midlets>,
I<minus_midlets> and I<assertions> are populated. The values of all these keys are hash references
themselves.
=over
=item I<plus>, I<minus>
The C<plus> and C<minus> hashes list new or removed toplets, respectively (with their identifiers as
keys). For each toplet, the value of the hash is an array of associated assertion ids. The array is
empty but defined if there are no associated assertions.
For toplets the attached assertions are the usual ones (names, occurrences) and class-instance
relationships (attached to the instance toplet).
For associations, the assertions are attached to the I<type> toplet.
=item I<identities>
This hash consists of the non-trivial toplet identities that were found. If neither Subject- nor
Indicator-based merging is active and if neither map object was created with a TM version before 1.31,
then this hash is empty. Otherwise, the keys are toplet identifiers in the old map, with the
corresponding topic identifier in the new map as value. This includes standalone topics as well
as assertions and associations that were renamed due to changed player or role identities.
For diff operations between maps where one map was created with a TM version before 1.31 (which can happen
with frozen/thawed or MLDBM-based maps) extra identifying steps are performed (because the identifier
format for assertions and infrastructure toplets and the stored format of toplets have changed). This situation
is detected automatically, and if so the identities hash will also include all map elements that were identical but
have different names due to the version incompatibility.
=item I<modified>
The I<modified> hash contains the changes for matched toplets. The key is the toplet identifier in
the old map (which is potentially different from the one in the new map; see the note about
identities above). The value is a hash with three keys: I<plus>, I<minus> and I<identities>. The
value for the C<identities> key is defined if and only if the toplet associated with this toplet has
changed (i.e. Subject Locator or Indicators have changed). The values for the C<plus> and C<minus>
keys are arrays with the new or removed assertions that are attached to this toplet. These arrays are
defined but empty where no applicable information is present.
=item I<plus_midlets>, I<minus_midlets>
These hashes hold the actual new or removed toplets if the option C<include_changes> is active.
Keys are the toplet ids, values are references to the actual toplet data structures.
=item I<assertions>
This hash holds the actual assertions where the maps differ; it exists only if the option
C<include_changes> is active. Keys are the assertion identifiers, values the references to the
actual assertion data structure. Note that assertion ids uniquely identify the assertion contents,
therefore this hash can hold assertions from both new and old map.
=back
=cut
sub diff {
my ($newmap,$oldmap,$options)=@_;
return undef if (!$oldmap || !$newmap);
my ($base)=$oldmap->baseuri;
$log->logdie ("comparison of maps with different bases not supported yet!")
if ($newmap->baseuri ne $base);
my (%plus,%minus,%modified);
# a lot of comparison/translation can be skipped if tids are the only identity
my $xlatneeded= grep($_==TM->Subject_based_Merging ||
$_==TM->Indicator_based_Merging,@{$options->{consistency}});
# first walk the maps to match old and new items
my (%seen,%locators,%indicators);
for my $map ($oldmap,$newmap) {
my $key = ($map eq $oldmap ? "old":"new");
my $value = ($map eq $oldmap ? 1:2);
# if either is older than tm 1.31, then we need to deal with base-prefixed toplets (called midlets then)
# which are no longer prefixed (for all infrastructure topics)
$xlatneeded||=1
if (exists($map->{usual_suspects})); # this key is no longer present in newer maps
for my $m (keys %{$map->{mid2iid}})
{
# get the topic-aspects (tid, locators and identifiers)
# for finding unchanged/new/old topics
my $midlet=$map->toplet($m);
# fudging time is here :-(
# if this is an old map with address and indicators but no lid, we frob one in.
if (@{$midlet}==2)
{
$midlet=[$m,@{$midlet}];
}
$locators{$key}->{$midlet->[TM->ADDRESS]}=$m
if ($midlet->[TM->ADDRESS]);
map { $indicators{$key}->{$_}=$m } (@{$midlet->[TM->INDICATORS]});
$seen{$m}|=$value;
}
for my $a (map { $_->[TM->LID] } $map->asserts (\ '+all')) {
$seen{$a}|=$value;
}
}
# identify same topics
# first identity: same topic ids
my %old2new = map { ($_,$_) } grep { $seen{$_} == 3 } keys %seen;
my $foundxlat;
# almost-first identity: infrastructure topics which were base-prefixed but are no longer
if (exists($oldmap->{usual_suspects}) ^ exists($newmap->{usual_suspects}))
{
for my $short (grep { $seen{$_} != 3 && $_!~/^$base/ } keys %seen)
{
my $long=$base.$short;
if ($infrastructure->{mid2iid}->{$short} && $seen{$long} == 3-$seen{$short})
{
if ($seen{$long} == 2) # saw long in new map
{
$old2new{$short}=$long;
}
else
{
$old2new{$long}=$short;
}
$foundxlat||=1;
}
}
}
if (grep($_==TM->Subject_based_Merging,@{$options->{consistency}}))
{
# second: same locators
# note that this overwrites topic identitites!
# scenario: old has topica/loc x; new has topica/no loc and topicb/loc x
map { $foundxlat||=($locators{old}->{$_} ne $locators{new}->{$_});
$old2new{$locators{old}->{$_}}=$locators{new}->{$_};
}
(grep(exists $locators{new}->{$_}, keys %{$locators{old}}));
}
if (grep($_==TM->Indicator_based_Merging,@{$options->{consistency}}))
{
# final: matching indicators
# note that this overwrites topic and locator identitites, similar scenario as above
map { $foundxlat||=($indicators{old}->{$_} ne $indicators{new}->{$_});
$old2new{$indicators{old}->{$_}}=$indicators{new}->{$_}; }
(grep(exists $indicators{new}->{$_}, keys %{$indicators{old}}));
}
# no need to bother with translating assertions if there are no changed-tid identities
$xlatneeded=0 if ($xlatneeded && !$foundxlat);
# produce list of missing/new topics
my %new2old=($xlatneeded?(reverse %old2new):%old2new);
my (%checkmidlet,%plusass,%minusass);
for my $t (keys %seen)
{
if ($seen{$t}==2 && !$new2old{$t})
{
# identical assertions with new lids are not detected here
# but later (via minusass)
# new assertion-lids happen with identified renamed players (lid is computed over values!)
$newmap->retrieve($t)?($plusass{$t}=1):($plus{$t}=[]);
}
elsif ($seen{$t}==1 && !$old2new{$t})
{
$oldmap->retrieve($t)?($minusass{$t}=1):($minus{$t}=[]);
}
else
{
# we work along the old tids (when not the same)
$checkmidlet{$seen{$t}==2?$new2old{$t}:$t}=1;
}
}
undef %seen; undef %locators; undef %indicators;
#warn "check midlets ".Dumper \ %checkmidlet;
# weed out the topics/midlets that are unchanged
# and all the identical assertions
my @checkassertion;
for my $t (keys %checkmidlet)
{
if (my $oa=$oldmap->retrieve($t)) {
my $on=$newmap->retrieve($old2new{$t});
if ($oa && $on && $oa->[TM->LID] ne $on->[TM->LID]) {
push @checkassertion,$t;
}
} else {
my $ot = $oldmap->toplet($t);
my $nt = $newmap->toplet($old2new{$t});
unless (_toplets_eq ($ot, $nt)) {
$modified{$t}->{identities}=1;
$modified{$t}->{plus}||=[];
$modified{$t}->{minus}||=[];
}
# note: new toplet() returns internal id as well, which we DON'T want to check on here!
sub _toplets_eq
{
my ($a,$b)=@_;
$a=["",@{$a}] if (@{$a}==2); # fudge in blank LID for old maps
$b=["",@{$b}] if (@{$b}==2); # fudge in blank LID for old maps
my ($A, $B) = ($a->[TM->ADDRESS] ||'', $b->[TM->ADDRESS] ||''); # just convert undef into ''
return 0 unless $A eq $B; # different subject address?
my %SIDS;
map { ++$SIDS{$_} } @{$a->[TM->INDICATORS]}, @{$b->[TM->INDICATORS]}; # we KNOW that the lists are UNIQUE, do we?
return 0 if grep { $_ != 2 } values %SIDS; # if it is not exactly 2 (one from a, one from b), then not equal
return 1; # we're happy: different LIDs don't interest us here
}
}
}
my %old2newid;
my %identities;
if ($xlatneeded)
{
# now do the translation for assertions: rebuild old assertions
# into new namespace and compute the id
# don't waste time: do this only on the assertions that may be required
# minusass (or plusass) must be checked to find assertions with renamed-but-identical players
# once more fudging time: if the "new" map object uses the long lid-format (ie. made with older api),
# we need to append the base ourselves because mklabel does not do that anymore.
my $maybebase=(($newmap->asserts)[0]->[TM->LID]=~/^$base/ )?$base:"";
for my $t (@checkassertion,keys %minusass)
{
my $m=$oldmap->retrieve($t);
my ($lid,$scope,$kind,$type,$roles,$players)=
@{$m}[TM->LID,TM->SCOPE,TM->KIND,TM->TYPE,TM->ROLES,TM->PLAYERS];
# if any of the topics is untranslatable, then skip the remaining work
# as it can't successfully compare anyway...
$scope=$old2new{$scope} || next;
$type=$old2new{$type} || next;
my @newroles = map { ref($_)?$_:$old2new{$_} || next; } (@{$roles});
my @newplayers = map { ref($_)?$_:$old2new{$_} || next; } (@{$players});
my $n=Assertion->new(scope=>$scope,
kind=>$kind,
type=>$type,
roles=>\@newroles,players=>\@newplayers);
$newmap->canonicalize($n);
my $newid=$maybebase.TM::mklabel($n);
$old2newid{$t}=$newid;
if ($plusass{$newid}) # we found a matching assertion, wohee!
{
delete $plusass{$newid};
delete $minusass{$t};
# remember that this assertion was re-id'd (directly or indirectly via players)
# this is done for standalone assocs just the same as for bn/oc characteristics
$identities{$t}=$newid;
}
}
}
# finally, find and attach the modified assertions to their topics
# attributes: to the topic
# associations: to the type-topic
for my $key ("plus","minus")
{
my ($unmodified,$map,$candidates);
if ($key eq "plus")
{
$unmodified=\%plus; $map=$newmap; $candidates=\%plusass;
}
else
{
$unmodified=\%minus; $map=$oldmap; $candidates=\%minusass;
}
# working with potentially old maps we may need to base-prefix or not...
my $maybebase=(($map->asserts)[0]->[TM->LID]=~/^$base/ )?$base:"";
for my $t (keys %{$candidates})
{
my $m=$map->retrieve($t);
my ($oldwho,$who,$what);
if ($m->[TM->KIND] ne TM->ASSOC)
{
# bn or oc: attach to referenced topic
$who=($map->get_x_players($m,$maybebase."thing"))[0];
$what=$t;
}
elsif ($m->[TM->TYPE] eq $maybebase."isa")
{
# isa associations get attached to the instance topic
$who=($map->get_x_players($m,$maybebase."instance"))[0];
$what=$t;
}
else
{
# general assoc: gets attached to type topic
$who=$m->[TM->TYPE];
$what=$t;
}
# if this assertion belongs to a topic that is marked gone/new, we save it with that topic
if (defined $unmodified->{$who})
{
push @{$unmodified->{$who}},$what;
}
else # if this belongs to a modified topic: more details please (new/old ass)
{
# we access things along the old id axis...
if ($key eq "plus")
{
$who=$new2old{$who};
}
$modified{$who}->{$key}||=[];
push @{$modified{$who}->{$key}},$what;
}
}
}
map { $identities{$_}=$old2new{$_} if ($_ ne $old2new{$_}); } (keys %old2new);
my $returnvalue={
'identities'=>\%identities,
'plus'=>\%plus,
'minus'=>\%minus,
'modified'=>\%modified,
};
# pull in the midlets and assertions that have been affected,
# so that the resulting datastructure can be frozen and used together with oldmap
# to (re)create newmap
if ($options->{include_changes})
{
# one problem, though is naming: midlets can have changed but their name doesn't
# reflect that: we need two midlet datastructures here.
# (assertions are fine, their names always reflect their content uniquely)
my (%plusm,%minusm,%ass,$a);
map { $plusm{$_} = $newmap->toplet($_) } keys %plus;
map { $ass{ $_->[TM->LID] } = $_ }
map { $newmap->retrieve($_) }
map { @$_ }
values %plus;
map { $minusm{$_} = $oldmap->toplet($_) } keys %minus;
map { $ass{ $_->[TM->LID] } = $_ }
map { $oldmap->retrieve($_) }
map { @$_ }
values %minus;
for my $k (keys %modified)
{
# these are corresponding topics with differing midlet (contents)
if ($modified{$k}->{identities})
{
$plusm{$k} = $newmap->toplet($old2new{$k});
$minusm{$k} = $oldmap->toplet($k);
}
map { $plusm{$_} =$newmap->toplet($_); $a=$newmap->retrieve($_) and $ass{$_}=$a; } (@{$modified{$k}->{plus}});
map { $minusm{$_}=$oldmap->toplet($_); $a=$oldmap->retrieve($_) and $ass{$_}=$a; } (@{$modified{$k}->{minus}});
}
$returnvalue->{plus_midlets} =\%plusm;
$returnvalue->{minus_midlets} =\%minusm;
$returnvalue->{assertions} =\%ass;
}
return $returnvalue;
}
=pod
=item B<melt> (DEPRECATED)
I<$tm>->melt (I<$tm2>)
This - probably more auxiliary - function copies relevant aspect of a second map into the object.
=cut
our @ESSENTIALS = qw(mid2iid assertions baseuri variants);
sub melt {
my $self = shift;
my $tm2 = shift;
@{$self}{@ESSENTIALS} = @{$tm2}{@ESSENTIALS};
$self->{last_mod} = Time::HiRes::time;
}
=pod
=item B<insane>
warn "topic map broken" if I<$tm>->insane
This method tests invariant conditions inside the TM structure of that map. Specifically,
=over
=item *
each toplet has a LID which points to a toplet with the same address
=back
It returns a string with a message or C<undef> if everything seems fine.
TODO: add test whether all variant entries have a proper LID (and toplet)
=cut
sub insane {
my $self = shift;
my $mid2iid = $self->{mid2iid};
my $asserts = $self->{assertions};
# Test 1: all toplet LIDs point to something in mid2iid which refers to themselves
foreach my $k (keys %$mid2iid) {
my $t = $mid2iid->{$k};
return "toplet LID $k not in mid2iid"
unless $mid2iid->{ $t->[TM->LID] };
return "LID $k inconsistent with toplet LID"
unless $mid2iid->{ $t->[TM->LID] } == $t;
return "key $k looks like assertion, but has not assertions entry"
if $k =~ /[[:xdigit:]]{16}/ and !$asserts->{$k};
}
## Test 2: all assertions are toplets
# foreach my $k (keys %$asserts) {
# return "assertion $k has no toplet entry"
# unless $mid2iid->{ $asserts->{$k}->[TM->LID] };
# return "assertion $k toplet entry has a different LID"
# unless $mid2iid->{ $asserts->{$k}->[TM->LID] }->[TM->LID] eq $k;
# }
return undef; # pass all tests
}
=pod
=back
=head1 TOPLET INTERFACE
I<Toplets> are light-weight versions of TMDM topics. They only carry addressing information and are
represented by an array (struct) with the following fields:
=cut
struct 'Toplet' => [
lid => '$',
saddr => '$',
sinds => '$',
];
=pod
=over
=item C<lid> (index: C<LID>)
The internal identifier. Mostly it repeats the key in the toplet hash, but also aliased identifiers
may exist.
=item C<saddr> (index: C<ADDRESS>)
It contains the B<subject locator> (address) URI, if known. Otherwise C<undef>.
=item C<sinds> (index: C<INDICATORS>)
This is a reference to a list containing B<subject identifiers> (indicators). The list can be empty,
no duplicate removal is attempted at this stage.
=back
You can create this structure manually, but mostly you would leave it to C<internalize> to do the
work.
Example:
# dogmatic way to produce it
my $to = Toplet->new (lid => $baseuri . 'my-lovely-cat',
saddr => 'http://subject-address.com/',
sinds => []);
# also good and well
my $to = [ $baseuri . 'my-lovely-cat',
'http://subject-address.com/',
[] ];
# better
my $to = $tm->internalize ('my-lovely-cat' => 'http://subject-address.com/');
To access the individual fields, you can either use the struct accessors C<saddr> and C<sinds>, or
use the constants defined above for indices into the array:
=cut
use constant {
# LID => 0,
ADDRESS => 1,
INDICATORS => 2
};
=pod
Example:
warn "indicators: ", join (", ", @{$to->sinds});
warn "locator: ", $to->[TM->ADDRESS];
=head2 Methods
=over
=item B<internalize>
I<$iid> = I<$tm>->internalize (I<$some_id>)
I<$iid> = I<$tm>->internalize (I<$some_id> => I<$some_id>)
I<@iids> = I<$tm>->internalize (I<$some_id> => I<$some_id>, ...)
This method does some trickery when a new toplet should be added to the map, depending on how
parameters are passed into it. The general scheme is that pairs of identifiers are passed in. The
first is usually the internal identifier, the second a subject identifier or the subject
locator. The convention is that subject identifier URIs are passed in as string references, whereas
subject locator URIs are passed in as strings.
The following cases are covered:
=over
=item C<ID =E<gt> undef>
If the ID is already an absolute URI and contains the C<baseuri> of the map as prefix, then this URI
is used as internal toplet identifier. If the ID is some other URI, then a toplet with that URI as
subject locator is searched in the map. If such a toplet already exists, then nothing special needs
to happen. If no such toplet existed, a new URI, based on the C<baseuri> and a random number will
be created for the internal identifier and the original URI is used as subject address.
B<NOTE>: Using C<URI =E<gt> URI> implies that you use two different URIs as subject addresses. This
will result in an error.
=item C<ID =E<gt> URI>
Like above, only that the URI is directly interpreted as subject address.
=item C<ID =E<gt> \ URI> (reference to string)
Like above, only that the URI is interpreted as another subject identifier. If the toplet already existed,
then this subject identifier is simply added. Duplicates are suppressed (since v1.31).
=item C<undef =E<gt> URI>
Like above, only that the internal identifier is auto-created if there is no toplet with the URI
as subject address.
Attention: If you call internalize like this
$tm->internalize(undef => $whatever)
then perl will (un)helpfully replace the required undef with the string "undef" and wreck the operation.
Using either a variable to hold the undef or replacing the (syntactic sugar) arrow with a comma works around this issue.
Attention: If you call internalize like this
$tm->internalize(undef => $whatever)
then perl will (un)helpfully replace the required undef with the string "undef" and wreck the operation.
Using either a variable to hold the undef or replacing the (syntactic sugar) arrow with a comma works around this issue.
=item C<undef =E<gt> \ URI>
Like above, only that the URI us used as subject identifier.
=item C<undef =E<gt> undef>
A toplet with an auto-generated ID will be inserted.
=back
In any case, the internal identifier(s) of all inserted (or existing) toplets are returned for
convenience.
=cut
our $toplet_ctr = 0;
sub internalize {
my $self = shift;
my $baseuri = $self->{baseuri};
#warn "internalize base: $baseuri";
my @mids;
my $mid2iid = $self->{mid2iid};
while (@_) {
my ($k, $v) = (shift, shift); # assume to get here undef => URI or ID => URI or ID => \ URI or ID => undef
#warn "internalize $k, $v"; # if ! defined $k;
# make sure that $k contains a mid
$k = undef if defined $k && $k eq 'undef'; # perl 5.10 will stringify undef => ....
if (defined $k) {
if ($mid2iid->{$k}) { # this identifier is already in the map
# null
} elsif ($k =~ /^$baseuri/) { # ha, perfect, another identifier already in form
# null # keep it as it is
} elsif ($k =~ /^\w+:/) { # some other absURL
if (my $k2 = $self->tids ($k)) { # we already had it
($k, $v) = ($k2, $k);
} else { # it is unknown so far
($k, $v) = ($baseuri.sprintf ("uuid-%010d", $toplet_ctr++), $k);
}
} elsif (my $k2 = $self->tids ($k)) {
$k = $k2; # then we already have it, maybe under a different mid, take that
} else { # this means we have a relURI and it is not from that map
$k = $baseuri.$k; # but now it is
}
} elsif (ref ($v) eq 'Assertion') { # k is not defined, lets look at v, but if that is an assertion
$k = $baseuri.sprintf ("uuid-%010d", $toplet_ctr++); # generate a new one
} elsif (my $k2 = $self->tids ($v)) { # k is not defined, lets look at v; we already had it
$k = $k2; # this will be k then
} else { # it is unknown so far
$k = $baseuri.sprintf ("uuid-%010d", $toplet_ctr++); # generate a new one
}
#warn "really internalizing '$k' '$v'";
push @mids, $k;
$v = $v->[TM->LID] if ref ($v) eq 'Assertion'; # for internal reification we use the assertion's LID
$mid2iid->{$k} ||= [ $k, undef, [] ]; # now see that we have an entry in the mid2iid table
my $kentry = $mid2iid->{$k}; # keep this as a shortcut
if ($v) {
if (ref($v)) { # being a reference means that we have a subject indication
push @{$kentry->[TM->INDICATORS]}, $$v # append it to the list
unless grep {$$v eq $_} @{$kentry->[TM->INDICATORS]}; # if not yet there
} elsif ($kentry->[TM->ADDRESS]) { # this is a subject address and, oh, there is already a subject address, not good
$log->logdie ("duplicate subject address '$v' for '$k'") unless $v eq $kentry->[TM->ADDRESS];
} else { # everything is fine, we can set it
$kentry->[TM->ADDRESS] = $v;
}
}
$mid2iid->{$k} = $kentry; # necessary if mid2iid is tied itself
}
$self->{mid2iid} = $mid2iid; #!! needed for Berkeley DBM recognize changes on deeper levels
$self->{last_mod} = Time::HiRes::time;
return wantarray ? @mids : $mids[0];
}
=pod
=item B<toplet> (old name B<midlet>)
I<$t> = I<$tm>->toplet (I<$mid>)
I<@ts> = I<$tm>->toplet (I<$mid>, ....)
This function returns a reference to a toplet structure. It can be used in scalar and list context.
=cut
sub midlet {
return toplet (@_);
}
sub toplet {
my $self = shift;
my $mid2iid = $self->{mid2iid};
if (wantarray) {
return (map { defined $_ ? $mid2iid->{$_} : $_ } @_);
} else {
return $mid2iid->{$_[0]};
}
}
=pod
=item B<toplets> (old name B<midlets>)
I<@mids> = I<$tm>->toplets
I<@mids> = I<$tm>->toplets (I<@list_of_ids>)
I<@mids> = I<$tm>->toplets (I<$selection_spec>)
This function returns toplet structures from the map. B<NOTE>: This has changed from v 1.13. Before
you got ids.
If no parameter is provided, all toplets are returned. This includes really everything also
infrastructure toplets. If an explicit list is provided as parameter, then all toplets with these
identifiers are returned.
If a search specification is used, it has to be passed in as string reference. That string contains
the selection specification using the following simple language (curly brackets mean repetition,
round bracket grouping, vertical bar alternatives):
specification -> { ( '+' | '-' ) group }
whereby I<group> is one of the following:
=over
=item C<all>
refers to B<all> toplets in the map. This includes those supplied by the application. The list also
includes all infrastructure topics which the software maintains for completeness.
=item C<infrastructure>
refers to all toplets the infrastructure has provided. This implies that
all - infrastructure
is everything the user (application) has supplied.
=back
Examples:
# all toplets except those from TM::PSI
$tm->toplets (\ '+all -infrastructure')
B<NOTE>: No attempt is made to make this list unique.
B<NOTE>: The specifications are not commutative, but are interpreted from left-to-right. So C<all
-infrastructure +infrastructure> is not the same as C<all +infrastructure -infrastructure>. In the
latter case the infrastructure toplets have been added twice, and are then deducted completely with
C<-infrastructure>.
=cut
sub midlets {
return toplets (@_);
}
sub toplets {
my $self = shift;
my $mid2iid = $self->{mid2iid};
if ($_[0]) { # if there is some parameter
if (ref ($_[0]) ) { # whoohie, a search spec
my $spec = ${$_[0]};
my $l = []; # will be list
while ($spec =~ s/([+-])(\w+)//) {
if ($2 eq 'all') {
$l = _mod_list ($1 eq '+', $l, keys %$mid2iid);
} elsif ($2 eq 'infrastructure') {
$l = _mod_list ($1 eq '+', $l, keys %{$infrastructure->{mid2iid}});
} else {
$log->logdie (scalar __PACKAGE__ .": specification '$2' unknown");
}
}
$log->logdie (scalar __PACKAGE__ .": unhandled specification '$spec' left") if $spec =~ /\S/;
return map { $mid2iid->{$_} } @$l;
} else {
my $m = $mid2iid;
return @$m{$self->tids (@_)}; # make all these fu**ing identifiers map-absolute
}
} else { # if the list was empty, we assume every thing in the map
return values %$mid2iid;
}
sub _mod_list {
my $pm = shift; # non-zero for +
my $l = shift;
if ($pm) {
return [ @$l, @_ ];
} else {
my %minus;
@minus{ @_ } = (1) x @_;
return [ grep { !$minus{$_} } @$l ];
}
}
sub _mk_uniq {
my %uniq;
@uniq {@_} = (1) x @_;
return keys %uniq;
}
}
=pod
=item B<tids> (old name B<mids>)
I<$mid> = I<$tm>->tids (I<$some_id>)
I<@mids> = I<$tm>->tids (I<$some_id>, ...)
This function tries to build absolute versions of the identifiers passed in. C<undef> will be
returned if no such can be constructed. Can be used in scalar and list context.
=over
=item *
If the passed-in identifier is a relative URI, so it is made absolute by prefixing it with the map
C<baseuri> and then we look for a toplet with that internal identifier.
=item *
If the passed-in identifier is an absolute URI, where the C<baseuri> is a prefix, then that URI will
be used as internal identifier to look for a toplet.
=item *
If the passed-in identifier is an absolute URI, where the C<baseuri> is B<NOT> a prefix, then that
URI will be used as subject locator and such a toplet will be looked for.
=item *
If the passed-in identifier is a reference to an absolute URI, then that URI will be used as subject
identifier and such a toplet will be looked for.
=back
=cut
sub mids {
return tids (@_);
}
sub tids {
my $self = shift;
my $mid2iid = $self->{mid2iid}; # shorthand
my @ks;
MID:
foreach my $k (@_) {
if (! defined $k) { # someone put in undef
push @ks, undef;
} elsif (ref ($k)) { # would be subject indicator ref
my $kk = $$k;
foreach my $k2 (keys %{$mid2iid}) {
if (grep ($_ eq $kk,
@{$mid2iid->{$k2}->[TM->INDICATORS]}
)) {
push @ks, $mid2iid->{$k2}->[TM->LID]; # LID points to 'canonical' internal identifier
next MID;
}
}
push @ks, undef;
} elsif (my $kk = $mid2iid->{$k}) { # we already have something which looks like a tid
push @ks, $kk->[TM->LID]; # give back the 'canonical' one
} elsif ($k =~ /(^\w+:)|(^[A-F0-9]{32}$)/i) { # must be some other uri or assoc id, must be subject address
no warnings;
my @k2 = grep ($mid2iid->{$_}->[TM->ADDRESS] eq $k, keys %{$mid2iid});
push @ks, @k2 ? $mid2iid->{$k2[0]}->[TM->LID] : undef; # we take the first we find
} else { # only a string, like 'aaa'
my $k2 = $self->{baseuri}.$k; # make it absolute, and...
push @ks, $mid2iid->{$k2} # see whether there is something
? $mid2iid->{$k2}->[TM->LID] : undef; # and then take canonical LID
}
}
#warn "mids ".Dumper (\@_)." returning ".Dumper (\@ks);
return wantarray ? @ks : $ks[0];
}
=pod
=item B<externalize>
I<$tm>->externalize (I<$some_id>, ...)
This function simply deletes the toplet entry for the given internal identifier(s). The function
returns all deleted toplet entries.
B<NOTE>: Assertions in which this topic is involved will B<not> be removed. Use C<consolidate> to
clean up all assertion where non-existing toplets still exist.
=cut
sub externalize {
my $self = shift;
my $mid2iid = $self->{mid2iid};
my @doomed = map { delete $mid2iid->{$_} } @_;
$self->{mid2iid} = $mid2iid; ## !! needed for Berkeley DBM recognize changes on deeper levels
$self->{last_mod} = Time::HiRes::time;
return @doomed;
}
=pod
=back
=head1 ASSERTIONS INTERFACE
One assertion is a record containing its own identifier, the scope, the type of the assocation, an
field whether this is an association, an occurrence or a name and then all roles and all players,
both in separate lists.
=cut
struct 'Assertion' => [
lid => '$',
scope => '$',
type => '$',
kind => '$', # redundant, but very useful
roles => '$',
players => '$',
canon => '$',
];
use constant {
LID => 0,
SCOPE => 1,
TYPE => 2,
KIND => 3,
ROLES => 4,
PLAYERS => 5,
CANON => 6
};
=pod
Assertions consist of the following components:
=over
=item I<lid> (index C<LID>):
Every assertion has an identifier. It is a unique identifier generated from a canonicalized form of
the assertion itself.
=item I<scope> (index: C<SCOPE>)
This component holds the scope of the assertion.
=item I<kind> (index: C<KIND>, redundant information):
For technical reasons (read: it is faster) we distinguish between full associations (C<ASSOC>),
names (C<NAME>) and occurrences (C<OCC>).
=cut
# values for 'kind'
use constant {
ASSOC => 0,
NAME => 1,
OCC => 2,
};
=pod
=item I<type> (index: C<TYPE>):
The toplet id of the type of this assertion.
=item I<roles> (index: C<ROLES>):
A list reference which holds a list of toplet ids for the roles.
=item I<players> (index: C<PLAYERS>):
A list reference which holds a list of toplet IDs for the players.
=item I<canon> (index: C<CANON>):
Either C<1> or C<undef> to signal whether this assertion has been (already) canonicalized (see
L</canonicalize>). If an assertion is canonicalized, then the players and roles lists are sorted
(somehow), so that assertions can be easily compared.
=back
Obviously the lists for roles and players B<always> have the same length, so that every player
corresponds to exactly one role. If one role is played by several players, the role appears multiple
times.
As a special case, names and occurrences are mapped into assertions, by
=over
=item *
setting the I<roles> to C<thing> and C<value>,
=item *
setting the I<players> to the toplet id in question and using a L<TM::Literal> as the player for
C<value>,
=item *
using the I<type> component to store the name/occurrence type,
=item *
using as I<kind> either C<NAME> or C<OCC>
=back
Example:
# general association
$a = Assertion->new (type => 'is-subclass-of',
roles => [ 'subclass', 'superclass' ],
players => [ 'rumsti', 'ramsti' ])
warn $a->scope . " is the same as " . $a->[TM->SCOPE];
# create a name
use TM::Literal;
$n = Assertion->new (kind => TM->NAME,
type => 'name',
scope => 'us',
roles => [ 'thing', 'value' ],
players => [ 'rumsti',
new TM::Literal ('AAA') ]);
# create an occurrence
use TM::Literal;
$n = Assertion->new (kind => TM->OCC,
type => 'occurrence',
scope => 'us',
roles => [ 'thing', 'value' ],
players => [ 'rumsti',
new TM::Literal ('http://whatever/') ]);
=head2 Special Assertions
This package adopts the following conventions to store certain assertions:
=over
=item C<is-subclass-of>
Associations of this type should have one role C<subclass> and another C<superclass>. The scope
should always be C<us>.
=item C<isa>
Associations of this type should have one role C<instance> and another C<class>. The scope should
always be C<us>.
=item C<NAME>
Assertions for names should have the C<KIND> component set to it and use the C<TYPE> component to
store the name type. The two roles to use are C<value> for the value and C<thing> for the toplet
carrying the name.
=item C<OCC>
Assertions for occurrences should have the C<KIND> component set to it and use the C<TYPE> component
to store the occurrence type. The two roles to use are C<value> for the value and C<thing> for the
toplet carrying the name.
=back
=head2 Methods
=over
=item B<assert>
I<@as> = I<$tm>->assert (I<@list-of-assertions>)
This method takes a list of assertions, canonicalizes them and then injects them into the map. If
one of the newly added assertions already existed in the map, it will be ignored.
In this process, all assertions will be completed (if fields are missing).
=over
=item If an assertion does not have a type, it will default to C<$TM::PSI::THING>.
=item If an assertion does not have a scope, it defaults to C<$TM::PSI::US>.
=back
Then the assertion will be canonicalized (unless it already was). This implies that
non-canonicalized assertions will be modified, in that the role/player lists change. Any assertion
not having an LID will get one.
The method returns a list of all asserted assertions.
Example:
my $a = Assertion->new (type => 'rumsti');
$tm->assert ($a);
B<NOTE>: Maybe the type will default to I<association> in the future.
=cut
sub assert {
my $self = shift;
my ($THING, $US) = ('thing', 'us');
#warn "sub $THING assert $self".ref ($self);
my @tids; # first collect all emerging tids from the assertions
foreach (@_) {
unless ($_->[CANON]) {
push @tids, $_->[TYPE] || $THING;
push @tids, $_->[SCOPE] || $US;
push @tids, @{$_->[ROLES]};
push @tids, grep { ! ref ($_) } @{$_->[PLAYERS]};
}
}
@tids = $self->internalize ( map { $_ => undef } @tids); # then convert them into proper usable tids
my $asserts = $self->{assertions}; # load (MLDBM kicker)
foreach (@_) { # only now use all the information to complete the assertions
unless ($_->[CANON]) {
$_->[KIND] ||= ASSOC;
$_->[TYPE] = shift @tids;
$_->[SCOPE] = shift @tids;
$_->[ROLES] = [ map { shift @tids } @{$_->[ROLES]} ];
$_->[PLAYERS] = [ map { $_ = ref ($_) ? $_ : shift @tids } @{$_->[PLAYERS]} ];
canonicalize (undef, $_);
$_->[LID] ||= mklabel ($_);
}
$asserts->{$_->[LID]} = $_;
}
$self->{assertions} = $asserts; ### HACK ALERT: needed for Berkeley DBM recognize changes on deeper levels
$self->{last_mod} = Time::HiRes::time;
return @_;
}
=pod
=item B<retrieve>
I<$assertion> = I<$tm>->retrieve (I<$some_assertion_id>)
I<@assertions> = I<$tm>->retrieve (I<$some_assertion_id>, ...)
This method takes a list of assertion IDs and returns the assertion(s) with the given (subject)
ID(s). If the assertion is not identifiable, C<undef> will be returned in its place. Called in list
context, it will return a list of assertion references.
=cut
sub retrieve {
my $self = shift;
my $asserts = $self->{assertions};
if (wantarray()) {
return map { $asserts->{$_} } @_;
} else {
return $asserts->{$_[0]};
}
}
=pod
=item B<asserts>
I<@assertions> = I<$tm>->asserts (I<$selection_spec>)
If a search specification is used, it has to be passed in as string reference. That string contains
the selection specification using the following simple language (curly brackets mean repetition,
round bracket grouping, vertical bar alternatives):
specification -> { ( '+' | '-' ) group }
whereby I<group> is one of the following:
=over
=item C<all>
refers to B<all> assertions in the map. This includes those supplied by the application, but also
all predefined associations, names and occurrences.
=item C<associations>
refers to all assertions which are actually associations
=item C<names>
refers to all assertions which are actually name characteristics
=item C<occurrences>
refers to all assertions which are actually occurrences
=item C<infrastructure>
refers to all assertions the infrastructure has provided. This implies that
all - infrastructure
is everything the user (application) has supplied.
=back
Examples:
# all toplets except those from TM::PSI
$tm->asserts (\ '+all -infrastructure')
# like above, without assocs, so with names and occurrences
$tm->asserts (\ '+all -associations')
B<NOTE>: No attempt is made to make this list unique.
B<NOTE>: The specifications are not commutative, but are interpreted from left-to-right. So C<all
-associations +associations> is not the same as C<all +associations -associations>.
C<-infrastructure>.
=cut
sub asserts {
my $self = shift;
my $asserts = $self->{assertions};
if ($_[0]) {
if (ref ($_[0])) {
my $spec = ${$_[0]};
my $l = []; # will be list
while ($spec =~ s/([+-])(\w+)//) {
if ($2 eq 'all') {
$l = _mod_list ($1 eq '+', $l, keys %$asserts);
} elsif ($2 eq 'associations') {
$l = _mod_list ($1 eq '+', $l, map { $_->[TM->LID] }
grep { $_->[TM->KIND] == TM->ASSOC } values %$asserts);
} elsif ($2 eq 'names') {
$l = _mod_list ($1 eq '+', $l, map { $_->[TM->LID] }
grep { $_->[TM->KIND] == TM->NAME } values %$asserts);
} elsif ($2 eq 'occurrences') {
$l = _mod_list ($1 eq '+', $l, map { $_->[TM->LID] }
grep { $_->[TM->KIND] == TM->OCC } values %$asserts);
} elsif ($2 eq 'infrastructure') {
$l = _mod_list ($1 eq '+', $l, keys %{$TM::infrastructure->{assertions}} );
} else {
$log->logdie (scalar __PACKAGE__ .": specification '$2' unknown");
}
}
$log->logdie (scalar __PACKAGE__ .": unhandled specification '$spec' left") if $spec =~ /\S/;
return map { $asserts->{$_} } @$l;
} else {
return $asserts->{@_};
}
} else {
return values %$asserts;
}
}
=pod
=item B<is_asserted>
I<$bool> = I<$tm>->is_asserted (I<$a>)
This method will return C<1> if the passed-in assertion exists in the store. The assertion will be
canonicalized before checking, but no defaults will be added if parts are missing.
=cut
sub is_asserted {
my $self = shift;
my $a = shift;
unless ($a->[CANON]) {
absolutize ($self, $a);
canonicalize (undef, $a);
$a->[TM->LID] = mklabel ($a);
}
return $self->{assertions}->{ $a->[TM->LID] };
}
=pod
=item B<retract>
I<$tm>->retract (I<@list_of_assertion_ids>)
This methods expects a list of assertion IDs and will remove the assertions from the map. If an ID
is bogus, it will be ignored.
B<NOTE>: Only these particular assertions will be deleted. Any toplets mentioned in these assertions
will remain. Use C<consolidate> to remove unnecessary toplets.
=cut
sub retract {
my $self = shift;
# TODO: does delete $self->{assertions}->{@_} work?
my $assertions = $self->{assertions};
map {
delete $assertions->{$_} # delete them from the primary store
} @_;
$self->{assertions} = $assertions; ##!! needed for Berkeley DBM recognize changes on deeper levels
$self->{last_mod} = Time::HiRes::time;
}
=pod
=item B<match>, B<match_forall>, B<match_exists>
I<@assertions> = I<$tm>->match (TM->FORALL [ , I<search-spec> ] );
I<@assertions> = I<$tm>->match (TM->EXISTS [ , I<search-spec> ] );
I<@assertions> = I<$tm>->match_forall ( [ I<search-spec> ] );
I<@assertions> = I<$tm>->match_exists ( [ I<search-spec> ] );
These methods take a search specification and return matching assertions. The result list contains
references to the assertions themselves, not to copies. You can change the assertions themselves on
your own risk (read: better not do it).
For C<match>, if the constant C<FORALL> is used as first parameter, this method returns a list of
B<all> assertions in the store following the search specification. If the constant C<EXISTS> is
used, the method will return a non-empty value if B<at least one> can be found. Calling the more
specific C<match_forall> is the same as calling C<match> with C<FORALL>. Similar for
C<match_exists>.
B<NOTE>: C<EXISTS> is not yet implemented.
For I<search specifications> there are two alternatives:
=over
=item Generic Search
Here the search specification is a hash with the same fields as for the constructor of an assertion:
Example:
$tm->match (TM->FORALL, type => '...',
scope => '...,
roles => [ ...., ....],
players => [ ...., ....]);
Any combination of assertion components can be used, all are optional, with the only constraint that
the number of roles must match that for the players. All involved IDs should be absolutized before
matching. If you use C<undef> for a role or a player, then this is interpreted as I<dont-care>
(wildcard).
=item Specialized Search
The implementation also understands a number of specialized search specifications. These are
listed in L<TM::Axes>.
=back
B<NOTE>: Some combinations will be very fast, while others quite slow. If you experience
problems, then it might be time to think about indexing (see L<TM::Index>).
B<NOTE>: For the assertion type and the role subclassing is honored.
=cut
use constant {
EXISTS => 1,
FORALL => 0
};
our %exists_handlers = (); # they should be written at some point
our %forall_handlers = (
'' => {
code => sub { # no params => want all of them
my $self = shift;
return values %{$self->{assertions}};
},
desc => 'returns all assertions',
params => {},
},
'nochar' => {
code => sub {
my $self = shift;
return
grep ($_->[KIND] <= ASSOC,
values %{$self->{assertions}});
},
desc => 'returns all associations (so no names or occurrences)',
params => { 'nochar' => '1'}
},
#-- taxos ---------------------------------------------------------------------------------------------
'subclass.type' => {
code => sub {
my $self = shift;
my $st = shift;
my ($ISSC, $SUBCLASS) = ('is-subclass-of', 'subclass');
return () unless shift eq $ISSC;
return
grep ( $self->is_x_player ($_, $st, $SUBCLASS),
grep ( $_->[TYPE] eq $ISSC,
values %{$self->{assertions}}));
},
desc => 'returns all assertions where there are subclasses of a given toplet',
params => { 'type' => 'is-subclass-of', subclass => 'which toplet should be the superclass'},
key => sub {
my $self = shift;
my $a = shift;
my ($ISSC, $SUBCLASS) = ('is-subclass-of', 'subclass');
return "subclass.type:". ($self->get_x_players ($a, $SUBCLASS))[0] . '.' . $ISSC;
},
enum => sub {
my $self = shift;
my ($ISSC) = ('is-subclass-of');
return
grep { $_->[TYPE] eq $ISSC }
values %{$self->{assertions}};
}
},
'superclass.type' => {
code => sub {
my $self = shift;
my $st = shift;
my ($ISSC, $SUPERCLASS) = ('is-subclass-of', 'superclass');
return () unless shift eq $ISSC;
return
grep ( $self->is_x_player ($_, $st, $SUPERCLASS),
grep ( $_->[TYPE] eq $ISSC,
values %{$self->{assertions}}));
},
desc => 'returns all assertions where there are superclasses of a given toplet',
params => { 'type' => 'is-subclass-of', superclass => 'which toplet should be the subclass'},
key => sub {
my $self = shift;
my $a = shift;
my ($ISSC, $SUPERCLASS) = ('is-subclass-of', 'superclass');
return "superclass.type:". ($self->get_x_players ($a, $SUPERCLASS))[0] . '.' . $ISSC;
},
enum => sub {
my $self = shift;
my ($ISSC) = ('is-subclass-of');
return
grep { $_->[TYPE] eq $ISSC }
values %{$self->{assertions}};
}
},
'class.type' => {
code => sub {
my $self = shift;
my $t = shift;
my ($ISA, $CLASS) = ('isa', 'class');
return () unless shift eq $ISA;
return
grep ( $self->is_x_player ($_, $t, $CLASS),
grep ( $_->[TYPE] eq $ISA,
values %{$self->{assertions}}));
},
desc => 'returns all assertions where there are instances of a given toplet',
params => { type => 'isa', class => 'which toplet should be the class'},
key => sub {
my $self = shift;
my $a = shift;
my ($ISA, $CLASS) = ('isa', 'class');
return "class.type:". ($self->get_x_players ($a, $CLASS))[0] . '.' . $ISA;
},
enum => sub {
my $self = shift;
my ($ISA) = ('isa');
return
grep { $_->[TYPE] eq $ISA }
values %{$self->{assertions}};
}
},
'instance.type' => {
code => sub {
my $self = shift;
my $i = shift;
my ($ISA, $INSTANCE) = ('isa', 'instance');
return () unless shift eq $ISA;
return
grep ( $self->is_x_player ($_, $i, $INSTANCE),
grep ( $_->[TYPE] eq $ISA,
values %{$self->{assertions}}));
},
desc => 'returns all assertions where there are classes of a given toplet',
params => { type => 'isa', instance => 'which toplet should be the instance'},
key => sub {
my $self = shift;
my $a = shift;
my ($ISA, $INSTANCE) = ('isa', 'instance');
return "instance.type:". ($self->get_x_players ($a, $INSTANCE))[0] . '.' . $ISA;
},
enum => sub {
my $self = shift;
my ($ISA) = ('isa');
return
grep { $_->[TYPE] eq $ISA }
values %{$self->{assertions}};
}
},
#--
'char.irole' => {
code => sub {
warn "char.irole is deprecated. use char.topic instead";
my $self = shift;
my $topic = $_[1];
return undef unless $topic;
return
grep ($self->is_player ($_, $topic) && # TODO: optimize this grep away (getting chars is expensive)
NAME <= $_->[KIND] && $_->[KIND] <= OCC,
values %{$self->{assertions}});
},
desc => 'deprecated: return all assertions which are characteristics for a given toplet',
params => { char => '1', irole => 'the toplet for which characteristics are sought'}
},
'char.topic' => {
code => sub {
my $self = shift;
my $topic = $_[1];
return
grep (NAME <= $_->[KIND] && $_->[KIND] <= OCC &&
$_->[PLAYERS]->[0] eq $topic, # first role is always the 'thing'
values %{$self->{assertions}});
},
desc => 'return all assertions which are characteristics for a given toplet',
params => { char => '1', topic => 'the toplet for which characteristics are sought'},
key => sub {
my $self = shift;
my $a = shift;
return "char.topic:1.". $a->[PLAYERS]->[0];
},
enum => sub {
my $self = shift;
return
grep { $_->[KIND] != ASSOC }
values %{ $self->{assertions} };
}
},
'char.value' => {
code => sub {
my $self = shift;
my $value = $_[1];
return
grep (NAME <= $_->[KIND] && $_->[KIND] <= OCC &&
$_->[PLAYERS]->[1]->[0] eq $value->[0] && # second role is always the value
$_->[PLAYERS]->[1]->[1] eq $value->[1], # test value AND type
values %{$self->{assertions}});
},
desc => 'return all assertions which are characteristics for some topic of a given value',
params => { char => '1', value => 'the value for which all characteristics are sought'},
key => sub {
my $self = shift;
my $a = shift;
return "char.value:1.". $a->[PLAYERS]->[1]->[0] . '.' . $a->[PLAYERS]->[1]->[1];
},
enum => sub {
my $self = shift;
return
grep { $_->[KIND] != ASSOC }
values %{ $self->{assertions} };
}
},
'char.type' => {
code => sub {
my $self = shift;
my $type = $_[1];
return
grep { $self->is_subclass ($_->[TYPE], $type ) }
grep { $_->[KIND] != ASSOC }
values %{$self->{assertions}};
},
desc => 'return all assertions which are characteristics for some given type',
params => { char => '1', type => 'the characteristic type'},
key => sub {
my $self = shift;
my $a = shift;
return "char.type:1.". $a->[TYPE];
},
enum => sub {
my $self = shift;
return
grep { $_->[KIND] != ASSOC }
values %{ $self->{assertions} };
}
},
'char.type.value' => {
code => sub {
my $self = shift;
my $type = $_[1];
my $value = $_[2];
return
grep { $self->is_subclass ($_->[TYPE], $type ) }
grep (NAME <= $_->[KIND] && $_->[KIND] <= OCC &&
$_->[PLAYERS]->[1]->[0] eq $value->[0] && # second role is always the value
$_->[PLAYERS]->[1]->[1] eq $value->[1], # test value AND type
values %{$self->{assertions}});
},
desc => 'return all assertions which are characteristics for some topic of a given value for some given type',
params => { char => '1', type => 'the characteristic type', value => 'the value for which all characteristics are sought'},
key => sub {
my $self = shift;
my $a = shift;
return "char.type.value:1.". $a->[TYPE] . '.' . $a->[PLAYERS]->[1]->[0] . '.' . $a->[PLAYERS]->[1]->[1];
},
enum => sub {
my $self = shift;
return
grep { $_->[KIND] != ASSOC }
values %{ $self->{assertions} };
}
},
'char.topic.type' => {
code => sub {
my $self = shift;
my $topic = $_[1];
my $type = $_[2];
return
grep ($self->is_subclass ($_->[TYPE], $type),
grep ($_->[PLAYERS]->[0] eq $topic && # first role is always the 'thing'
NAME <= $_->[KIND] && $_->[KIND] <= OCC,
values %{$self->{assertions}}));
},
desc => 'return all assertions which are a characteristic of a given type for a given topic',
params => { char => '1', topic => 'the toplet for which these characteristics are sought', type => 'type of characteristic' },
key => sub {
my $self = shift;
my $a = shift;
return "char.topic.type:1.". $a->[PLAYERS]->[0] . '.' . $a->[TYPE] ;
},
enum => sub {
my $self = shift;
return
grep { $_->[KIND] != ASSOC }
values %{ $self->{assertions} };
}
},
'lid' => {
code => sub {
my $self = shift;
my $lid = $_[1];
return
$self->{assertions}->{$lid} || ();
},
desc => 'return one particular assertions with a given ID',
params => { lid => 'the ID of the assertion' }
},
'type' => {
code => sub {
my $self = shift;
my $type = $_[0];
return
grep ($self->is_subclass ($_->[TYPE], $type),
values %{$self->{assertions}});
},
desc => 'return all assertions with a given type',
params => { type => 'the type of the assertion' }
},
'iplayer' => {
code => sub {
my $self = shift;
my $ip = $_[0];
return
grep ($self->is_player ($_, $ip),
values %{$self->{assertions}});
},
desc => 'return all assertions where a given toplet is a player',
params => { iplayer => 'the player toplet' }
},
'iplayer.type' => {
code => sub {
my $self = shift;
my ($ip, $ty) = @_;
return
grep ($self->is_player ($_, $ip) &&
$self->is_subclass ($_->[TYPE], $ty),
values %{$self->{assertions}});
},
desc => 'return all assertions of a given type where a given toplet is a player',
params => { iplayer => 'the player toplet', type => 'the type of the assertion' }
},
'iplayer.irole' => {
code => sub {
my $self = shift;
my ($ip, $ir) = @_;
return
grep ($self->is_player ($_, $ip, $ir),
values %{$self->{assertions}});
},
desc => 'return all assertions where a given toplet is a player of a given role',
params => { iplayer => 'the player toplet', irole => 'the role toplet (incl subclasses)' },
},
'iplayer.irole.type' => {
code => sub {
my $self = shift;
my ($ip, $ir, $ty) = @_;
return
grep ($self->is_subclass ($_->[TYPE], $ty) &&
$self->is_player ($_, $ip, $ir),
values %{$self->{assertions}});
},
desc => 'return all assertions of a given type where a given toplet is a player of a given role',
params => { iplayer => 'the player toplet',
irole => 'the role toplet (incl subclasses)',
type => 'the type of the assertion' }
},
'irole.type' => {
code => sub {
my $self = shift;
my ($ir, $ty) = @_;
return
grep ($self->is_role ($_, $ir) &&
$self->is_subclass ($_->[TYPE], $ty),
values %{$self->{assertions}});
},
desc => 'return all assertions of a given type where there is a given role',
params => { irole => 'the role toplet (incl subclasses)', type => 'the type of the assertion' }
},
'irole' => {
code => sub {
my $self = shift;
my ($ir) = @_;
return
grep ($self->is_role ($_, $ir),
values %{$self->{assertions}});
},
desc => 'return all assertions where there is a given role',
params => { irole => 'the role toplet (incl subclasses)' }
},
'aplayer.arole.brole.type' => {
code => sub {
my $self = shift;
my ($ap, $ar, $br, $ty) = @_;
return
grep ( $self->is_role ($_, $br),
grep ( $self->is_player ($_, $ap, $ar),
grep ( $self->is_subclass ($_->[TYPE], $ty),
values %{$self->{assertions}})));
},
desc => 'return all assertions of a given type where a given toplet plays a given role and there exist another given role',
params => { aplayer => 'the player toplet for the arole',
arole => 'the role toplet (incl subclasses) for the aplayer',
brole => 'the other role toplet (incl subclasses)',
type => 'the type of the assertion'
}
},
'aplayer.arole.bplayer.brole.type' => {
code => sub {
my $self = shift;
my ($ap, $ar, $bp, $br, $ty) = @_;
return
grep ( $self->is_player ($_, $bp, $br),
grep ( $self->is_player ($_, $ap, $ar),
grep ( $self->is_subclass ($_->[TYPE], $ty),
values %{$self->{assertions}})));
},
desc => 'return all assertions of a given type where a given toplet plays a given role and there exist another given role with another given toplet as player',
params => { aplayer => 'the player toplet for the arole',
arole => 'the role toplet (incl subclasses) for the aplayer',
brole => 'the other role toplet (incl subclasses)',
bplayer => 'the player for the brole',
type => 'the type of the assertion'
}
},
'anyid' => {
code => sub {
my $self = shift;
my $lid = shift;
return
grep (
$self->is_subclass ($_->[TYPE], $lid) || # probably not a good idea
$_->[TYPE] eq $lid || # this seems a bit safer
$_->[SCOPE] eq $lid ||
$self->is_player ($_, $lid) ||
$self->is_role ($_, $lid) ,
values %{$self->{assertions}});
},
desc => 'return all assertions where a given toplet appears somehow',
params => { anyid => 'the toplet' }
}
);
sub _allinone {
my $self = shift;
my $exists = shift;
my $template = Assertion->new (@_); # we create an assertion on the fly
#warn "allinone ".Dumper $template;
$self->absolutize ($template);
#warn "allinone2".Dumper $template;
$self->canonicalize ($template); # of course, need to be canonicalized
#warn "allinone3".Dumper $template;
#warn "in store match template ".Dumper $template;
my @mads;
ASSERTION:
foreach my $m (values %{$self->{assertions}}) { # arbitrary AsTMa! queries TBD, can be faster as well
next if defined $template->[KIND] && # is kind defined
$m->[KIND] ne $template->[KIND]; # and does it match?
#warn "after kind";
next if defined $template->[SCOPE] &&
$m->[SCOPE] ne $self->tids ($template->[SCOPE]); # does scope match?
#warn "after scope";
next if defined $template->[TYPE] &&
!$self->is_subclass ($m->[TYPE], $self->tids ($template->[TYPE])); # does type match (including subclassing)?
#warn "after type";
my ($rm, $rc) = ($m->[ROLES], $template->[ROLES]);
push @mads, $m and next ASSERTION if ! @$rc; # match ok, if we have no roles
#warn "after push roles";
next ASSERTION if @$rm != @$rc; # quick check: roles must be of equal length
#warn "after roles";
my ($pm, $pc) = ($m->[PLAYERS], $template->[PLAYERS]);
push @mads, $m and next ASSERTION if ! @$pc; # match ok, if we have no players
next if @$pm != @$pc; # quick check: roles and players must be of equal length
#warn "after players equal length ".Dumper ($pm, $pc);
####### $pm = [ $self->tids (@$pm) ];
for (my $i = 0; $i < @{$rm}; $i++) { # order is canonicalized, would not want to test all permutations
#warn "before role tests : is $rm->[$i] subclass of $rc->[$i]?";
next ASSERTION if defined $rc->[$i] && !$self->is_subclass ($rm->[$i], $rc->[$i]); # go to next assertion if that does not match
#warn "after role ok";
next ASSERTION if defined $pc->[$i] && $pm->[$i] ne $pc->[$i];
}
#warn "after players roles";
return (1) if $exists; # with exists that's it
push @mads, $m; # with forall we do continue to collect
}
#warn "we return ".Dumper \@mads;
return @mads; # and return what we got
}
#sub _fat_mama {
# use Proc::ProcessTable;
# my $t = new Proc::ProcessTable;
##warn Dumper [ $t->fields ]; exit;
# my ($me) = grep {$_->pid == $$ } @{ $t->table };
##warn "size: ". $me->size;
# return $me->size / 1024.0 / 1024.0;
#}
sub match_forall {
my $self = shift;
my %query = @_;
#warn "forall ".Dumper \%query;
my @skeys = sort keys %query; # all fields make up the key
my $skeys = join ('.', @skeys);
my @svals = map { $query{$_} } @skeys;
if (my $idxs = $self->{indices}) { # there are indices to help me
my $key = "$skeys:" . join ('.', @svals);
foreach my $idx (@$idxs) {
if (my $lids = $idx->is_cached ($key)) { # if result was cached, lets take the list of lids
# warn "using cached for $key". Dumper $lids;
return map { $self->{assertions}->{$_} } @$lids; # and return fully fledged
}
}
# obviously we have not found it # not defined means not cache => recompute
my @as = _dispatch_forall ($self, \%query, $skeys, @svals); # do it the hard way
$idxs->[0]->do_cache ($key, [ map { $_->[LID] } @as ]); # save it for later, simply use the first [0]
return @as;
} else { # no cache, let's do the ochsentour
return _dispatch_forall ($self, \%query, $skeys, @svals);
}
sub _dispatch_forall {
my $self = shift;
my $query = shift;
my $skeys = shift;
if (my $handler = $forall_handlers{$skeys}) { # there is a constraint and we have a handler
return &{$handler->{code}} ($self, @_);
} else { # otherwise
return _allinone ($self, 0, %$query); # we use a generic handler, slow but should do the trick
}
}
}
sub match_exists {
my $self = shift;
my %query = @_;
#warn "exists ".Dumper $query;
my @skeys = sort keys %query; # all fields make up the key
my $skeys = join ('.', @skeys);
#warn "keys for this $skeys";
if (my $handler = $exists_handlers{$skeys}) { # there is a constraint and we have a handler
return &{$handler->{code}} ($self, map { $query{$_} } @skeys);
} else { # otherwise
return _allinone ($self, 1, %query); # we use a generic handler, slow but should do the trick
}
}
sub match {
my $self = shift;
my $exists = shift; # FORALL or EXIST, DOES NOT work yet
return $exists ? match_exists ($self, @_) : match_forall ($self, @_);
}
=pod
=back
=head2 Role Retrieval
=over
=item B<is_player>, B<is_x_player>
I<$bool> = is_player (I<$tm>, I<$assertion>, I<$player_id>, [ I<$role_id> ])
I<$bool> = is_x_player (I<$tm>, I<$assertion>, I<$player_id>, [ I<$role_id> ])
This function returns C<1> if the identifier specified by the C<player_id> parameter plays any role
in the assertion provided as C<assertion> parameter.
If the C<role_id> is provided as third parameter then it must be exactly this role (or any subclass
thereof) that is played. The 'x'-version is using equality instead of 'subclassing' ('x' for
"exact").
=cut
sub is_player {
my $self = shift;
my $m = shift;
# warn "is_player ".Dumper \@_;
# warn "caller: ". Dumper [ caller ];
# foreach (0..0) {
# warn " ".join (' ---- ', caller($_));
# }
my $p = shift;# or die "must specify valid player: ".Dumper ([ $m ])." and role is ".shift;
#
# warn "after shifting player '$p'";
my $r = shift; # may be undefined
$log->logdie ("must specify a player '$p' for role '$r'") unless $p;
if ($r) {
my ($ps, $rs) = ($m->[PLAYERS], $m->[ROLES]);
for (my $i = 0; $i < @$ps; $i++) {
next unless $ps->[$i] eq $p;
next unless $self->is_subclass ($rs->[$i], $r);
return 1;
}
} else {
return 1 if grep ($_ eq $p, @{$m->[PLAYERS]});
}
return 0;
}
sub is_x_player {
my $self = shift;
my $m = shift;
my $p = shift or $log->logdie ("must specify x-player: ".Dumper ([ $m ]));
my $r = shift; # may be undefined
if ($r) {
my ($ps, $rs) = ($m->[PLAYERS], $m->[ROLES]);
for (my $i = 0; $i < @$ps; $i++) {
next unless $ps->[$i] eq $p;
next unless $rs->[$i] eq $r;
return 1;
}
} else {
return 1 if grep ($_ eq $p, @{$m->[PLAYERS]});
}
return 0;
}
=pod
=item B<get_players>, B<get_x_players>
I<@player_ids> = get_players (I<$tm>, I<$assertion>, [ I<$role_id> ])
I<@player_ids> = get_x_players (I<$tm>, I<$assertion>, I<$role_id>)
This function returns the player(s) for the given role. If the role is not provided all players are
returned.
The "x" version does not honor subclassing.
=cut
sub get_players {
my $self = shift;
my $a = shift;
my $r = shift;
return @{ $a->[PLAYERS] } unless $r;
my ($ps, $rs) = ($a->[PLAYERS], $a->[ROLES]);
my @ps;
for (my $i = 0; $i < @$ps; $i++) {
next unless $self->is_subclass ($rs->[$i], $r);
push @ps, $ps->[$i];
}
return @ps;
}
sub get_x_players {
my $self = shift;
my $a = shift;
my $r = shift;
my ($ps, $rs) = ($a->[PLAYERS], $a->[ROLES]);
my @ps;
for (my $i = 0; $i < @$ps; $i++) {
next unless $rs->[$i] eq $r;
push @ps, $ps->[$i];
}
return @ps;
}
=pod
=item B<is_role>, B<is_x_role>
I<$bool> = is_role (I<$tm>, I<$assertion>, I<$role_id>)
I<$bool> = is_x_role (I<$tm>, I<$assertion>, I<$role_id>)
This function returns C<1> if the C<role_id> is a role in the assertion provided. The "x" version of
this function does not honor subclassing.
=cut
sub is_role {
my $self = shift;
my $m = shift;
my $r = shift or $log->logdie ("must specify role: ".Dumper ([ $m ]));
return 1 if grep ($self->is_subclass ($_, $r), @{$m->[ROLES]});
}
sub is_x_role {
my $self = shift;
my $m = shift;
my $r = shift or $log->logdie ("must specify role: ".Dumper ([ $m ]));
return 1 if grep ($_ eq $r, @{$m->[ROLES]});
}
=pod
=item B<get_roles>
I<@role_ids> = get_roles (I<$tm>, I<$assertion>, I<$player>)
This function returns a list of roles a particular player plays in a given assertion.
=cut
sub get_roles {
my $self = shift;
my $a = shift;
my $p = shift; # the player
my ($ps, $rs) = ($a->[PLAYERS], $a->[ROLES]);
my @rs;
for (my $i = 0; $i < @$ps; $i++) {
next unless $ps->[$i] eq $p;
push @rs, $rs->[$i];
}
return @rs;
}
=pod
=item B<get_role_s>
I<@role_ids> = @{ get_role_s (I<$tm>, I<$assertion>) }
This function extracts a reference to the list of role identifiers.
=cut
sub get_role_s {
my $self = shift;
my $a = shift;
return $a->[ROLES];
}
=pod
=back
=head2 Auxiliary Functions
=over
=item B<absolutize>
I<$assertion> = absolutize (I<$tm>, I<$assertion>)
This method takes one assertion and makes sure that all identifiers in it (for the type, the scope
and all the role and players) are made absolute for the context map. It returns this very assertion.
It will not touch canonicalized assertions.
=cut
sub absolutize {
my $self = shift;
my $a = shift;
return $a if $a->[CANON]; # skip it if we are already canonicalized
#warn "in abosl ".Dumper $a;
$a->[TYPE] = tids ($self, $a->[TYPE]) if $a->[TYPE];
$a->[SCOPE] = tids ($self, $a->[SCOPE]) if $a->[SCOPE];
map { $_ = tids ($self, $_) } @{$a->[ROLES]} if $a->[ROLES]; # things which are references, we will keep
map { $_ = ref ($_) ? $_ : tids ($self, $_) } @{$a->[PLAYERS]} if $a->[PLAYERS]; # the others are treated as ids (could be literal references!)
#warn "after abosl ".Dumper $a;
return $a;
}
=pod
=item B<canonicalize>
I<$assertion> = canonicalize (I<$tm>, I<$assertion>)
This method takes an assertion and reorders the roles (together with their respective players) in a
consistent way. It also makes sure that the KIND is defined (defaults to C<ASSOC>), that the type is
defined (defaults to C<THING>) and that all references are made absolute LIDs. Finally, the field
C<CANON> is set to 1 to indicate that the assertion is canonicalized.
The function will not do anything if the assertion is already canonicalized. The component C<CANON>
is set to C<1> if the assertion has been canonicalized.
Conveniently, the function returns the same assertion, albeit a maybe modified one.
TODO: remove map parameter, it is no longer necessary
=cut
sub canonicalize {
my $self = shift;
my $s = shift;
#warn "in canon ".Dumper $s;
#warn "using LIDs ".Dumper $LIDs;
return $s if $s->[CANON]; # skip it if we are already canonicalized
# reorder role/players canonically
my $rs = $s->[ROLES];
my $ps = $s->[PLAYERS];
my @reorder = (0..$#$ps); # create 0, 1, 2, ..., how many roles
#warn @reorder;
# sort according to roles (alphanum) and at ties according to players on position $a, $b
@reorder = sort { $rs->[$a] cmp $rs->[$b] || $ps->[$a] cmp $ps->[$b] } @reorder;
#warn @reorder;
$s->[ROLES] = [ map { $rs->[$_] } @reorder ];
$s->[PLAYERS] = [ map { $ps->[$_] } @reorder ];
# we are done (almost)
$s->[CANON] = 1;
#warn "in canon return ".Dumper $s;
return $s;
}
# =pod
# =item B<mklabel>
# I<$hash> = mklabel (I<$assertion>);
# For internal optimization all characteristics have an additional HASH component which can be used to
# maintain indices. This function takes a assertion and computes an MD5 hash and sets the C<HASH>
# component if that is not yet defined.
# Such a hash only makes sense if the assertion is canonicalized, otherwise an exception is raised.
# Example:
# my $a = Assertion->new (lid => 'urn:x-rho:important');
# print "this uniquely (well) identifies the assertion ". mklabel ($a);
# =cut
sub mklabel {
my $a = shift;
$log->logdie ("refuse to hash non canonicalized assertion") unless $a->[CANON];
use Digest::MD5 qw(md5_hex);
return md5_hex ($a->[SCOPE], $a->[TYPE], @{$a->[ROLES]}, map { ref ($_) ? join ("", @$_) : $_ } @{$a->[PLAYERS]}); # recompute the hash if necessary
# ^^^^^^^^^^^^^^ # this is a literal value
# ^^ # this is for a normal identifier
}
=pod
=back
=head1 TAXONOMICS AND SUBSUMPTION
The following methods provide useful basic, ontological functionality around transitive subclassing
between classes and instance/type relationships.
B<NOTE>: Everything is a subclass of C<thing> (changed in v1.35).
B<NOTE>: Everything is an instance of C<thing>.
B<NOTE>: See L<TM::PSI> for predefined things.
=head2 Boolean Methods
=over
=item B<is_subclass>
I<$bool> = I<$tm>->is_subclass (I<$superclass_id>, I<$subclass_id>)
This function returns C<1> if the first parameter is a (transitive) superclass of the second,
i.e. there is an assertion of type I<is-subclass-of> in the context map. It also returns C<1> if the
superclass is a $TM::PSI::THING or if subclass and superclass are the same (reflexive).
=cut
sub is_subclass {
my $self = shift;
my $class = shift;
my $super = shift;
return 1 if $class eq $super; # we always assume that A subclasses A
my ($ISA, $US, $THING, $SUBCLASSES, $SUBCLASS, $SUPERCLASS, $INSTANCE, $CLASS) =
('isa', 'us', 'thing', 'is-subclass-of', 'subclass', 'superclass', 'instance', 'class');
#warn "is_subclass?: class $class super $super , thing $THING, $SUBCLASSES, $SUPERCLASS";
return 1 if $super eq $THING; # everything subclasses thing
# but not if the class is one of the predefined things, yes, there is a method to this madness
return 0 if $class eq $ISA;
return 0 if $class eq $US;
return 0 if $class eq $THING; # thing would only subclass itself and that is covered above
return 0 if $class eq $SUBCLASSES;
return 0 if $class eq $SUBCLASS;
return 0 if $class eq $SUPERCLASS;
return 0 if $class eq $INSTANCE;
return 0 if $class eq $CLASS;
# # see whether there is an assertion that we have a direct subclasses relationship between the two
# This would be an optimization, but this does not go through match
# return 1 if $self->is_asserted (Assertion->new (scope => $US, # TODO OPTIMIZE
# type => $SUBCLASSES,
# roles => [ $SUBCLASS, $SUPERCLASS ],
# players => [ $class, $super ])
# );
# if we still do not have a decision, we will check all super types of $class and see (recursively) whether we can establish is-subclass-of
return 1 if grep ($self->is_subclass ($_, $super), # check all of the intermediate type whether there is a transitive relation
map { $self->get_x_players ($_, $SUPERCLASS) } # find the superclass player there => intermediate type
grep(defined $_,$self->match_forall (type => $SUBCLASSES,
subclass => $class))
);
return 0; # ok, we give up now
}
=pod
=item B<is_a>
I<$bool> = I<$tm>->is_a (I<$something_lid>, I<$class_lid>)
This method returns C<1> if the thing referenced by the first parameter is an instance of the class
referenced by the second. The method honors transitive subclassing.
=cut
sub is_a {
my $self = shift;
my $thingie = shift;
my $type = shift; # ok, what class are looking at?
my ($ISA, $CLASS, $THING) = ('isa', 'class', 'thing');
#warn "isa thingie $thingie class $type";
return 1 if $type eq $THING and # is the class == 'thing' and
$self->{mid2iid}->{$thingie}; # and does the thingie exist?
my ($m) = $self->retrieve ($thingie);
return 1 if $m and # is it an assertion ? and...
$self->is_subclass ($m->[TYPE], $type); # is the assertion type a subclass?
return 1 if grep ($self->is_subclass ($_, $type), # check all of the intermediate type whether there is a transitive relation
map { $self->get_players ($_, $CLASS) } # find the class player there => intermediate type
$self->match_forall (type => $ISA, instance => $thingie)
);
return 0;
}
=pod
=back
=head2 List Methods
=over
=item B<subclasses>, B<subclassesT>
I<@lids> = I<$tm>->subclasses (I<$lid>, ...)
I<@lids> = I<$tm>->subclassesT (I<$lid>, ...)
C<subclasses> returns all B<direct> subclasses of the toplet identified by C<$lid>. If the toplet does
not exist, the list will be empty. C<subclassesT> is a variant which honors the transitive
subclassing (so if A is a subclass of B and B is a subclass of C, then A is also a subclass of C).
Duplicates are suppressed.
=cut
sub subclasses {
my $self = shift;
my ($SUBCLASSES) = ('is-subclass-of');
my @sc = map { $_->[PLAYERS]->[0] }
map { $self->match_forall (type => $SUBCLASSES, superclass => $_) }
@_;
my %dup;
return map { $dup{$_}++ ? () : $_ } @sc;
}
sub subclassesT {
my $self = shift;
my @sc = map { $self->subclasses ($_) } @_;
push @sc, @_, map { $self->subclassesT ($_) } @sc; # laziness equals recursion
my %dup;
return map { $dup{$_}++ ? () : $_ } @sc;
}
=pod
=item B<superclasses>, B<superclassesT>
I<@lids> = I<$tm>->superclasses (I<$lid>, ...)
I<@lids> = I<$tm>->superclassesT (I<$lid>, ...)
The method C<superclasses> returns all direct superclasses of the toplet identified by C<$lid>. If
the toplet does not exist, the list will be empty. C<superclassesT> is a variant which honors
transitive subclassing.
Duplicates are suppressed.
=cut
sub superclasses {
my $self = shift;
my ($SUBCLASSES) = ('is-subclass-of');
my @sc = map { $_->[PLAYERS]->[1] }
map { $self->match_forall (type => $SUBCLASSES, subclass => $_) }
@_;
my %dup;
return map { $dup{$_}++ ? () : $_ } @sc;
}
sub superclassesT {
my $self = shift;
my @sc = map { $self->superclasses ($_) } @_;
push @sc, @_, map { $self->superclassesT ($_) } @sc; # laziness equals recursion
my %dup;
return map { $dup{$_}++ ? () : $_ } @sc;
}
=pod
=item B<types>, B<typesT>
I<@lids> = I<$tm>->types (I<$lid>, ...)
I<@lids> = I<$tm>->typesT (I<$lid>, ...)
The method C<types> returns all direct classes of the toplet identified by C<$lid>. If the toplet does
not exist, the list will be empty. C<typesT> is a variant which honors transitive subclassing (so if
I<a> is an instance of type I<A> and I<A> is a subclass of I<B>, then I<a> is also an instance of
I<B>).
Duplicates will be suppressed.
=cut
sub types {
my $self = shift;
my $ISA = ('isa');
my $a;
my @types = map { ($a = $self->retrieve ($_))
? $a->[TYPE]
: ( map { $_->[PLAYERS]->[0] } $self->match_forall (type => $ISA, instance => $_) )
}
@_;
my %dup;
return map { $dup{$_}++ ? () : $_ } @types;
}
sub typesT {
my $self = shift;
my @types = map { $self->types ($_) } @_;
push @types, map { $self->superclassesT ($_) } @types;
my %dup;
return map { $dup{$_}++ ? () : $_ } @types;
}
=pod
=item B<instances>, B<instancesT>
I<@lids> = I<$tm>->instances (I<$lid>, ...)
I<@lids> = I<$tm>->instancesT (I<$lid>, ...)
These methods return the direct (C<instances>) and also indirect (C<instancesT>) instances of the
toplet identified by C<$lid>.
Duplicates are suppressed.
=cut
sub instances {
my $self = shift;
# warn Dumper [ caller ] unless @_;
my ($ISA, $THING) = ('isa', 'thing');
my @instances = map {
$_ eq $THING
? map { $_->[TM->LID] } $self->toplets
:
(map { $_->[LID ] } $self->match_forall (type => $_)), # all assocs of this type
(map { $_->[PLAYERS]->[1] } $self->match_forall (type => $ISA, class => $_)) # all direct instances
} @_;
}
sub instancesT {
my $self = shift;
my @instances = map { $self->instances ($_) }
map { $self->subclassesT ($_) }
@_;
my %dup;
return map { $dup{$_}++ ? () : $_ } @instances;
}
=pod
=back
=head2 Filters
Quite often one needs to walk through a list of things to determine whether they are instances (or
types, subtypes or supertypes) of some concept. This list of functions lets you do that: you pass in
a list (reference) and the function behaves as filter, returning a list reference.
=over
=item B<are_instances>
I<@id> = I<$tm>->are_instances (I<$class_id>, I<@list_of_ids>)
Returns all those ids where the topic is an instance of the class provided.
=cut
sub are_instances {
my $self = shift;
my $class = shift; # ok, what class are we looking at?
my ($THING, $ISA, $CLASS) = ('thing', 'isa', 'class');
my @rs;
foreach my $thing (@_) { # we work through all the things we got
#warn "checking $thing";
push @rs, $thing and next # we happily take one if
if $class eq $THING and # is the class = 'thing' ? and
$self->midlet ($thing); # then does the thing exist in the map ?
my $m = $self->retrieve ($thing);
push @rs, $thing and next # we happily take one if
if $m and # it is an assertion ? and...
($class eq $THING # either it is the class a THING (we did not explicitly store _that_)
or
$self->is_subclass ($m->[TYPE], $class) # or is the assertion type a subclass?
);
push @rs, $thing and next # we happily take one if
if grep ($self->is_subclass ($_, $class), # finall we check all of the intermediate type whether there is a transitive relation
map { $self->get_players ($_, $CLASS) } # then we find the 'class' value
$self->match_forall (type => $ISA, instance => $thing));
# nothing # otherwise we do not push
}
return @rs;
}
=pod
=item B<are_types> (Warning: placeholder only)
I<@ids> = I<$tm>->are_types (I<$instance_id>, I<@list_of_ids>)
Returns all those ids where the topic is a type of the instance provided.
=cut
sub are_types {
$log->logwarn ("# not implemented function");
return 0;
}
=pod
=item B<are_supertypes> (Warning: placeholder only)
I<@ids> = I<$tm>->are_supertypes (I<$class_id>, I<@list_of_ids>)
Returns all those ids where the topic is a supertype of the class provided.
=cut
sub are_supertypes {
$log->logwarn ("# not implemented function");
return 0;
}
=pod
=item B<are_subtypes> (Warning: placeholder only)
I<@ids> = I<$tm>->are_subtypes (I<$class_id>, I<@list_of_ids>)
Returns all those ids where the topic is a subtype of the class provided.
=cut
sub are_subtypes {
$log->logwarn ("# not implemented function");
return 0;
}
=pod
=back
=head1 REIFICATION
=over
=item B<is_reified>
(I<$tid>) = I<$tm>->is_reified (I<$assertion>)
(I<$tid>) = I<$tm>->is_reified (I<$url>)
In the case that the handed-in assertion is internally reified in the map, this method will return
the internal identifier of the reifying toplet. Or C<undef> if there is none.
In the case that the handed-in URL is used as subject address of a toplet, this method will return
the internal identifier of the reifying toplet. Or C<undef> if there is none.
=cut
sub _is_reified {
my $self = shift;
my $a = shift;
my $mid2iid = $self->{mid2iid}; # shortcut
$a = $a->[TM->LID] if ref ($a) eq 'Assertion'; # for assertions we take the LID
return grep { $mid2iid->{$_}->[TM->ADDRESS] eq $a } # brute force
grep { $mid2iid->{$_}->[TM->ADDRESS] }
keys %{$mid2iid};
}
sub is_reified {
return _is_reified (@_);
}
=pod
=item B<reifies>
I<$url> = I<$tm>->reifies (I<$tid>)
I<$assertion> = I<$tm>->reifies (I<$tid>)
Given a toplet identifier, this method returns either the internally reified assertion, an
externally reified object via its URL, or C<undef> if that toplet does not reify at all.
=cut
sub reifies {
my $self = shift;
my $tid = shift;
my $add = $self->{mid2iid}->{$tid}->[TM->ADDRESS] if $self->{mid2iid}->{$tid};
return undef unless $add;
return $add =~ /^[A-F0-9]{32}$/i ? $self->{assertions}->{$add} : $add;
}
=pod
=back
=head1 VARIANTS (aka "The Warts")
No comment.
=over
=item B<variants>
I<$tm>->variants (I<$id>, I<$variant>)
I<$tm>->variants (I<$id>)
With this method you can get/set a variant tree for B<any> topic. According to the standard only
basenames (aka topic names) can have variants, but, hey, this is such an ugly beast (I am
digressing). According to this data model you can have variants for B<all> toplets/maplets. You only
need their id.
The structure is like this:
$VAR1 = {
'tm:param1' => {
'variants' => {
'tm:param3' => {
'variants' => undef,
'value' => 'name for param3'
}
},
'value' => 'name for param1'
},
'tm:param2' => {
'variants' => undef,
'value' => 'name for param2'
}
};
The parameters are the keys (there can only be one, which is a useful, cough, restriction of the
standard) and the data is the value. Obviously, one key value (i.e. parameter) can only exists once.
Caveat: This is not very well tested (read: not tested at all).
=cut
sub variants {
my $self = shift;
my $id = shift;
my $var = shift;
$self->{last_mod} = Time::HiRes::time if $var;
return $var ? $self->{variants}->{$id} = $var : $self->{variants}->{$id};
}
=pod
=back
=head1 LOGGING
The L<TM> module hosts (since 1.29) the Log4Perl object C<$TM::log>. It is initialized with some
reasonable defaults, but an using application can access it, tweak it, or overwrite it completely.
=head1 SEE ALSO
L<TM::PSI>, L<Log::Log4perl>
=head1 COPYRIGHT AND LICENSE
Copyright 200[1-8] by Robert Barta, E<lt>drrho@cpan.orgE<gt>
This library is free software; you can redistribute it and/or modify it under the same terms as Perl
itself.
=cut
#-- this we do when all structures have been defined
_prime_infrastructure(); # initialize
# NOTE: BEGIN does not work, because we have to define all
sub _prime_infrastructure { # generate a fragmentary TM structure for the infrastructure
foreach my $h ($TM::PSI::core,
$TM::PSI::topicmaps_inc,
$TM::PSI::tmql_inc,
$TM::PSI::astma_inc) {
foreach my $k (keys %{ $h->{mid2iid} }) {
$infrastructure->{mid2iid}->{$k} = [ $k, undef, $h->{mid2iid}->{$k} ]; # and manifest them as toplets
}
map { $infrastructure->{assertions}->{ $_->[TM->LID] } = $_ } # manifest assertions
map { $_->[TM->LID] = mklabel ($_); # after computing the hash LID
$_ }
map { canonicalize ( undef, $_ ) } # after canonicalizing them
map { $_->[TM->KIND] = TM->ASSOC; # adding defaults
$_->[TM->SCOPE] = TM::PSI::US;
$_ }
map { Assertion->new (type => $_->[0], # which is built here
roles => $_->[1], # with the roles list
players => $_->[2])} # with the players list
@{ $h->{assertions} };
}
}
1;
__END__
if (! $mid2iid->{$k2}) { # we had no entry here => simply...
$mid2iid->{$k2} = $v; # ...add what the other has
} else { # same internal identifier? danger lurking...
#warn Dumper $v, $mid2iid->{$k};
if (!$v->[1]) { # new had undef there, leave what we have
} elsif (!$mid2iid->{$k2}->[1]) { # old had nothing, =>
$mid2iid->{$k2}->[1] = $v->[1]; # copy it
} elsif ($mid2iid->{$k}->[1] eq $v->[1]) { # old had something and new has something and they are the same
# leave it
} else { # not good, subject addresses differ
$log->logdie ("using the same internal identifier (including baseuri) '$k', but having different subject addresses (".$mid2iid->{$k}->[1].",".$v->[TM->ADDRESS].") is just weird");
}
push @{$mid2iid->{$k}->[TM->INDICATORS]},
@{$v->[TM->INDICATORS]}; # simply add all the subject indication stuff
}
# if (my $index = $self->{indices}->{match}) { # there exists a dedicated index
# my $key = "$skeys:" . join ('.', @svals);
# if (my $lids = $index->is_cached ($key)) { # if result was cached, lets take the list of lids
# return map { $self->{assertions}->{$_} } @$lids; # and return fully fledged
# } else { # not defined means not cache => recompute
# my @as = _dispatch_forall ($self, \%query, $skeys, @svals); # do it the hard way
# $index->do_cache ($key, [ map { $_->[LID] } @as ]); # save it for later
# return @as;
# }
# } else { # no cache, let's do the ochsentour
# return _dispatch_forall ($self, \%query, $skeys, @svals);
# }
|