/usr/include/vmmlib/t3_hooi.hpp is in libvmmlib-dev 1.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 | /*
* VMMLib - Tensor Classes
*
* @author Susanne Suter
*
* The higher-order orthogonal iteration (HOOI) is also known as Tucker-ALS (Tuck-ALS)
* The t3_hooi implements a HOOI for a third-order tensor
* references:
* - Tucker, 1966: Some mathematical notes on three-mode factor analysis, Psychometrika.
* - De Lathauwer, De Moor, Vandewalle, 2000a: A multilinear singular value decomposition, SIAM J. Matrix Anal. Appl.
* - De Lathauwer, De Moor, Vandewalle, 2000b: On the Best rank-1 and Rank-(R_1, R_2, ..., R_N) Approximation and Applications of Higher-Order Tensors, SIAM J. Matrix Anal. Appl.
* - Kolda & Bader, 2009: Tensor Decompositions and Applications, SIAM Review.
* - Bader & Kolda, 2006: Algorithm 862: Matlab tensor classes for fast algorithm prototyping. ACM Transactions on Mathematical Software.
*
*/
#ifndef __VMML__T3_HOOI__HPP__
#define __VMML__T3_HOOI__HPP__
#include <vmmlib/t3_hosvd.hpp>
namespace vmml
{
template< size_t R1, size_t R2, size_t R3, size_t I1, size_t I2, size_t I3, typename T = float >
class t3_hooi
{
public:
typedef tensor3< I1, I2, I3, T > t3_type;
typedef tensor3< R1, R2, R3, T > t3_core_type;
typedef matrix< I1, R1, T > u1_type;
typedef matrix< I2, R2, T > u2_type;
typedef matrix< I3, R3, T > u3_type;
typedef matrix< R1, I1, T > u1_inv_type;
typedef matrix< R2, I2, T > u2_inv_type;
typedef matrix< R3, I3, T > u3_inv_type;
/* higher-order orthogonal iteration (HOOI) is a truncated HOSVD decompositions, i.e., the HOSVD components are of lower-ranks. An optimal rank-reduction is
performed with an alternating least-squares (ALS) algorithm, which minimizes the error between the approximated and orignal tensor based on the Frobenius norm
see: De Lathauwer et al, 2000b; On the best rank-1 and rank-(RRR) approximation of higher-order tensors.
the HOOI can be computed based on (a) n-mode PCA, i.e., an eigenvalue decomposition on the covariance matrix of every mode's matriciziation, and
(b) by performing a 2D SVD on the matricization of every mode. Matrix matricization means that a tensor I1xI2xI3 is unfolded/sliced into one matrix
with the dimensions I1xI2I3, which corresponds to a matrizitation alonge mode I1.
*/
template< typename T_init>
static void als( const t3_type& data_, u1_type& u1_, u2_type& u2_, u3_type& u3_, t3_core_type& core_, T_init init );
/* derive core
implemented accodring to core = data x_1 U1_pinv x_2 U2_pinv x_3 U3_pinv,
where x_1 ... x_3 are n-mode products and U1_pinv ... U3_pinv are inverted basis matrices
the inversion is done with a matrix pseudoinverse computation
*/
static void derive_core( const t3_type& data_, const u1_type& u1_, const u2_type& u2_, const u3_type& u3_, t3_core_type& core_ );
//faster: but only if basis matrices are orthogonal
static void derive_core_orthogonal_bases( const t3_type& data_, const u1_type& u1_, const u2_type& u2_, const u3_type& u3_, t3_core_type& core_ );
// init functors
struct init_hosvd
{
inline void operator()( const t3_type& data_, u1_type& u1_, u2_type& u2_, u3_type& u3_ )
{
t3_hosvd< R1, R2, R3, I1, I2, I3, T >::apply_mode1( data_, u1_ );
t3_hosvd< R1, R2, R3, I1, I2, I3, T >::apply_mode2( data_, u2_ );
t3_hosvd< R1, R2, R3, I1, I2, I3, T >::apply_mode3( data_, u3_ );
}
};
struct init_random
{
inline void operator()( const t3_type& data_, u1_type& u1_, u2_type& u2_, u3_type& u3_ )
{
srand( time(NULL) );
u1_.set_random();
u2_.set_random();
u3_.set_random();
u1_ /= u1_.frobenius_norm();
u2_ /= u2_.frobenius_norm();
u3_ /= u3_.frobenius_norm();
}
};
protected:
static void optimize_mode1( const t3_type& data_, const u2_type& u2_, const u3_type& u3_, tensor3< I1, R2, R3, T >& projection_ );
static void optimize_mode2( const t3_type& data_, const u1_type& u1_, const u3_type& u3_, tensor3< R1, I2, R3, T >& projection_ );
static void optimize_mode3( const t3_type& data_, const u1_type& u1_, const u2_type& u2_, tensor3< R1, R2, I3, T >& projection_ );
};//end class t3_hooi
#define VMML_TEMPLATE_STRING template< size_t R1, size_t R2, size_t R3, size_t I1, size_t I2, size_t I3, typename T >
#define VMML_TEMPLATE_CLASSNAME t3_hooi< R1, R2, R3, I1, I2, I3, T >
VMML_TEMPLATE_STRING
template< typename T_init>
void
VMML_TEMPLATE_CLASSNAME::als( const t3_type& data_,
u1_type& u1_, u2_type& u2_, u3_type& u3_,
t3_core_type& core_,
T_init init )
{
//intialize basis matrices
init( data_, u1_, u2_, u3_ );
//derve core from initialized matrices
derive_core_orthogonal_bases( data_, u1_, u2_, u3_, core_ );
//compute best rank-(R1, R2, R3) approximation (Lathauwer et al., 2000b)
t3_type approximated_data;
approximated_data.full_tensor3_matrix_multiplication( core_, u1_, u2_, u3_);
double f_norm = approximated_data.frobenius_norm();
double max_f_norm = data_.frobenius_norm();
double normresidual = sqrt( (max_f_norm * max_f_norm) - (f_norm * f_norm));
double fit = 0;
if ( (max_f_norm != 0) && (max_f_norm > f_norm) )
{
fit = 1 - (normresidual / max_f_norm);
} else {
fit = 1;
}
double fitchange = 1;
double fitold = fit;
double fitchange_tolerance = 1.0e-4;
tensor3< I1, R2, R3, T > projection1;
tensor3< R1, I2, R3, T > projection2;
tensor3< R1, R2, I3, T > projection3;
#if TUCKER_LOG
std::cout << "HOOI ALS (for tensor3) " << std::endl
<< "initial fit: " << fit << ", "
<< "frobenius norm original: " << max_f_norm << std::endl;
#endif
size_t i = 0;
size_t max_iterations = 10;
while( (fitchange >= fitchange_tolerance) && (i < max_iterations) )
{
fitold = fit;
//optimize modes
optimize_mode1( data_, u2_, u3_, projection1 );
t3_hosvd< R1, R2, R3, I1, R2, R3, T >::apply_mode1( projection1, u1_ );
optimize_mode2( data_, u1_, u3_, projection2 );
t3_hosvd< R1, R2, R3, R1, I2, R3, T >::apply_mode2( projection2, u2_ );
optimize_mode3( data_, u1_, u2_, projection3 );
t3_hosvd< R1, R2, R3, R1, R2, I3, T >::apply_mode3( projection3, u3_ );
core_.multiply_horizontal_bwd( projection3, transpose( u3_ ) );
f_norm = core_.frobenius_norm();
normresidual = sqrt( max_f_norm * max_f_norm - f_norm * f_norm);
fit = 1 - (normresidual / max_f_norm);
fitchange = fabs(fitold - fit);
#if TUCKER_LOG
std::cout << "iteration '" << i << "', fit: " << fit
<< ", fitdelta: " << fitchange
<< ", frobenius norm: " << f_norm << std::endl;
#endif
++i;
}
}
VMML_TEMPLATE_STRING
void
VMML_TEMPLATE_CLASSNAME::optimize_mode1( const t3_type& data_, const u2_type& u2_, const u3_type& u3_, tensor3< I1, R2, R3, T >& projection_ )
{
u2_inv_type* u2_inv = new u2_inv_type();
*u2_inv = transpose( u2_ );
u3_inv_type* u3_inv = new u3_inv_type();
*u3_inv = transpose( u3_ );
//backward cyclic matricization/unfolding (after Lathauwer et al., 2000a)
tensor3< I1, R2, I3, T >* tmp = new tensor3< I1, R2, I3, T >();
tmp->multiply_frontal_bwd( data_, *u2_inv );
projection_.multiply_horizontal_bwd( *tmp, *u3_inv );
delete u2_inv;
delete u3_inv;
delete tmp;
}
VMML_TEMPLATE_STRING
void
VMML_TEMPLATE_CLASSNAME::optimize_mode2( const t3_type& data_, const u1_type& u1_, const u3_type& u3_, tensor3< R1, I2, R3, T >& projection_ )
{
u1_inv_type* u1_inv = new u1_inv_type();
*u1_inv = transpose( u1_ );
u3_inv_type* u3_inv = new u3_inv_type();
*u3_inv = transpose( u3_ );
//backward cyclic matricization (after Lathauwer et al., 2000a)
tensor3< R1, I2, I3, T >* tmp = new tensor3< R1, I2, I3, T >();
tmp->multiply_lateral_bwd( data_, *u1_inv );
projection_.multiply_horizontal_bwd( *tmp, *u3_inv );
delete u1_inv;
delete u3_inv;
delete tmp;
}
VMML_TEMPLATE_STRING
void
VMML_TEMPLATE_CLASSNAME::optimize_mode3( const t3_type& data_, const u1_type& u1_, const u2_type& u2_, tensor3< R1, R2, I3, T >& projection_ )
{
u1_inv_type* u1_inv = new u1_inv_type();
*u1_inv = transpose( u1_ );
u2_inv_type* u2_inv = new u2_inv_type();
*u2_inv = transpose( u2_ );
//backward cyclic matricization (after Lathauwer et al., 2000a)
tensor3< R1, I2, I3, T >* tmp = new tensor3< R1, I2, I3, T >();
tmp->multiply_lateral_bwd( data_, *u1_inv );
projection_.multiply_frontal_bwd( *tmp, *u2_inv );
delete u1_inv;
delete u2_inv;
delete tmp;
}
VMML_TEMPLATE_STRING
void
VMML_TEMPLATE_CLASSNAME::derive_core_orthogonal_bases( const t3_type& data_, const u1_type& u1_, const u2_type& u2_, const u3_type& u3_, t3_core_type& core_ )
{
u1_inv_type* u1_inv = new u1_inv_type();
u2_inv_type* u2_inv = new u2_inv_type();
u3_inv_type* u3_inv = new u3_inv_type();
u1_.transpose_to( *u1_inv );
u2_.transpose_to( *u2_inv );
u3_.transpose_to( *u3_inv );
core_.full_tensor3_matrix_multiplication( data_, *u1_inv, *u2_inv, *u3_inv );
delete u1_inv;
delete u2_inv;
delete u3_inv;
}
VMML_TEMPLATE_STRING
void
VMML_TEMPLATE_CLASSNAME::derive_core( const t3_type& data_, const u1_type& u1_, const u2_type& u2_, const u3_type& u3_, t3_core_type& core_ )
{
#if 0
//compute pseudo inverse for matrices u1-u3
u1_comp_type u1_pinv_t ;
u2_comp_type u2_pinv_t ;
u3_comp_type u3_pinv_t ;
compute_pseudoinverse< u1_type > compute_pinv_u1;
compute_pinv_u1( *_u1_comp, u1_pinv_t );
compute_pseudoinverse< u2_type > compute_pinv_u2;
compute_pinv_u2( *_u2_comp, u2_pinv_t );
compute_pseudoinverse< u3_type > compute_pinv_u3;
compute_pinv_u3( *_u3_comp, u3_pinv_t );
u1_inv_type* u1_pinv = new u1_inv_type();
*u1_pinv = transpose( u1_pinv_t );
u2_inv_type* u2_pinv = new u2_inv_type();
*u2_pinv = transpose( u2_pinv_t );
u3_inv_type* u3_pinv = new u3_inv_type();
*u3_pinv = transpose( u3_pinv_t );
t3_comp_type data;
datacast_from( data_ );
_core_comp.full_tensor3_matrix_multiplication( data, *u1_pinv, *u2_pinv, *u3_pinv );
delete u1_pinv;
delete u2_pinv;
delete u3_pinv;
#else
//previous version of compute core
for( size_t r3 = 0; r3 < R3; ++r3 )
{
for( size_t r1 = 0; r1 < R1; ++r1 )
{
for( size_t r2 = 0; r2 < R2; ++r2 )
{
float_t sum_i1_i2_i3 = 0.0;
for( size_t i3 = 0; i3 < I3; ++i3 )
{
for( size_t i1 = 0; i1 < I1; ++i1 )
{
for( size_t i2 = 0; i2 < I2; ++i2 )
{
sum_i1_i2_i3 += u1_.at( i1, r1 ) * u2_.at( i2, r2 ) * u3_.at( i3, r3 ) * T(data_.at( i1, i2, i3 ));
}
}
}
core_.at( r1, r2, r3 ) = sum_i1_i2_i3;
}
}
}
#endif
}
#undef VMML_TEMPLATE_STRING
#undef VMML_TEMPLATE_CLASSNAME
}//end vmml namespace
#endif
|