This file is indexed.

/usr/share/maxima/5.32.1/src/airy.lisp is in maxima-src 5.32.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
;;; Airy functions Ai(z) and Bi(z) - A&S 10.4
;;;
;;; airy_ai(z)   - Airy function Ai(z)
;;; airy_dai(z)  - Derivative of Airy function Ai(z)
;;; airy_bi(z)   - Airy function Bi(z)
;;; airy_dbi(z)  - Derivative of Airy function Bi(z)

;;;; Copyright (C) 2005 David Billinghurst

;;;; airy.lisp is free software; you can redistribute it
;;;; and/or modify it under the terms of the GNU General Public
;;;; License as published by the Free Software Foundation; either
;;;; version 2, or (at your option) any later version.

;;;; airy.lisp is distributed in the hope that it will be
;;;; useful, but WITHOUT ANY WARRANTY; without even the implied
;;;; warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
;;;; See the GNU General Public License for more details.

;;;; You should have received a copy of the GNU General Public License
;;;; along with command-line.lisp; see the file COPYING.  If not,
;;;; write to the Free Software Foundation, Inc., 59 Temple Place -
;;;; Suite 330, Boston, MA 02111-1307, USA.

(in-package :maxima)

(declaim (special *flonum-op*))

;; Airy Ai function 
(defmfun $airy_ai (z)
  "Airy function Ai(z)"
  (simplify (list '(%airy_ai) (resimplify z))))

(defprop $airy_ai %airy_ai alias)
(defprop $airy_ai %airy_ai verb)
(defprop %airy_ai $airy_ai reversealias)
(defprop %airy_ai $airy_ai noun)
(defprop %airy_ai simp-%airy_ai operators)
(defprop %airy_ai simplim%airy_ai simplim%function)
(defprop %airy_ai ((z) ((%airy_dai) z)) grad)

;; airy_ai distributes over lists, matrices, and equations
(defprop %airy_ai (mlist $matrix mequal) distribute_over)

;; airy_ai has mirror symmetry
(defprop %airy_ai t commutes-with-conjugate)

;; Integral of Ai(z)
;; http://functions.wolfram.com/03.05.21.0002.01
;; (z/(3^(2/3)*gamma(2/3)))*hypergeometric([1/3],[2/3,4/3],z^3/9)
;; - (3^(1/6)/(4*%pi))*z^2*gamma(2/3)*hypergeometric([2/3],[4/3,5/3],z^3/9);
(defprop %airy_ai
  ((z)
   ((mplus)
    ((mtimes) 
     ((mexpt) 3 ((rat) -2 3))
     ((mexpt) ((%gamma) ((rat) 2 3)) -1)
     (($hypergeometric) 
      ((mlist) ((rat) 1 3))
      ((mlist) ((rat) 2 3) ((rat) 4 3)) 
      ((mtimes) ((rat) 1 9) ((mexpt) z 3)))
     z)
   ((mtimes) 
    ((rat) -1 4) ((mexpt) 3 ((rat) 1 6)) ((mexpt) $%pi -1) ((%gamma) ((rat) 2 3))
    (($hypergeometric) 
     ((mlist) ((rat) 2 3)) 
     ((mlist) ((rat)  4 3) ((rat) 5 3))
     ((mtimes) ((rat) 1 9) ((mexpt) z 3)))
    ((mexpt) z 2))))
  integral)

(defun airy-ai (z)
  (cond ((floatp z) (airy-ai-real z))
	((complexp z) (airy-ai-complex z))))

(setf (gethash '%airy_ai *flonum-op*) #'airy-ai)

(defun simplim%airy_ai (expr var val)
  ; Look for the limit of the argument
  (let ((z (limit (cadr expr) var val 'think)))
    (cond ((or (eq z '$inf)   ; A&S 10.4.59
	       (eq z '$minf)) ; A&S 10.4.60
	   0)
	  (t
	   ; Handle other cases with the function simplifier
	   (simplify (list '(%airy_ai) z))))))

(defmfun simp-%airy_ai (form unused x)
  (declare (ignore unused))
  (oneargcheck form)
  (let ((z (simpcheck (cadr form) x)))
    (cond ((equal z 0) ; A&S 10.4.4: Ai(0) = 3^(-2/3)/gamma(2/3)
	    '((mtimes simp)
	      ((mexpt simp) 3 ((rat simp) -2 3))
	      ((mexpt simp) ((%gamma simp) ((rat simp) 2 3)) -1)))
	  ((flonum-eval (mop form) z))
	  (t (eqtest (list '(%airy_ai) z) form)))))


;; Derivative dAi/dz of Airy function Ai(z)
(defmfun $airy_dai (z)
  "Derivative dAi/dz of Airy function Ai(z)"
  (simplify (list '(%airy_dai) (resimplify z))))

(defprop $airy_dai %airy_dai alias)
(defprop $airy_dai %airy_dai verb)
(defprop %airy_dai $airy_dai reversealias)
(defprop %airy_dai $airy_dai noun)
(defprop %airy_dai simp-%airy_dai operators)
(defprop %airy_dai simplim%airy_dai simplim%function)
(defprop %airy_dai ((z) ((mtimes) z ((%airy_ai) z))) grad)
(defprop %airy_dai ((z) ((%airy_ai) z)) integral)

;; airy_dai distributes over lists, matrices, and equations
(defprop %airy_dai (mlist $matrix mequal) distribute_over)

;; airy_dai has mirror symmetry
(defprop %airy_dai t commutes-with-conjugate)

(defun airy-dai (z)
  (cond ((floatp z) (airy-dai-real z))
	((complexp z) (airy-dai-complex z))))

(setf (gethash '%airy_dai *flonum-op*) #'airy-dai)

(defun simplim%airy_dai (expr var val)
  ; Look for the limit of the argument
  (let ((z (limit (cadr expr) var val 'think)))
    (cond ((eq z '$inf) ; A&S 10.4.61
	   0)
	  ((eq z '$minf) ; A&S 10.4.62
	   '$und)
	  (t
	   ; Handle other cases with the function simplifier
	   (simplify (list '(%airy_dai) z))))))

(defmfun simp-%airy_dai (form unused x)
  (declare (ignore unused))
  (oneargcheck form)
  (let ((z (simpcheck (cadr form) x)))
    (cond ((equal z 0) ; A&S 10.4.5: Ai'(0) = -3^(-1/3)/gamma(1/3)
          '((mtimes simp) -1
	      ((mexpt simp) 3 ((rat simp) -1 3))
	      ((mexpt simp) ((%gamma simp) ((rat simp) 1 3)) -1)))
	  ((flonum-eval (mop form) z))
	  (t (eqtest (list '(%airy_dai) z) form)))))

;; Airy Bi function 
(defmfun $airy_bi (z)
  "Airy function Bi(z)"
  (simplify (list '(%airy_bi) (resimplify z))))

(defprop $airy_bi %airy_bi alias)
(defprop $airy_bi %airy_bi verb)
(defprop %airy_bi $airy_bi reversealias)
(defprop %airy_bi $airy_bi noun)
(defprop %airy_bi simp-%airy_bi operators)
(defprop %airy_bi simplim%airy_bi simplim%function)
(defprop %airy_bi ((z) ((%airy_dbi) z)) grad)

;; airy_bi distributes over lists, matrices, and equations
(defprop %airy_bi (mlist $matrix mequal) distribute_over)

;; airy_bi has mirror symmetry
(defprop %airy_bi t commutes-with-conjugate)

;; Integral of Bi(z)
;; http://functions.wolfram.com/03.06.21.0002.01
;; (z/(3^(1/6)*gamma(2/3)))*hypergeometric([1/3],[2/3,4/3],z^3/9)
;; + (3^(2/3)/(4*%pi))*z^2*gamma(2/3)*hypergeometric([2/3],[4/3,5/3],z^3/9);
(defprop %airy_bi
  ((z)
   ((mplus)
    ((mtimes) 
     ((mexpt) 3 ((rat) -1 6))
     ((mexpt) ((%gamma) ((rat) 2 3)) -1)
     (($hypergeometric) 
      ((mlist) ((rat) 1 3))
      ((mlist) ((rat) 2 3) ((rat) 4 3)) 
      ((mtimes) ((rat) 1 9) ((mexpt) z 3)))
     z)
   ((mtimes) 
    ((rat) 1 4) ((mexpt) 3 ((rat) 2 3)) ((mexpt) $%pi -1) ((%gamma) ((rat) 2 3))
    (($hypergeometric) 
     ((mlist) ((rat) 2 3)) 
     ((mlist) ((rat)  4 3) ((rat) 5 3))
     ((mtimes) ((rat) 1 9) ((mexpt) z 3)))
    ((mexpt) z 2))))
  integral)

(defun airy-bi (z)
  (cond ((floatp z) (airy-bi-real z))
	((complexp z) (airy-bi-complex z))))

(setf (gethash '%airy_bi *flonum-op*) #'airy-bi)

(defun simplim%airy_bi (expr var val)
  ; Look for the limit of the argument
  (let ((z (limit (cadr expr) var val 'think)))
    (cond ((eq z '$inf) ; A&S 10.4.63
	   '$inf)
	  ((eq z '$minf) ; A&S 10.4.64
	   0)
	  (t
	   ; Handle other cases with the function simplifier
	   (simplify (list '(%airy_bi) z))))))

(defmfun simp-%airy_bi (form unused x)
  (declare (ignore unused))
  (oneargcheck form)
  (let ((z (simpcheck (cadr form) x)))
    (cond ((equal z 0) ; A&S 10.4.4: Bi(0) = sqrt(3) 3^(-2/3)/gamma(2/3)
	    '((mtimes simp)
	      ((mexpt simp) 3 ((rat simp) -1 6))
	      ((mexpt simp) ((%gamma simp) ((rat simp) 2 3)) -1)))
	  ((flonum-eval (mop form) z))
	  (t (eqtest (list '(%airy_bi) z) form)))))

;; Derivative dBi/dz of Airy function Bi(z)
(defmfun $airy_dbi (z)
  "Derivative dBi/dz of Airy function Bi(z)"
  (simplify (list '(%airy_dbi) (resimplify z))))

(defprop $airy_dbi %airy_dbi alias)
(defprop $airy_dbi %airy_dbi verb)
(defprop %airy_dbi $airy_dbi reversealias)
(defprop %airy_dbi $airy_dbi noun)
(defprop %airy_dbi simp-%airy_dbi operators)
(defprop %airy_dbi simplim%airy_dbi simplim%function)
(defprop %airy_dbi ((z) ((mtimes) z ((%airy_bi) z))) grad)
(defprop %airy_dbi ((z) ((%airy_bi) z)) integral)

;; airy_dbi distributes over lists, matrices, and equations
(defprop %airy_dbi (mlist $matrix mequal) distribute_over)

;; airy_dbi has mirror symmetry
(defprop %airy_dbi t commutes-with-conjugate)

(defun airy-dbi (z)
  (cond ((floatp z) (airy-dbi-real z))
	((complexp z) (airy-dbi-complex z))))

(setf (gethash '%airy_dbi *flonum-op*) #'airy-dbi)

(defun simplim%airy_dbi (expr var val)
  ; Look for the limit of the argument
  (let ((z (limit (cadr expr) var val 'think)))
    (cond ((eq z '$inf) ; A&S 10.4.66
	   '$inf)
	  ((eq z '$minf) ; A&S 10.4.67
	   '$und)
	  (t
	   ; Handle other cases with the function simplifier
	   (simplify (list '(%airy_dbi) z))))))

(defmfun simp-%airy_dbi (form unused x)
  (declare (ignore unused))
  (oneargcheck form)
  (let ((z (simpcheck (cadr form) x)))
    (cond ((equal z 0) ; A&S 10.4.5: Bi'(0) = sqrt(3) 3^(-1/3)/gamma(1/3)
          '((mtimes simp) 
	    ((mexpt simp) 3 ((rat simp) 1 6))
	    ((mexpt simp) ((%gamma simp) ((rat simp) 1 3)) -1)))
	  ((flonum-eval (mop form) z))
	  (t (eqtest (list '(%airy_dbi) z) form)))))

;; Numerical routines using slatec functions

(defun airy-ai-real (z)
  " Airy function Ai(z) for real z"
  (declare (type flonum z))
  ;; slatec:dai issues underflow warning for z > zmax.  See dai.{f,lisp}
  ;; This value is correct for IEEE double precision
  (let ((zmax 92.5747007268))
    (declare (type flonum zmax))
    (if (< z zmax) (slatec:dai z) 0.0))) 

(defun airy-ai-complex (z)
  "Airy function Ai(z) for complex z"
  (declare (type (complex flonum) z))
  (multiple-value-bind (var-0 var-1 var-2 var-3 air aii nz ierr)
      (slatec:zairy (realpart z) (imagpart z) 0 1 0.0 0.0 0 0)
    (declare (type flonum air aii)
	     (type f2cl-lib:integer4 nz ierr)
	     (ignore var-0 var-1 var-2 var-3))
    ;; Check nz and ierr for errors
    (if (and (= nz 0) (= ierr 0)) (complex air aii) nil)))

(defun airy-dai-real (z)
  "Derivative dAi/dz of Airy function Ai(z) for real z"
  (declare (type flonum z))
  (let ((rz (sqrt (abs z)))
	(c (* 2/3 (expt (abs z) 3/2))))
    (declare (type flonum rz c))
    (multiple-value-bind (var-0 var-1 var-2 ai dai)
	(slatec:djairy z rz c 0.0 0.0)
      (declare (ignore var-0 var-1 var-2 ai))
      dai)))

(defun airy-dai-complex (z)
  "Derivative dAi/dz of Airy function Ai(z) for complex z"
  (declare (type (complex flonum) z))
  (multiple-value-bind (var-0 var-1 var-2 var-3 air aii nz ierr)
      (slatec:zairy (realpart z) (imagpart z) 1 1 0.0 0.0 0 0)
    (declare (type flonum air aii)
	     (type f2cl-lib:integer4 nz ierr)
	     (ignore var-0 var-1 var-2 var-3))
    ;; Check nz and ierr for errors
    (if (and (= nz 0) (= ierr 0)) (complex air aii) nil)))

(defun airy-bi-real (z)
  "Airy function Bi(z) for real z"
  (declare (type flonum z))
  ;; slatec:dbi issues overflows for z > zmax.  See dbi.{f,lisp}
  ;; This value is correct for IEEE double precision
  (let ((zmax 104.2179765192136))
    (declare (type flonum zmax))
    (if (< z zmax) (slatec:dbi z) nil)))

(defun airy-bi-complex (z)
  "Airy function Bi(z) for complex z"
  (declare (type (complex flonum) z))
  (multiple-value-bind (var-0 var-1 var-2 var-3 bir bii ierr)
      (slatec:zbiry (realpart z) (imagpart z) 0 1 0.0 0.0 0)
    (declare (type flonum bir bii)
	     (type f2cl-lib:integer4 ierr)
	     (ignore var-0 var-1 var-2 var-3))
    ;; Check ierr for errors
    (if (= ierr 0) (complex bir bii) nil)))

(defun airy-dbi-real (z)
  "Derivative dBi/dz of Airy function Bi(z) for real z"
  (declare (type flonum z))
  ;; Overflows for z > zmax.
  ;; This value is correct for IEEE double precision
  (let ((zmax 104.1525))
    (declare (type flonum zmax))
    (if (< z zmax)
	(let ((rz (sqrt (abs z)))
	      (c (* 2/3 (expt (abs z) 3/2))))
        (declare (type flonum rz c))
        (multiple-value-bind (var-0 var-1 var-2 bi dbi)
	    (slatec:dyairy z rz c 0.0 0.0)
	  (declare (type flonum bi dbi)
		   (ignore var-0 var-1 var-2 bi))
	  dbi))
      ;; Will overflow.  Return unevaluated.
      nil)))

(defun airy-dbi-complex (z)
  "Derivative dBi/dz of Airy function Bi(z) for complex z"
  (declare (type (complex flonum) z))
  (multiple-value-bind (var-0 var-1 var-2 var-3 bir bii ierr)
      (slatec:zbiry (realpart z) (imagpart z) 1 1 0.0 0.0 0)
    (declare (type flonum bir bii)
	     (type f2cl-lib:integer4 ierr)
	     (ignore var-0 var-1 var-2 var-3))
    ;; Check ierr for errors
    (if (= ierr 0) (complex bir bii) nil)))