This file is indexed.

/usr/include/viennacl/linalg/cg.hpp is in libviennacl-dev 1.5.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#ifndef VIENNACL_LINALG_CG_HPP_
#define VIENNACL_LINALG_CG_HPP_

/* =========================================================================
   Copyright (c) 2010-2014, Institute for Microelectronics,
                            Institute for Analysis and Scientific Computing,
                            TU Wien.
   Portions of this software are copyright by UChicago Argonne, LLC.

                            -----------------
                  ViennaCL - The Vienna Computing Library
                            -----------------

   Project Head:    Karl Rupp                   rupp@iue.tuwien.ac.at

   (A list of authors and contributors can be found in the PDF manual)

   License:         MIT (X11), see file LICENSE in the base directory
============================================================================= */

/** @file viennacl/linalg/cg.hpp
    @brief The conjugate gradient method is implemented here
*/

#include <vector>
#include <map>
#include <cmath>
#include "viennacl/forwards.h"
#include "viennacl/tools/tools.hpp"
#include "viennacl/linalg/ilu.hpp"
#include "viennacl/linalg/prod.hpp"
#include "viennacl/linalg/inner_prod.hpp"
#include "viennacl/linalg/norm_2.hpp"
#include "viennacl/traits/clear.hpp"
#include "viennacl/traits/size.hpp"
#include "viennacl/meta/result_of.hpp"

namespace viennacl
{
  namespace linalg
  {

    /** @brief A tag for the conjugate gradient Used for supplying solver parameters and for dispatching the solve() function
    */
    class cg_tag
    {
      public:
        /** @brief The constructor
        *
        * @param tol              Relative tolerance for the residual (solver quits if ||r|| < tol * ||r_initial||)
        * @param max_iterations   The maximum number of iterations
        */
        cg_tag(double tol = 1e-8, unsigned int max_iterations = 300) : tol_(tol), iterations_(max_iterations) {}

        /** @brief Returns the relative tolerance */
        double tolerance() const { return tol_; }
        /** @brief Returns the maximum number of iterations */
        unsigned int max_iterations() const { return iterations_; }

        /** @brief Return the number of solver iterations: */
        unsigned int iters() const { return iters_taken_; }
        void iters(unsigned int i) const { iters_taken_ = i; }

        /** @brief Returns the estimated relative error at the end of the solver run */
        double error() const { return last_error_; }
        /** @brief Sets the estimated relative error at the end of the solver run */
        void error(double e) const { last_error_ = e; }


      private:
        double tol_;
        unsigned int iterations_;

        //return values from solver
        mutable unsigned int iters_taken_;
        mutable double last_error_;
    };


    /** @brief Implementation of the conjugate gradient solver without preconditioner
    *
    * Following the algorithm in the book by Y. Saad "Iterative Methods for sparse linear systems"
    *
    * @param matrix     The system matrix
    * @param rhs        The load vector
    * @param tag        Solver configuration tag
    * @return The result vector
    */
    template <typename MatrixType, typename VectorType>
    VectorType solve(const MatrixType & matrix, VectorType const & rhs, cg_tag const & tag)
    {
      //typedef typename VectorType::value_type      ScalarType;
      typedef typename viennacl::result_of::value_type<VectorType>::type        ScalarType;
      typedef typename viennacl::result_of::cpu_value_type<ScalarType>::type    CPU_ScalarType;
      //std::cout << "Starting CG" << std::endl;
      VectorType result = rhs;
      viennacl::traits::clear(result);

      VectorType residual = rhs;
      VectorType p = rhs;
      VectorType tmp = rhs;

      CPU_ScalarType ip_rr = viennacl::linalg::inner_prod(rhs,rhs);
      CPU_ScalarType alpha;
      CPU_ScalarType new_ip_rr = 0;
      CPU_ScalarType beta;
      CPU_ScalarType norm_rhs = std::sqrt(ip_rr);

      //std::cout << "Starting CG solver iterations... " << std::endl;
      if (norm_rhs == 0) //solution is zero if RHS norm is zero
        return result;

      for (unsigned int i = 0; i < tag.max_iterations(); ++i)
      {
        tag.iters(i+1);
        tmp = viennacl::linalg::prod(matrix, p);

        alpha = ip_rr / viennacl::linalg::inner_prod(tmp, p);
        result += alpha * p;
        residual -= alpha * tmp;

        new_ip_rr = viennacl::linalg::norm_2(residual);
        if (new_ip_rr / norm_rhs < tag.tolerance())
          break;
        new_ip_rr *= new_ip_rr;

        beta = new_ip_rr / ip_rr;
        ip_rr = new_ip_rr;

        p = residual + beta * p;
      }

      //store last error estimate:
      tag.error(std::sqrt(new_ip_rr) / norm_rhs);

      return result;
    }

    template <typename MatrixType, typename VectorType>
    VectorType solve(const MatrixType & matrix, VectorType const & rhs, cg_tag const & tag, viennacl::linalg::no_precond)
    {
      return solve(matrix, rhs, tag);
    }

    /** @brief Implementation of the preconditioned conjugate gradient solver
    *
    * Following Algorithm 9.1 in "Iterative Methods for Sparse Linear Systems" by Y. Saad
    *
    * @param matrix     The system matrix
    * @param rhs        The load vector
    * @param tag        Solver configuration tag
    * @param precond    A preconditioner. Precondition operation is done via member function apply()
    * @return The result vector
    */
    template <typename MatrixType, typename VectorType, typename PreconditionerType>
    VectorType solve(const MatrixType & matrix, VectorType const & rhs, cg_tag const & tag, PreconditionerType const & precond)
    {
      typedef typename viennacl::result_of::value_type<VectorType>::type        ScalarType;
      typedef typename viennacl::result_of::cpu_value_type<ScalarType>::type    CPU_ScalarType;

      VectorType result = rhs;
      viennacl::traits::clear(result);

      VectorType residual = rhs;
      VectorType tmp = rhs;
      VectorType z = rhs;

      precond.apply(z);
      VectorType p = z;

      CPU_ScalarType ip_rr = viennacl::linalg::inner_prod(residual, z);
      CPU_ScalarType alpha;
      CPU_ScalarType new_ip_rr = 0;
      CPU_ScalarType beta;
      CPU_ScalarType norm_rhs_squared = ip_rr;
      CPU_ScalarType new_ipp_rr_over_norm_rhs;

      if (norm_rhs_squared == 0) //solution is zero if RHS norm is zero
        return result;

      for (unsigned int i = 0; i < tag.max_iterations(); ++i)
      {
        tag.iters(i+1);
        tmp = viennacl::linalg::prod(matrix, p);

        alpha = ip_rr / viennacl::linalg::inner_prod(tmp, p);

        result += alpha * p;
        residual -= alpha * tmp;
        z = residual;
        precond.apply(z);

        new_ip_rr = viennacl::linalg::inner_prod(residual, z);
        new_ipp_rr_over_norm_rhs = new_ip_rr / norm_rhs_squared;
        if (std::fabs(new_ipp_rr_over_norm_rhs) < tag.tolerance() *  tag.tolerance())    //squared norms involved here
          break;

        beta = new_ip_rr / ip_rr;
        ip_rr = new_ip_rr;

        p = z + beta*p;
      }

      //store last error estimate:
      tag.error(std::sqrt(std::fabs(new_ip_rr / norm_rhs_squared)));

      return result;
    }

  }
}

#endif