/usr/share/maxima/5.32.1/src/comm.lisp is in maxima-src 5.32.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; The data in this file contains enhancments. ;;;;;
;;; ;;;;;
;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
;;; All rights reserved ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package :maxima)
;; ** (c) Copyright 1982 Massachusetts Institute of Technology **
(macsyma-module comm)
(declare-top (special $exptsubst $linechar $nolabels $inflag $piece $dispflag
$gradefs $props $dependencies derivflag derivlist
$linenum $partswitch *linelabel* nn* dn*
$powerdisp atvars $errexp $derivsubst $dotdistrib
$opsubst $subnumsimp $transrun in-p substp $sqrtdispflag
$pfeformat dummy-variable-operators))
(defvar *islinp* nil) ; When T, sdiff is called from the function islinear.
(defvar *atp* nil) ; When T, prevents substitution from applying to vars
; bound by %sum, %product, %integrate, %limit
;; op and opr properties
(defvar *opr-table* (make-hash-table :test #'equal))
(defmfun getopr0 (x)
(or
(and (symbolp x) (get x 'opr))
(and (stringp x) (gethash x *opr-table*))))
(defmfun getopr (x)
(or (getopr0 x) x))
(defmfun putopr (x y)
(or
(and (symbolp x) (setf (get x 'opr) y))
(and (stringp x) (setf (gethash x *opr-table*) y))))
(defmfun remopr (x)
(or
(and (symbolp x) (remprop x 'opr))
(and (stringp x) (remhash x *opr-table*))))
(mapc #'(lambda (x) (putprop (car x) (cadr x) 'op) (putopr (cadr x) (car x)))
'((mplus "+") (mminus "-") (mtimes "*") (mexpt "**") (mexpt "^")
(mnctimes ".") (rat "/") (mquotient "/") (mncexpt "^^")
(mequal "=") (mgreaterp ">") (mlessp "<") (mleqp "<=") (mgeqp ">=")
(mnotequal "#") (mand "and") (mor "or") (mnot "not") (msetq ":")
(mdefine ":=") (mdefmacro "::=") (mquote "'") (mlist "[")
(mset "::") (mfactorial "!") (marrow "-->") (mprogn "(")
(mcond "if")))
(mapc #'(lambda (x) (putprop (car x) (cadr x) 'op))
'((mqapply $subvar) (bigfloat $bfloat)))
(setq $exptsubst nil
$partswitch nil
$inflag nil
$gradefs '((mlist simp))
$dependencies '((mlist simp))
atvars '($@1 $@2 $@3 $@4)
$derivsubst nil
$opsubst t
in-p nil
substp nil)
(defmvar $vect_cross nil
"If TRUE allows DIFF(X~Y,T) to work where ~ is defined in
SHARE;VECT where VECT_CROSS is set to TRUE.")
(defmfun $substitute (old new &optional (expr nil three-arg?))
(cond (three-arg? (maxima-substitute old new expr))
(t
(let ((l old) (z new))
(cond ((and ($listp l) ($listp (cadr l)) (null (cddr l)))
($substitute (cadr l) z))
((notloreq l) (improper-arg-err l '$substitute))
((eq (caar l) 'mequal) (maxima-substitute (caddr l) (cadr l) z))
(t (do ((l (cdr l) (cdr l)))
((null l) z)
(setq z ($substitute (car l) z)))))))))
;; Define an alias $psubst and a reversealias for $psubstitute
(defprop $psubst $psubstitute alias)
(defprop $psubstitute $psubst reversealias)
;; $psubstitute is similar to $substitute. In distinction from $substitute
;; the function $psubstitute does parallel substitution, if the first argument
;; is a list of equations.
(defun $psubstitute (old new &optional (expr nil three-arg?))
(cond (three-arg? (maxima-substitute old new expr))
(t
(let ((l old) (z new))
(cond ((and ($listp l)
($listp (cadr l))
(null (cddr l)))
;; A nested list.
($psubstitute (cadr l) z))
((and ($listp l)
(eq (caar (cadr l)) 'mequal)
(null (cddr l)))
;; A list with one equation.
($psubstitute (cadr l) z))
((notloreq l) (improper-arg-err l '$psubstitute))
((eq (caar l) 'mequal)
;; Do a substitution for one equation.
(maxima-substitute (caddr l) (cadr l) z))
(t
;; We have a list of equations. We do parallel subsitution.
(let (gensymbol genlist eqn ($simp nil))
;; At first substitute a gensym for the expressions of
;; the left hand side of the equations.
(do ((l (cdr l) (cdr l)))
((null l) z)
(setq eqn (car l))
(when (not (eq 'mequal (caar eqn)))
(improper-arg-err old '$substitute))
(setq gensymbol (gensym))
;; Store the gensym and the new expression into a list.
(push (cons gensymbol (caddr eqn)) genlist)
;; Substitute a gensym for the old expression.
(setq z (maxima-substitute gensymbol (cadr eqn) z)))
;; Substitute the new expressions for the gensyms.
(do ((l genlist (cdr l)))
((null l)
;; Resimplify the result.
(let (($simp t)) (resimplify z)))
(setq z (maxima-substitute (cdar l) (caar l) z))))))))))
(defmfun maxima-substitute (x y z) ; The args to SUBSTITUTE are assumed to be simplified.
(let ((in-p t) (substp t))
(if (and (mnump y) (= (signum1 y) 1))
(let ($sqrtdispflag ($pfeformat t)) (setq z (nformat-all z))))
(simplifya
(if (atom y)
(cond ((equal y -1)
(setq y '((mminus) 1)) (subst2 x y (nformat-all z) nil nil)) ;; negxpty and timesp don't matter in this call since (caar y) != 'mexpt
(t
(cond ((and (not (symbolp x))
(functionp x))
(let ((tem (gensym)))
(setf (get tem 'operators) 'application-operator)
(setf (symbol-function tem) x)
(setq x tem))))
(subst1 x y z)))
(let ((negxpty (if (and (eq (caar y) 'mexpt)
(= (signum1 (caddr y)) 1))
(mul2 -1 (caddr y))))
(timesp (if (eq (caar y) 'mtimes) (setq y (nformat y)))))
(subst2 x y z negxpty timesp)))
nil)))
;;Remainder of page is update from F302 --gsb
;;Used in COMM2 (AT), limit, and below.
(defvar dummy-variable-operators '(%product %sum %laplace %integrate %limit %at))
(defun subst1 (x y z) ; Y is an atom
(cond ((atom z) (if (equal y z) x z))
((specrepp z) (subst1 x y (specdisrep z)))
((eq (caar z) 'bigfloat) z)
((and (eq (caar z) 'rat) (or (equal y (cadr z)) (equal y (caddr z))))
(div (subst1 x y (cadr z)) (subst1 x y (caddr z))))
((at-substp z) (subst-except-second-arg x y z))
((and (eq y t) (eq (caar z) 'mcond))
(list (cons (caar z) nil) (subst1 x y (cadr z)) (subst1 x y (caddr z))
(cadddr z) (subst1 x y (car (cddddr z)))))
(t (let ((margs (mapcar #'(lambda (z1) (subst1 x y z1)) (cdr z)))
(oprx (getopr x)) (opry (getopr y)))
(if (and $opsubst
(or (eq opry (caar z))
(and (eq (caar z) 'rat) (eq opry 'mquotient))))
(if (or (numberp x)
(member x '(t nil $%e $%pi $%i) :test #'eq)
(and (not (atom x))
(not (or (eq (car x) 'lambda)
(eq (caar x) 'lambda)))))
(if (or (and (member 'array (cdar z) :test #'eq)
(or (and (mnump x) $subnumsimp)
(and (not (mnump x)) (not (atom x)))))
($subvarp x))
(let ((substp 'mqapply))
(subst0 (list* '(mqapply) x margs) z))
(merror (intl:gettext "subst: cannot substitute ~M for operator ~M in expression ~M") x y z))
(subst0 (cons (cons oprx nil) margs) z))
(subst0 (cons (cons (caar z) nil) margs) z))))))
(defun subst2 (x y z negxpty timesp)
(let (newexpt)
(cond ((atom z) z)
((specrepp z) (subst2 x y (specdisrep z) negxpty timesp))
((and *atp* (member (caar z) '(%derivative %laplace) :test #'eq)) z)
((at-substp z) z)
((alike1 y z) x)
((and timesp (eq (caar z) 'mtimes) (alike1 y (setq z (nformat z)))) x)
((and (eq (caar y) 'mexpt) (eq (caar z) 'mexpt) (alike1 (cadr y) (cadr z))
(setq newexpt (cond ((alike1 negxpty (caddr z)) -1)
($exptsubst (expthack (caddr y) (caddr z))))))
(list '(mexpt) x newexpt))
((and $derivsubst (eq (caar y) '%derivative) (eq (caar z) '%derivative)
(alike1 (cadr y) (cadr z)))
(let ((tail (subst-diff-match (cddr y) (cdr z))))
(cond ((null tail) z)
(t (cons (cons (caar z) nil) (cons x (cdr tail)))))))
(t (recur-apply #'(lambda (z1) (subst2 x y z1 negxpty timesp)) z)))))
;; replace y with x in z, but leave z's second arg unchanged.
;; This is for cases like at(integrate(x, x, a, b), [x=3])
;; where second arg of integrate binds a new variable x,
;; and we do not wish to subst 3 for x inside integrand.
(defun subst-except-second-arg (x y z)
(cond
((member (caar z) '(%integrate %sum %product %limit))
(append
(list (car z)
(if (eq y (third z)) ; if (third z) is new var that shadows y
(second z) ; leave (second z) unchanged
(subst1 x y (second z))) ; otherwise replace y with x in (second z)
(third z)) ; never change integration var
(mapcar (lambda (z) (subst1 x y z)); do subst in limits of integral
(cdddr z))))
(t z)))
(defmfun subst0 (new old)
(cond ((atom new) new)
((alike (cdr new) (cdr old))
(cond ((eq (caar new) (caar old)) old)
(t (simplifya (cons (cons (caar new) (member 'array (cdar old) :test #'eq)) (cdr old))
nil))))
((member 'array (cdar old) :test #'eq)
(simplifya (cons (cons (caar new) '(array)) (cdr new)) nil))
(t (simplifya new nil))))
(defun expthack (y z)
(prog (nn* dn* yn yd zn zd qd)
(cond ((and (mnump y) (mnump z))
(return (if (numberp (setq y (div* z y))) y)))
((atom z) (if (not (mnump y)) (return nil)))
((or (ratnump z) (eq (caar z) 'mplus)) (return nil)))
(numden y) ; (CSIMP) sets NN* and DN*
(setq yn nn* yd dn*)
(numden z)
(setq zn nn* zd dn*)
(setq qd (cond ((and (equal zd 1) (equal yd 1)) 1)
((prog2 (numden (div* zd yd))
(and (equal dn* 1) (equal nn* 1)))
1)
((equal nn* 1) (div* 1 dn*))
((equal dn* 1) nn*)
(t (return nil))))
(numden (div* zn yn))
(if (equal dn* 1) (return (div* nn* qd)))))
(defun subst-diff-match (l1 l2)
(do ((l l1 (cddr l)) (l2 (copy-list l2)) (failed nil nil))
((null l) l2)
(do ((l2 l2 (cddr l2)))
((null (cdr l2)) (setq failed t))
(if (alike1 (car l) (cadr l2))
(if (and (fixnump (cadr l)) (fixnump (caddr l2)))
(cond ((< (cadr l) (caddr l2))
(return (rplacd (cdr l2)
(cons (- (caddr l2) (cadr l))
(cdddr l2)))))
((= (cadr l) (caddr l2))
(return (rplacd l2 (cdddr l2))))
(t (return (setq failed t))))
(return (setq failed t)))))
(if failed (return nil))))
;;This probably should be a subst or macro.
(defun at-substp (z)
(and *atp*
(or (member (caar z) '(%derivative %del) :test #'eq)
(member (caar z) dummy-variable-operators :test #'eq))))
(defmfun recur-apply (fun e)
(cond ((eq (caar e) 'bigfloat) e)
((specrepp e) (funcall fun (specdisrep e)))
(t (let ((newargs (mapcar fun (cdr e))))
(if (alike newargs (cdr e))
e
(simplifya (cons (cons (caar e) (member 'array (cdar e) :test #'eq)) newargs)
nil))))))
(defmfun $depends (&rest args)
(when (oddp (length args))
(merror (intl:gettext "depends: number of arguments must be even.")))
(do ((args args (cddr args))
(l))
((null args) (i-$dependencies (nreverse l)))
(if ($listp (first args))
(mapc #'(lambda (e) (push (depends1 e (second args)) l))
(cdr (first args)))
(push (depends1 (first args) (second args)) l))))
(defun depends1 (x y)
(nonsymchk x '$depends)
(cons (cons x nil) (if ($listp y) (cdr y) (cons y nil))))
(defmspec $dependencies (form)
(i-$dependencies (cdr form)))
(defun i-$dependencies (l &aux res)
(dolist (z l)
(cond
((atom z)
(merror
(intl:gettext
"depends: argument must be a non-atomic expression; found ~M") z))
(t
(do ((zz z (cdr zz))
(y nil))
((null zz)
(mputprop (caar z) (setq y (reverse y)) 'depends)
(setq res (push (cons (ncons (caar z)) y) res))
(unless (cdr $dependencies)
(setq $dependencies (copy-list '((mlist simp)))))
(add2lnc (cons (cons (caar z) nil) y) $dependencies))
(cond ((and ($subvarp (cadr zz))
(not (member (caar (cadr zz)) y)))
(setq y (push (cadr zz) y)))
((not (symbolp (cadr zz)))
(merror
(intl:gettext "depends: argument must be a symbol; found ~M")
(cadr zz)))
((and (cadr zz)
(not (member (cadr zz) y)))
(setq y (push (cadr zz) y))))))))
(cons '(mlist simp) (reverse res)))
(defmspec $gradef (l)
(setq l (cdr l))
(let ((z (car l)) (n 0))
(cond ((atom z)
(if (not (= (length l) 3)) (merror (intl:gettext "gradef: expected exactly three arguments.")))
(mputprop z
(cons (cons (cadr l) (meval (caddr l)))
(mget z '$atomgrad))
'$atomgrad)
(i-$dependencies (cons (cons (ncons z)
;; Append existing dependencies
(cons (cadr l) (mget z 'depends)))
nil))
(add2lnc z $props)
z)
((or (mopp1 (caar z)) (member 'array (cdar z) :test #'eq))
(merror (intl:gettext "gradef: argument cannot be a built-in operator or subscripted expression; found ~M") z))
((prog2 (setq n (- (length z) (length l))) (minusp n))
(wna-err '$gradef))
(t (do ((zl (cdr z) (cdr zl))) ((null zl))
(if (not (symbolp (car zl)))
(merror (intl:gettext "gradef: argument must be a symbol; found ~M") (car zl))))
(setq l (nconc (mapcar #'(lambda (x) (remsimp (meval x)))
(cdr l))
(mapcar #'(lambda (x) (list '(%derivative) z x 1))
(nthcdr (- (length z) n) z))))
(putprop (caar z)
(sublis (mapcar #'cons (cdr z) (mapcar #'stripdollar (cdr z)))
(cons (cdr z) l))
'grad)
(or (cdr $gradefs) (setq $gradefs (copy-list '((mlist simp)))))
(add2lnc (cons (cons (caar z) nil) (cdr z)) $gradefs) z))))
(defmfun $diff (&rest args)
#-gcl
(declare (dynamic-extent args))
(let (derivlist)
(deriv args)))
(defmfun $del (e)
(stotaldiff e))
(defun deriv (e)
(prog (exp z count)
(cond ((null e) (wna-err '$diff))
((null (cdr e)) (return (stotaldiff (car e))))
((null (cddr e)) (nconc e '(1))))
(setq exp (car e) z (setq e (copy-list e)))
loop (if (or (null derivlist) (member (cadr z) derivlist :test #'equal)) (go doit))
; DERIVLIST is set by $EV
(setq z (cdr z))
loop2(cond ((cdr z) (go loop))
((null (cdr e)) (return exp))
(t (go noun)))
doit (cond ((nonvarcheck (cadr z) '$diff))
((null (cddr z)) (wna-err '$diff))
((not (eq (ml-typep (caddr z)) 'fixnum)) (go noun))
((minusp (setq count (caddr z)))
(merror (intl:gettext "diff: order of derivative must be a nonnegative integer; found ~M") count)))
loop1(cond ((zerop count) (rplacd z (cdddr z)) (go loop2))
((equal (setq exp (sdiff exp (cadr z))) 0) (return 0)))
(setq count (1- count))
(go loop1)
noun (return (diff%deriv (cons exp (cdr e))))))
(defun chainrule (e x)
(let (w)
(cond (*islinp*
;; sdiff is called from the function islinear.
(if (and (not (atom e))
(eq (caar e) '%derivative)
(not (freel (cdr e) x)))
(diff%deriv (list e x 1))
0))
((atomgrad e x))
((not (setq w (mget (cond ((atom e) e)
((member 'array (cdar e) :test #'eq) (caar e))
((atom (cadr e)) (cadr e))
(t (caaadr e)))
'depends)))
0)
(t (let (derivflag)
(addn (mapcar
#'(lambda (u)
(let ((y (sdiff u x)))
(if (equal y 0)
0
(list '(mtimes)
(or (atomgrad e u)
(list '(%derivative) e u 1))
y))))
w)
nil))))))
(defun atomgrad (e x)
(let (y)
(and (atom e) (setq y (mget e '$atomgrad)) (assolike x y))))
(defun depends (e x &aux l)
(setq e (specrepcheck e))
(cond ((alike1 e x) t)
((mnump e) nil)
((and (symbolp e) (setq l (mget e 'depends)))
;; Go recursively through the list of dependencies.
;; This code detects indirect dependencies like a(x) and x(t).
(dependsl l x))
((atom e) nil)
(t (or (depends (caar e) x)
(dependsl (cdr e) x)))))
(defun dependsl (l x)
(dolist (u l)
(if (depends u x) (return t))))
(defmfun sdiff (e x) ; The args to SDIFF are assumed to be simplified.
;; Remove a special representation from the variable of differentiation
(setq x (specrepcheck x))
(cond ((alike1 e x) 1)
((mnump e) 0)
((or (atom e) (member 'array (cdar e) :test #'eq)) (chainrule e x))
((eq (caar e) 'mrat) (ratdx e x))
((eq (caar e) 'mpois) ($poisdiff e x)) ; Poisson series
((eq (caar e) 'mplus) (addn (sdiffmap (cdr e) x) t))
((mbagp e) (cons (car e) (sdiffmap (cdr e) x)))
((member (caar e) '(%sum %product) :test #'eq) (diffsumprod e x))
((eq (caar e) '%at) (diff-%at e x))
((not (depends e x)) 0)
((eq (caar e) 'mtimes) (addn (sdifftimes (cdr e) x) t))
((eq (caar e) 'mexpt) (diffexpt e x))
((eq (caar e) 'mnctimes)
(let (($dotdistrib t))
(add2 (ncmuln (cons (sdiff (cadr e) x) (cddr e)) t)
(ncmul2 (cadr e) (sdiff (cons '(mnctimes) (cddr e)) x)))))
((and $vect_cross (eq (caar e) '|$~|))
(add2* `((|$~|) ,(cadr e) ,(sdiff (caddr e) x))
`((|$~|) ,(sdiff (cadr e) x) ,(caddr e))))
((eq (caar e) 'mncexpt) (diffncexpt e x))
((member (caar e) '(%log %plog) :test #'eq)
(sdiffgrad (cond ((and (not (atom (cadr e))) (eq (caaadr e) 'mabs))
(cons (car e) (cdadr e)))
(t e))
x))
((eq (caar e) '%derivative)
(cond ((or (atom (cadr e)) (member 'array (cdaadr e) :test #'eq)) (chainrule e x))
((freel (cddr e) x) (diff%deriv (cons (sdiff (cadr e) x) (cddr e))))
(t (diff%deriv (list e x 1)))))
((member (caar e) '(%binomial $beta) :test #'eq)
(let ((efact ($makefact e)))
(mul2 (factor (sdiff efact x)) (div e efact))))
((eq (caar e) '%integrate) (diffint e x))
((eq (caar e) '%laplace) (difflaplace e x))
((eq (caar e) '%at) (diff-%at e x))
; This rule is not correct. We cut it out.
; ((member (caar e) '(%realpart %imagpart) :test #'eq)
; (list (cons (caar e) nil) (sdiff (cadr e) x)))
((and (eq (caar e) 'mqapply)
(eq (caaadr e) '$%f))
;; Handle %f, hypergeometric function
;;
;; The derivative of %f[p,q]([a1,...,ap],[b1,...,bq],z) is
;;
;; a1*a2*...*ap/(b1*b2*...*bq)
;; *%f[p,q]([a1+1,a2+1,...,ap+1],[b1+1,b2+1,...,bq+1],z)
(let* ((arg1 (cdr (third e)))
(arg2 (cdr (fourth e)))
(v (fifth e)))
(mul (sdiff v x)
(div (mull arg1) (mull arg2))
`((mqapply) (($%f array) ,(length arg1) ,(length arg2))
((mlist) ,@(incr1 arg1))
((mlist) ,@(incr1 arg2))
,v))))
(t (sdiffgrad e x))))
(defun sdiffgrad (e x)
(let ((fun (caar e)) grad args result)
(cond ((and (eq fun 'mqapply) (oldget (caaadr e) 'grad))
;; Change the array function f[n](x) to f(n,x), call sdiffgrad again.
(setq result
(sdiffgrad (cons (cons (caaadr e) nil)
(append (cdadr e) (cddr e)))
x))
;; If noun form for f(n,x), adjust the noun form for f[n](x)
(if (isinop result '%derivative)
(if (not (depends e x))
0
(diff%deriv (list e x 1)))
result))
;; extension for pdiff.
((and (get '$pderivop 'operators) (sdiffgrad-pdiff e x)))
;; two line extension for hypergeometric.
((and (equal fun '$hypergeometric) (get '$hypergeometric 'operators))
(diff-hypergeometric (second e) (third e) (fourth e) x))
((or (eq fun 'mqapply) (null (setq grad (oldget fun 'grad))))
(if (not (depends e x)) 0 (diff%deriv (list e x 1))))
((not (= (length (cdr e)) (length (car grad))))
(merror (intl:gettext "~:M: expected exactly ~M arguments.")
fun
(length (car grad))))
(t
(setq args (sdiffmap (cdr e) x))
(setq result
(addn
(mapcar
#'mul2
(cdr
(substitutel
(cdr e)
(car grad)
(do ((l1 (cdr grad) (cdr l1))
(args args (cdr args))
(l2))
((null l1) (cons '(mlist) (nreverse l2)))
(setq l2
(cons (cond ((equal (car args) 0) 0)
((functionp (car l1))
;; Evaluate a lambda expression
;; given as a derivative.
(apply (car l1) (cdr e)))
(t (car l1)))
l2)))))
args)
t))
(if (or (null result) (not (freeof nil result)))
;; A derivative has returned NIL. Return a noun form.
(if (not (depends e x))
0
(diff%deriv (list e x 1)))
result)))))
(defun sdiffmap (e x)
(mapcar #'(lambda (term) (sdiff term x)) e))
(defun sdifftimes (l x)
(prog (term left out)
loop (setq term (car l) l (cdr l))
(setq out (cons (muln (cons (sdiff term x) (append left l)) t) out))
(if (null l) (return out))
(setq left (cons term left))
(go loop)))
(defun diffexpt (e x)
(if (mnump (caddr e))
(mul3 (caddr e) (power (cadr e) (addk (caddr e) -1)) (sdiff (cadr e) x))
(mul2 e (add2 (mul3 (power (cadr e) -1) (caddr e) (sdiff (cadr e) x))
(mul2 (simplifya (list '(%log) (cadr e)) t)
(sdiff (caddr e) x))))))
(defun diff%deriv (e)
(let (derivflag)
(simplifya (cons '(%derivative) e) t)))
;; grad properties
(let ((header '(x)))
(mapc #'(lambda (z) (putprop (car z) (cons header (cdr z)) 'grad))
;; All these GRAD templates have been simplified and then the SIMP flags
;; (which are unnecessary) have been removed to save core space.
'((%log ((mexpt) x -1)) (%plog ((mexpt) x -1))
(%gamma ((mtimes) ((mqapply) (($psi array) 0) x) ((%gamma) x)))
(mfactorial ((mtimes) ((mqapply) (($psi array) 0) ((mplus) 1 x)) ((mfactorial) x)))
(%sin ((%cos) x))
(%cos ((mtimes) -1 ((%sin) x)))
(%tan ((mexpt) ((%sec) x) 2))
(%cot ((mtimes) -1 ((mexpt) ((%csc) x) 2)))
(%sec ((mtimes) ((%sec) x) ((%tan) x)))
(%csc ((mtimes) -1 ((%cot) x) ((%csc) x)))
(%asin ((mexpt) ((mplus) 1 ((mtimes) -1 ((mexpt) x 2))) ((rat) -1 2)))
(%acos ((mtimes) -1 ((mexpt) ((mplus) 1 ((mtimes) -1 ((mexpt) x 2)))
((rat) -1 2))))
(%atan ((mexpt) ((mplus) 1 ((mexpt) x 2)) -1))
(%acot ((mtimes) -1 ((mexpt) ((mplus) 1 ((mexpt) x 2)) -1)))
(%acsc ((mtimes) -1
((mexpt) ((mplus) 1 ((mtimes) -1 ((mexpt) x -2)))
((rat) -1 2))
((mexpt) x -2)))
(%asec ((mtimes)
((mexpt) ((mplus) 1 ((mtimes) -1 ((mexpt) x -2)))
((rat) -1 2))
((mexpt) x -2)))
(%sinh ((%cosh) x))
(%cosh ((%sinh) x))
(%tanh ((mexpt) ((%sech) x) 2))
(%coth ((mtimes) -1 ((mexpt) ((%csch) x) 2)))
(%sech ((mtimes) -1 ((%sech) x) ((%tanh) x)))
(%csch ((mtimes) -1 ((%coth) x) ((%csch) x)))
(%asinh ((mexpt) ((mplus) 1 ((mexpt) x 2)) ((rat) -1 2)))
(%acosh ((mexpt) ((mplus) -1 ((mexpt) x 2)) ((rat) -1 2)))
(%atanh ((mexpt) ((mplus) 1 ((mtimes) -1 ((mexpt) x 2))) -1))
(%acoth ((mtimes) -1 ((mexpt) ((mplus) -1 ((mexpt) x 2)) -1)))
(%asech ((mtimes) -1
((mexpt) ((mplus) -1 ((mexpt) x -2)) ((rat) -1 2))
((mexpt) x -2)))
(%acsch ((mtimes) -1
((mexpt) ((mplus) 1 ((mexpt) x -2)) ((rat) -1 2))
((mexpt) x -2)))
(mabs ((mtimes) x ((mexpt) ((mabs) x) -1)))
(%erf ((mtimes) 2 ((mexpt) $%pi ((rat) -1 2))
((mexpt) $%e ((mtimes) -1 ((mexpt) x 2)))))
)))
(defprop $atan2 ((x y) ((mtimes) y ((mexpt) ((mplus) ((mexpt) x 2) ((mexpt) y 2)) -1))
((mtimes) -1 x ((mexpt) ((mplus) ((mexpt) x 2) ((mexpt) y 2)) -1)))
grad)
(defprop $li
((n x)
; Do not put a noun form on the property list, but NIL.
; SDIFFGRAD generates the noun form.
; ((%derivative) ((mqapply) (($li array) n) x) n 1)
nil
((mtimes) ((mqapply) (($li array) ((mplus) -1 n)) x) ((mexpt) x -1)))
grad)
(defprop $psi
((n x)
; Do not put a noun form on the property list, but NIL.
; SDIFFGRAD generates the noun form.
nil
((mqapply) (($psi array) ((mplus) 1 n)) x))
grad)
(defmfun atvarschk (argl)
(do ((largl (length argl) (1- largl))
(latvrs (length atvars))
(l))
((not (< latvrs largl)) (nconc atvars l))
(setq l (cons (implode (cons '$ (cons '@ (mexploden largl)))) l))))
(defmfun notloreq (x)
(or (atom x)
(not (member (caar x) '(mlist mequal) :test #'eq))
(and (eq (caar x) 'mlist)
(dolist (u (cdr x))
(if (not (mequalp u)) (return t))))))
(defmfun substitutel (l1 l2 e)
"l1 is a list of expressions. l2 is a list of variables. For each
element in list l2, substitute corresponding element of l1 into e"
(do ((l1 l1 (cdr l1))
(l2 l2 (cdr l2)))
((null l1) e)
(setq e (maxima-substitute (car l1) (car l2) e))))
(defmfun union* (a b)
(do ((a a (cdr a))
(x b))
((null a) x)
(if (not (memalike (car a) b)) (setq x (cons (car a) x)))))
(defmfun intersect* (a b)
(do ((a a (cdr a))
(x))
((null a) x)
(if (memalike (car a) b) (setq x (cons (car a) x)))))
(defmfun nthelem (n e)
(car (nthcdr (1- n) e)))
(defmfun delsimp (e)
(delete 'simp (copy-list e) :count 1 :test #'eq))
(defmfun remsimp (e)
(if (atom e) e (cons (delsimp (car e)) (mapcar #'remsimp (cdr e)))))
(defmfun $trunc (e)
(cond ((atom e) e)
((eq (caar e) 'mplus) (cons (append (car e) '(trunc)) (cdr e)))
((mbagp e) (cons (car e) (mapcar #'$trunc (cdr e))))
((specrepp e) ($trunc (specdisrep e)))
(t e)))
(defmfun nonvarcheck (e fn)
(if (or (mnump e)
(maxima-integerp e)
(and (not (atom e)) (not (eq (caar e) 'mqapply)) (mopp1 (caar e))))
(merror (intl:gettext "~:M: second argument must be a variable; found ~M") fn e)))
(defmspec $ldisplay (form)
(disp1 (cdr form) t t))
(defmfun $ldisp (&rest args)
#-gcl
(declare (dynamic-extent args))
(disp1 args t nil))
(defmspec $display (form)
(disp1 (cdr form) nil t))
(defmfun $disp (&rest args)
#-gcl
(declare (dynamic-extent args))
(disp1 args nil nil))
(defun disp1 (ll lablist eqnsp)
(if lablist (setq lablist (cons '(mlist simp) nil)))
(do ((ll ll (cdr ll))
(l)
(ans)
($dispflag t)
(tim 0))
((null ll) (or lablist '$done))
(setq l (car ll) ans (if eqnsp (meval l) l))
(if (and eqnsp (not (mequalp ans)))
(setq ans (list '(mequal simp) (disp2 l) ans)))
(if lablist (nconc lablist (cons (elabel ans) nil)))
(setq tim (get-internal-run-time))
(let ((*display-labels-p* (not (null lablist))))
(declare (special *display-labels-p*))
(displa (list '(mlabel) (if lablist *linelabel*) ans)))
(mterpri)
(timeorg tim)))
(defun disp2 (e)
(cond ((atom e) e)
((eq (caar e) 'mqapply)
(cons '(mqapply) (cons (cons (caadr e) (mapcar #'meval (cdadr e)))
(mapcar #'meval (cddr e)))))
((eq (caar e) 'msetq) (disp2 (cadr e)))
((eq (caar e) 'mset) (disp2 (meval (cadr e))))
((eq (caar e) 'mlist) (cons (car e) (mapcar #'disp2 (cdr e))))
((mspecfunp (caar e)) e)
(t (cons (car e) (mapcar #'meval (cdr e))))))
; Construct a new intermediate result label,
; and bind it to the expression e.
; The global flag $NOLABELS is ignored; the label is always bound.
; Otherwise (if ELABEL were to observe $NOLABELS) it would be
; impossible to programmatically refer to intermediate result expression.
(defmfun elabel (e)
(if (not (checklabel $linechar)) (setq $linenum (1+ $linenum)))
(let (($nolabels nil)) ; <-- This is pretty ugly. MAKELABEL should take another argument.
(makelabel $linechar))
(setf (symbol-value *linelabel*) e)
*linelabel*)
(defmfun $dispterms (e)
(cond ((or (atom e) (eq (caar e) 'bigfloat)) (displa e))
((specrepp e) ($dispterms (specdisrep e)))
(t (let (($dispflag t))
(mterpri)
(displa (getop (mop e)))
(do ((e (if (and (eq (caar e) 'mplus) (not $powerdisp))
(reverse (cdr e))
(margs e))
(cdr e))) ((null e)) (mterpri) (displa (car e)) (mterpri)))
(mterpri)))
'$done)
(defmfun $dispform (e &optional (flag nil flag?))
(when (and flag? (not (eq flag '$all)))
(merror (intl:gettext "dispform: second argument, if present, must be 'all'; found ~M") flag))
(if (or (atom e)
(atom (setq e (if flag? (nformat-all e) (nformat e))))
(member 'simp (cdar e) :test #'eq))
e
(cons (cons (caar e) (cons 'simp (cdar e)))
(if (and (eq (caar e) 'mplus) (not $powerdisp))
(reverse (cdr e))
(cdr e)))))
;;; These functions implement the Macsyma functions $op and $operatorp.
;;; Dan Stanger
(defmfun $op (expr)
($part expr 0))
(defmfun $operatorp (expr oplist)
(if ($listp oplist)
($member ($op expr) oplist)
(equal ($op expr) oplist)))
(defmfun $part (&rest args)
#-gcl
(declare (dynamic-extent args))
(mpart args nil nil $inflag '$part))
(defmfun $inpart (&rest args)
#-gcl
(declare (dynamic-extent args))
(mpart args nil nil t '$inpart))
(defmspec $substpart (l)
(let ((substp t))
(mpart (cdr l) t nil $inflag '$substpart)))
(defmspec $substinpart (l)
(let ((substp t))
(mpart (cdr l) t nil t '$substinpart)))
(defmfun part1 (arglist substflag dispflag inflag) ; called only by TRANSLATE
(let ((substp t))
(mpart arglist substflag dispflag inflag '$substpart)))
(defmfun mpart (arglist substflag dispflag inflag fn)
(prog (substitem arg arg1 exp exp1 exp* sevlist count prevcount n specp
lastelem lastcount)
(setq specp (or substflag dispflag))
(if substflag (setq substitem (car arglist) arglist (cdr arglist)))
(if (null arglist) (wna-err '$part))
(setq exp (if substflag (meval (car arglist)) (car arglist)))
(when (null (setq arglist (cdr arglist)))
(setq $piece exp)
(return (cond (substflag (meval substitem))
(dispflag (box exp dispflag))
(t exp))))
(cond ((not inflag)
(cond ((or (and ($listp exp) (null (cdr arglist)))
(and ($matrixp exp)
(or (null (cdr arglist)) (null (cddr arglist)))))
(setq inflag t))
((not specp) (setq exp (nformat exp)))
(t (setq exp (nformat-all exp)))))
((specrepp exp) (setq exp (specdisrep exp))))
(when (and (atom exp) (null $partswitch))
(merror (intl:gettext "~:M: argument must be a non-atomic expression; found ~:M") fn exp))
(when (and inflag specp)
(setq exp (copy-tree exp)))
(when substflag
;; Replace all ocurrences of 'rat with 'mquotient when in subst.
(setq exp (let (($simp nil)) (maxima-substitute 'mquotient 'rat exp))))
(setq exp* exp)
start (cond ((or (atom exp) (eq (caar exp) 'bigfloat)) (go err))
((equal (setq arg (if substflag (meval (car arglist)) (car arglist)))
0)
(setq arglist (cdr arglist))
(cond ((mnump substitem)
(merror (intl:gettext "~:M: argument cannot be a number; found ~M") fn substitem))
((and specp arglist)
(if (eq (caar exp) 'mqapply)
(prog2 (setq exp (cadr exp)) (go start))
;; NOT CLEAR WHAT IS INVALID HERE. OH WELL.
(merror (intl:gettext "~:M: invalid operator.") fn)))
(t (setq $piece (getop (mop exp)))
(return
(cond (substflag
(setq substitem (getopr (meval substitem)))
(cond ((mnump substitem)
(merror (intl:gettext "~:M: argument cannot be a number; found ~M") fn substitem))
((not (atom substitem))
(if (not (eq (caar exp) 'mqapply))
(rplaca (rplacd exp (cons (car exp)
(cdr exp)))
'(mqapply)))
(rplaca (cdr exp) substitem)
(return (resimplify exp*)))
((eq (caar exp) 'mqapply)
(rplacd exp (cddr exp))))
(rplaca exp (cons substitem
(if (and (member 'array (cdar exp) :test #'eq)
(not (mopp substitem)))
'(array))))
(resimplify exp*))
(dispflag
(rplacd exp (cdr (box (copy-tree exp) dispflag)))
(rplaca exp (if (eq dispflag t)
'(mbox)
'(mlabox)))
(resimplify exp*))
(t (when arglist (setq exp $piece) (go a))
$piece))))))
((not (atom arg)) (go several))
((not (fixnump arg))
(merror (intl:gettext "~:M: argument must be an integer; found ~M") fn arg))
((< arg 0) (go bad)))
(if (eq (caar exp) 'mqapply) (setq exp (cdr exp)))
loop (cond ((not (zerop arg)) (setq arg (1- arg) exp (cdr exp))
(if (null exp) (go err))
(go loop))
((null (setq arglist (cdr arglist)))
(return (cond (substflag (setq $piece (resimplify (car exp)))
(rplaca exp (meval substitem))
(resimplify exp*))
(dispflag (setq $piece (resimplify (car exp)))
(rplaca exp (box (car exp) dispflag))
(resimplify exp*))
(inflag (setq $piece (car exp)))
(t (setq $piece (simplify (car exp))))))))
(setq exp (car exp))
a (cond ((and (not inflag) (not specp)) (setq exp (nformat exp)))
((specrepp exp) (setq exp (specdisrep exp))))
(go start)
err (cond ((eq $partswitch 'mapply)
(merror (intl:gettext "part: invalid index of list or matrix.")))
($partswitch (return (setq $piece '$end)))
(t (merror (intl:gettext "~:M: fell off the end.") fn)))
bad (improper-arg-err arg fn)
several
(if (or (not (member (caar arg) '(mlist $allbut) :test #'eq)) (cdr arglist))
(go bad))
(setq exp1 (cons (caar exp) (if (member 'array (cdar exp) :test #'eq) '(array))))
(if (eq (caar exp) 'mqapply)
(setq sevlist (list (cadr exp) exp1) exp (cddr exp))
(setq sevlist (ncons exp1) exp (cdr exp)))
(setq arg1 (cdr arg) prevcount 0 exp1 exp)
(dolist (arg* arg1)
(if (not (fixnump arg*))
(merror (intl:gettext "~:M: argument must be an integer; found ~M") fn arg*)))
(when (and specp (eq (caar arg) 'mlist))
(if substflag (setq lastelem (car (last arg1))))
(setq arg1 (sort (copy-list arg1) #'<)))
(when (eq (caar arg) '$allbut)
(setq n (length exp))
(dolist (i arg1)
(if (or (< i 1) (> i n))
(merror (intl:gettext "~:M: index must be in range 1 to ~M, inclusive; found ~M") fn n i)))
(do ((i n (1- i)) (arg2))
((= i 0) (setq arg1 arg2))
(if (not (member i arg1 :test #'equal)) (setq arg2 (cons i arg2))))
(if substflag (setq lastelem (car (last arg1)))))
(if (null arg1) (if specp (go bad) (go end)))
(if substflag (setq lastcount lastelem))
sevloop
(if specp
(setq count (- (car arg1) prevcount) prevcount (car arg1))
(setq count (car arg1)))
(if (< count 1) (go bad))
(if (and substflag (< (car arg1) lastelem))
(setq lastcount (1- lastcount)))
count(cond ((null exp) (go err))
((not (= count 1)) (setq count (1- count) exp (cdr exp)) (go count)))
(setq sevlist (cons (car exp) sevlist))
(setq arg1 (cdr arg1))
end (cond ((null arg1)
(setq sevlist (nreverse sevlist))
(setq $piece (if (or inflag (not specp))
(simplify sevlist)
(resimplify sevlist)))
(return (cond (substflag (rplaca (nthcdr (1- lastcount) exp1)
(meval substitem))
(resimplify exp*))
(dispflag (rplaca exp (box (car exp) dispflag))
(resimplify exp*))
(t $piece))))
(substflag (if (null (cdr exp)) (go err))
(rplaca exp (cadr exp)) (rplacd exp (cddr exp)))
(dispflag (rplaca exp (box (car exp) dispflag))
(setq exp (cdr exp)))
(t (setq exp exp1)))
(go sevloop)))
(defmfun getop (x)
(or (and (symbolp x) (get x 'op)) x))
(defmfun $listp (x)
(and (not (atom x))
(not (atom (car x)))
(eq (caar x) 'mlist)))
(defmfun $cons (x e)
(atomchk (setq e (specrepcheck e)) '$cons t)
(mcons-exp-args e (cons x (margs e))))
(defmfun $endcons (x e)
(atomchk (setq e (specrepcheck e)) '$endcons t)
(mcons-exp-args e (append (margs e) (ncons x))))
(defmfun $reverse (e)
(atomchk (setq e (format1 e)) '$reverse nil)
(mcons-exp-args e (reverse (margs e))))
(defmfun $append (&rest args)
(if (null args)
'((mlist simp))
(let ((arg1 (specrepcheck (first args))) op arrp)
(atomchk arg1 '$append nil)
(setq op (mop arg1)
arrp (if (member 'array (cdar arg1) :test #'eq) t))
(mcons-exp-args
arg1
(apply #'append
(mapcar #'(lambda (u)
(atomchk (setq u (specrepcheck u)) '$append nil)
(unless (and (alike1 op (mop u))
(eq arrp (if (member 'array (cdar u) :test #'eq) t)))
(merror (intl:gettext "append: operators of arguments must all be the same.")))
(margs u))
args))))))
(defun mcons-exp-args (e args)
(if (eq (caar e) 'mqapply)
(list* (delsimp (car e)) (cadr e) args)
(cons (if (eq (caar e) 'mlist) (car e) (delsimp (car e))) args)))
(defmfun $member (x e)
(atomchk (setq e ($totaldisrep e)) '$member t)
(if (memalike ($totaldisrep x) (margs e)) t))
(defmfun atomchk (e fun 2ndp)
(if (or (atom e) (eq (caar e) 'bigfloat))
(merror (intl:gettext "~:M: ~Margument must be a non-atomic expression; found ~M") fun (if 2ndp "2nd " "") e)))
(defmfun format1 (e)
(cond (($listp e) e)
($inflag (specrepcheck e))
(t (nformat e))))
(defmfun $first (e)
(atomchk (setq e (format1 e)) '$first nil)
(if (null (cdr e)) (merror (intl:gettext "first: empty argument.")))
(car (margs e)))
;; This macro is used to create functions second thru tenth.
;; Rather than try to modify mformat for ~:R, use the quoted symbol
(macrolet ((make-nth (si i)
(let ((sim (intern (concatenate 'string "$" (symbol-name si)))))
`(defmfun ,sim (e)
(atomchk (setq e (format1 e)) ',sim nil)
(if (< (length (margs e)) ,i)
(merror (intl:gettext "~:M: no such element in ~M") ',sim e))
(,si (margs e))))))
(make-nth second 2)
(make-nth third 3)
(make-nth fourth 4)
(make-nth fifth 5)
(make-nth sixth 6)
(make-nth seventh 7)
(make-nth eighth 8)
(make-nth ninth 9)
(make-nth tenth 10))
(defmfun $rest (e &optional (n 1 n?))
(prog (m fun fun1 revp)
(when (and n? (equal n 0))
(return e))
(atomchk (setq m (format1 e)) '$rest nil)
(cond ((and n? (not (fixnump n)))
(merror (intl:gettext "rest: second argument, if present, must be an integer; found ~M") n))
((minusp n)
(setq n (- n) revp t)))
(if (< (length (margs m)) n)
(if $partswitch
(return '$end)
(merror (intl:gettext "rest: fell off the end."))))
(setq fun (car m))
(when (eq (car fun) 'mqapply)
(setq fun1 (cadr m)
m (cdr m)))
(setq m (cdr m))
(when revp (setq m (reverse m)))
(setq m (nthcdr n m))
(setq m (cons (if (eq (car fun) 'mlist) fun (delsimp fun))
(if revp (nreverse m) m)))
(when (eq (car fun) 'mqapply)
(return (cons (car m) (cons fun1 (cdr m)))))
(return m)))
(defmfun $last (e)
(atomchk (setq e (format1 e)) '$last nil)
(when (null (cdr e))
(merror (intl:gettext "last: empty argument.")))
(car (last e)))
(defmfun $args (e)
(atomchk (setq e (format1 e)) '$args nil)
(cons '(mlist) (margs e)))
(defmfun $delete (x l &optional (n -1 n?))
(when (and n? (or (not (fixnump n)) (minusp n))) ; if n is set, it must be a nonneg fixnum
(merror (intl:gettext "delete: third argument, if present, must be a nonnegative integer; found ~M") n))
(atomchk (setq l (specrepcheck l)) '$delete t)
(setq x (specrepcheck x)
l (cons (delsimp (car l)) (copy-list (cdr l))))
(do ((l1 (if (eq (caar l) 'mqapply) (cdr l) l)))
((or (null (cdr l1)) (zerop n)) l)
(if (alike1 x (specrepcheck (cadr l1)))
(progn
(decf n)
(rplacd l1 (cddr l1)))
(setq l1 (cdr l1)))))
(defmfun $length (e)
(setq e (cond (($listp e) e)
((or $inflag (not ($ratp e))) (specrepcheck e))
(t ($ratdisrep e))))
(cond ((symbolp e) (merror (intl:gettext "length: argument cannot be a symbol; found ~:M") e))
((or (numberp e) (eq (caar e) 'bigfloat))
(if (and (not $inflag) (mnegp e))
1
(merror (intl:gettext "length: argument cannot be a number; found ~:M") e)))
((or $inflag (not (member (caar e) '(mtimes mexpt) :test #'eq))) (length (margs e)))
((eq (caar e) 'mexpt)
(if (and (alike1 (caddr e) '((rat simp) 1 2)) $sqrtdispflag) 1 2))
(t (length (cdr (nformat e))))))
(defmfun $atom (x)
(setq x (specrepcheck x)) (or (atom x) (eq (caar x) 'bigfloat)))
(defmfun $symbolp (x)
(setq x (specrepcheck x)) (symbolp x))
(defmfun $num (e)
(let (x)
(cond ((atom e) e)
((eq (caar e) 'mrat) ($ratnumer e))
((eq (caar e) 'rat) (cadr e))
((eq (caar (setq x (nformat e))) 'mquotient) (simplify (cadr x)))
((and (eq (caar x) 'mminus) (not (atom (setq x (cadr x))))
(eq (caar x) 'mquotient))
(simplify (list '(mtimes) -1 (cadr x))))
(t e))))
(defmfun $denom (e)
(cond ((atom e) 1)
((eq (caar e) 'mrat) ($ratdenom e))
((eq (caar e) 'rat) (caddr e))
((or (eq (caar (setq e (nformat e))) 'mquotient)
(and (eq (caar e) 'mminus) (not (atom (setq e (cadr e))))
(eq (caar e) 'mquotient)))
(simplify (caddr e)))
(t 1)))
(defmfun $entier (e) (take '($floor) e))
(defmfun $fix (e) (take '($floor) e))
;; Evaluate THUNK ignoring any error that might occur. If the THUNK
;; returns a good number (not infinity or NaN), then return the
;; number. Otherwise, return NIL to indicate that we the computation
;; failed. This is a pretty brute-force approach.
(defun try-float-computation (thunk)
(let ((errcatch (cons bindlist loclist))
(*mdebug* nil))
(let ((result (errset (funcall thunk))))
(labels ((bad-number-p (num)
(if (complexp num)
(or (bad-number-p (realpart num))
(bad-number-p (imagpart num)))
(or (float-inf-p num)
(float-nan-p num)))))
(if (and result (bad-number-p (car result)))
nil
(car result))))))
(defmfun $float (e)
(cond ((numberp e) (float e))
((and (symbolp e) (mget e '$numer)))
((or (atom e) (member 'array (cdar e) :test #'eq)) e)
((eq (caar e) 'rat) (fpcofrat e))
((eq (caar e) 'bigfloat) (fp2flo e))
((member (caar e) '(mexpt mncexpt) :test #'eq)
;; avoid x^2 -> x^2.0, allow %e^%pi -> 23.14
(let ((res (recur-apply #'$float e)))
(if (floatp res)
res
(list (ncons (caar e)) ($float (cadr e)) (caddr e)))))
((and (eq (caar e) '%log)
(complex-number-p (second e) '$ratnump))
;; Basically we try to compute float(log(x)) as directly as
;; possible, expecting Lisp to return some error if it can't.
;; Then we do a more complicated approach to compute the
;; result. However, gcl and ecl don't signal errors in these
;; cases, so we always use the complicated approach for these lisps.
(let ((n (second e)))
(cond ((integerp n)
;; float(log(int)). First try to compute (log
;; (float n)). If that works, we're done.
;; Otherwise we need to do more.
(to (or (try-float-computation #'(lambda ()
(log (float n))))
(let ((m (integer-length n)))
;; Write n as (n/2^m)*2^m where m is the number of
;; bits in n. Then log(n) = log(2^m) + log(n/2^m).
;; n/2^m is approximately 1, so converting that to a
;; float is no problem. log(2^m) = m * log(2).
(+ (* m (log 2e0))
(log (float (/ n (ash 1 m)))))))))
(($ratnump n)
;; float(log(n/m)) where n and m are integers. Try computing
;; it first. If it fails, compute as log(n) - log(m).
(let ((try (try-float-computation #'(lambda()
(log (fpcofrat n))))))
(if try
(to try)
(sub ($float `((%log) ,(second n)))
($float `((%log) ,(third n)))))))
((complex-number-p n 'integerp)
;; float(log(n+m*%i)).
(let ((re ($realpart n))
(im ($imagpart n)))
(to (or (try-float-computation #'(lambda ()
(log (complex (float re)
(float im)))))
(let* ((size (max (integer-length re)
(integer-length im)))
(scale (ash 1 size)))
(+ (* size (log 2e0))
(log (complex (float (/ re scale))
(float (/ im scale))))))))))
(t
;; log(n1/d1 + n2/d2*%i) =
;; log(s*(n+m*%i)) = log(s) + log(n+m*%i)
;;
;; where s = lcm(d1, d2), n and m are integers
;;
(let* ((s (lcm ($denom ($realpart n))
($denom ($imagpart n))))
(p ($expand (mul s n))))
(add ($float `((%log) ,s))
($float `((%log) ,p))))))))
((and (eq (caar e) '%erf)
(eq (second e) '$%i))
;; Handle like erf(%i). float(%i) (via recur-apply below)
;; just returns %i, so we never numerically evaluate it.
(complexify (complex-erf (complex 0 1d0))))
(t (recur-apply #'$float e))))
(defmfun $coeff (e x &optional (n 1))
(if (equal n 0)
(coeff e x 0)
(coeff e (power x n) 1)))
(defun coeff (e var pow)
(simplify
(cond ((alike1 e var) (if (equal pow 1) 1 0))
((atom e) (if (equal pow 0) e 0))
((eq (caar e) 'mexpt)
(cond ((alike1 (cadr e) var)
(if (or (equal pow 0) (not (alike1 (caddr e) pow))) 0 1))
((equal pow 0) e)
(t 0)))
((or (eq (caar e) 'mplus) (mbagp e))
(cons (if (eq (caar e) 'mplus) '(mplus) (car e))
(mapcar #'(lambda (e) (coeff e var pow)) (cdr e))))
((eq (caar e) 'mrat) (ratcoeff e var pow))
((equal pow 0) (if (coeff-contains-powers e var) 0 e))
((eq (caar e) 'mtimes)
(let ((term (if (equal pow 1) var (power var pow))))
(if (memalike term (cdr e)) ($delete term e 1) 0)))
(t 0))))
(defun coeff-contains-powers (e var)
(cond ((alike1 e var) t)
((atom e) nil)
((eq (caar e) 'mexpt)
(alike1 (cadr e) var))
((eq (caar e) 'mtimes)
(member t (mapcar #'(lambda (e)
(coeff-contains-powers e var)) (cdr e))))
(t nil)))
(let (my-powers my-num my-flag)
(declare (special my-powers my-num my-flag))
(defmfun $hipow (e var)
(findpowers e t var))
;; These work best on expanded "simple" expressions.
(defmfun $lopow (e var)
(findpowers e nil var))
(defun findpowers (e hiflg var)
(let (my-powers my-num my-flag)
(declare (special my-powers my-num my-flag))
(findpowers1 e hiflg var)
(cond ((null my-powers) (if (null my-num) 0 my-num))
(t (when my-num (setq my-powers (cons my-num my-powers)))
(maximin my-powers (if hiflg '$max '$min))))))
(defun findpowers1 (e hiflg var)
(cond ((alike1 e var) (checkpow 1 hiflg))
((atom e))
((eq (caar e) 'mplus)
(cond ((not (freel (cdr e) var))
(do ((e (cdr e) (cdr e))) ((null e))
(setq my-flag nil) (findpowers1 (car e) hiflg var)
(if (null my-flag) (checkpow 0 hiflg))))))
((and (eq (caar e) 'mexpt) (alike1 (cadr e) var)) (checkpow (caddr e) hiflg))
((specrepp e) (findpowers1 (specdisrep e) hiflg var))
(t (mapc #'(lambda (x) (findpowers1 x hiflg var)) (cdr e)))))
(defun checkpow (pow hiflg)
(setq my-flag t)
(cond ((not (numberp pow)) (setq my-powers (cons pow my-powers)))
((null my-num) (setq my-num pow))
(hiflg (if (> pow my-num) (setq my-num pow)))
((< pow my-num) (setq my-num pow)))))
|