/usr/share/maxima/5.32.1/src/comm2.lisp is in maxima-src 5.32.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; The data in this file contains enhancments. ;;;;;
;;; ;;;;;
;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
;;; All rights reserved ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package :maxima)
;; ** (c) Copyright 1982 Massachusetts Institute of Technology **
(macsyma-module comm2)
;;;; DIFF2
(declare-top (special $props $dotdistrib))
(defmfun diffint (e x)
(let (a)
(cond ((null (cdddr e))
(cond ((alike1 x (caddr e)) (cadr e))
((and (not (atom (caddr e))) (atom x) (not (free (caddr e) x)))
(mul2 (cadr e) (sdiff (caddr e) x)))
((or ($constantp (setq a (sdiff (cadr e) x)))
(and (atom (caddr e)) (free a (caddr e))))
(mul2 a (caddr e)))
(t (simplifya (list '(%integrate) a (caddr e)) t))))
((alike1 x (caddr e)) (addn (diffint1 (cdr e) x x) t))
(t (addn (cons (if (equal (setq a (sdiff (cadr e) x)) 0)
0
(simplifya (list '(%integrate) a (caddr e)
(cadddr e) (car (cddddr e)))
t))
(diffint1 (cdr e) x (caddr e)))
t)))))
(defun diffint1 (e x y)
(let ((u (sdiff (cadddr e) x)) (v (sdiff (caddr e) x)))
(list (if (pzerop u) 0 (mul2 u (maxima-substitute (cadddr e) y (car e))))
(if (pzerop v) 0 (mul3 v (maxima-substitute (caddr e) y (car e)) -1)))))
(defmfun diffsumprod (e x)
(cond ((or (not ($mapatom x)) (not (free (cadddr e) x)) (not (free (car (cddddr e)) x)))
(diff%deriv (list e x 1)))
((eq (caddr e) x) 0)
(t (let ((u (sdiff (cadr e) x)))
(setq u (simplifya (list '(%sum)
(if (eq (caar e) '%sum) u (div u (cadr e)))
(caddr e) (cadddr e) (car (cddddr e)))
t))
(if (eq (caar e) '%sum) u (mul2 e u))))))
(defmfun difflaplace (e x)
(cond ((or (not (atom x)) (eq (cadddr e) x)) (diff%deriv (list e x 1)))
((eq (caddr e) x) 0)
(t ($laplace (sdiff (cadr e) x) (caddr e) (cadddr e)))))
(defmfun diff-%at (e x)
(cond ((freeof x e) 0)
((not (freeofl x (hand-side (caddr e) 'r))) (diff%deriv (list e x 1)))
(t ($at (sdiff (cadr e) x) (caddr e)))))
(defmfun diffncexpt (e x)
(let ((base* (cadr e))
(pow (caddr e)))
(cond ((and (mnump pow) (or (not (eq (ml-typep pow) 'fixnum)) (< pow 0))) ; POW cannot be 0
(diff%deriv (list e x 1)))
((and (atom base*) (eq base* x) (free pow base*))
(mul2* pow (list '(mncexpt) base* (add2 pow -1))))
((ml-typep pow 'fixnum)
(let ((deriv (sdiff base* x))
(ans nil))
(do ((i 0 (1+ i))) ((= i pow))
(push (list '(mnctimes) (list '(mncexpt) base* i)
(list '(mnctimes) deriv
(list '(mncexpt) base* (- pow 1 i))))
ans))
(addn ans nil)))
((and (not (depends pow x)) (or (atom pow) (and (atom base*) (free pow base*))))
(let ((deriv (sdiff base* x))
(index (gensumindex)))
(simplifya
(list '(%sum)
(list '(mnctimes) (list '(mncexpt) base* index)
(list '(mnctimes) deriv
(list '(mncexpt) base*
(list '(mplus) pow -1 (list '(mtimes) -1 index)))))
index 0 (list '(mplus) pow -1)) nil)))
(t (diff%deriv (list e x 1))))))
(defmfun stotaldiff (e)
(cond ((or (mnump e) (constant e)) 0)
((or (atom e) (member 'array (cdar e) :test #'eq))
(let ((w (mget (if (atom e) e (caar e)) 'depends)))
(if w (cons '(mplus)
(mapcar #'(lambda (x)
(list '(mtimes) (chainrule e x) (list '(%del) x)))
w))
(list '(%del) e))))
((specrepp e) (stotaldiff (specdisrep e)))
((eq (caar e) 'mnctimes)
(let (($dotdistrib t))
(add2 (ncmuln (cons (stotaldiff (cadr e)) (cddr e)) t)
(ncmul2 (cadr e) (stotaldiff (ncmuln (cddr e) t))))))
((eq (caar e) 'mncexpt)
(if (and (ml-typep (caddr e) 'fixnum) (> (caddr e) 0))
(stotaldiff (list '(mnctimes) (cadr e)
(ncpower (cadr e) (1- (caddr e)))))
(list '(%derivative) e)))
(t (addn (cons 0 (mapcar #'(lambda (x)
(mul2 (sdiff e x) (list '(%del simp) x)))
(extractvars (margs e))))
t))))
(defun extractvars (e &aux vars)
(cond ((null e) nil)
((atom (car e))
(cond ((not (maxima-constantp (car e)))
(cond ((setq vars (mget (car e) 'depends))
;; The symbol has dependencies. Put the dependencies on
;; the list of extracted vars.
(union* vars (extractvars (cdr e))))
(t
;; Put the symbol on the list of extracted vars.
(union* (ncons (car e)) (extractvars (cdr e))))))
(t (extractvars (cdr e)))))
((member 'array (cdaar e) :test #'eq)
(union* (ncons (car e)) (extractvars (cdr e))))
(t (union* (extractvars (cdar e)) (extractvars (cdr e))))))
;;;; AT
;;dummy-variable-operators is defined in COMM, which uses it inside of SUBST1.
(declare-top (special atvars *atp* munbound dummy-variable-operators))
(defmfun $atvalue (exp eqs val)
(let (dl vl fun)
(cond ((notloreq eqs) (improper-arg-err eqs '$atvalue))
((or (atom exp) (and (eq (caar exp) '%derivative) (atom (cadr exp))))
(improper-arg-err exp '$atvalue)))
(cond ((not (eq (caar exp) '%derivative))
(setq fun (caar exp) vl (cdr exp) dl (listof0s vl)))
(t (setq fun (caaadr exp) vl (cdadr exp))
(dolist (v vl)
(setq dl (nconc dl (ncons (or (getf (cddr exp) v) 0)))))))
(if (or (mopp fun) (eq fun 'mqapply)) (improper-arg-err exp '$atvalue))
(atvarschk vl)
(do ((vl1 vl (cdr vl1)) (l atvars (cdr l))) ((null vl1))
(if (and (symbolp (car vl1)) (not (kindp (car vl1) '$constant)))
(setq val (maxima-substitute (car l) (car vl1) val))
(improper-arg-err (cons '(mlist) vl) '$atvalue)))
(setq eqs (if (eq (caar eqs) 'mequal) (list eqs) (cdr eqs)))
(setq eqs (do ((eqs eqs (cdr eqs)) (l)) ((null eqs) l)
(if (not (member (cadar eqs) vl :test #'eq))
(improper-arg-err (car eqs) '$atvalue))
(setq l (nconc l (ncons (cons (cadar eqs) (caddar eqs)))))))
(setq vl (do ((vl vl (cdr vl)) (l)) ((null vl) l)
(setq l (nconc l (ncons (cdr (or (assoc (car vl) eqs :test #'eq)
(cons nil munbound))))))))
(do ((atvalues (mget fun 'atvalues) (cdr atvalues)))
((null atvalues)
(mputprop fun (cons (list dl vl val) (mget fun 'atvalues)) 'atvalues))
(when (and (equal (caar atvalues) dl) (equal (cadar atvalues) vl))
(rplaca (cddar atvalues) val) (return nil)))
(add2lnc fun $props)
val))
(defprop %at simp-%at operators)
(defun simp-%at (expr ignored simp-flag)
(declare (ignore ignored))
(twoargcheck expr)
(let* ((arg (simpcheck (cadr expr) simp-flag))
(e (resimplify (caddr expr)))
(eqn (if ($listp e)
(cons '(mlist simp) (cdr ($sort e)))
e)))
(cond (($constantp arg) arg)
((alike1 eqn '((mlist))) arg)
(t (eqtest (list '(%at) arg eqn) expr)))))
(defmfun $at (expr ateqs)
(if (notloreq ateqs) (improper-arg-err ateqs '$at))
(atscan (let ((*atp* t)) ($psubstitute ateqs expr)) ateqs))
(defun atscan (expr ateqs)
(cond ((or (atom expr)
(eq (caar expr) 'mrat)
(like ateqs '((mlist))))
expr)
((eq (caar expr) '%derivative)
(or (and (not (atom (cadr expr)))
(let ((vl (cdadr expr)) dl)
(dolist (v vl)
(setq dl (nconc dl (ncons (or (getf (cddr expr) v) 0)))))
(atfind (caaadr expr)
(cdr ($psubstitute ateqs (cons '(mlist) vl)))
dl)))
(list '(%at) expr ateqs)))
((member (caar expr) dummy-variable-operators :test #'eq)
(list '(%at) expr ateqs))
((at1 expr))
(t (recur-apply #'(lambda (x) (atscan x ateqs)) expr))))
(defun at1 (expr)
(atfind (caar expr) (cdr expr) (listof0s (cdr expr))))
(defun atfind (fun vl dl)
(do ((atvalues (mget fun 'atvalues) (cdr atvalues)))
((null atvalues))
(and (equal (caar atvalues) dl)
(do ((l (cadar atvalues) (cdr l)) (vl vl (cdr vl)))
((null l) t)
(if (and (not (equal (car l) (car vl)))
(not (eq (car l) munbound)))
(return nil)))
(return (prog2
(atvarschk vl)
(substitutel vl atvars (caddar atvalues)))))))
(defun listof0s (llist)
(do ((llist llist (cdr llist)) (l nil (cons 0 l)))
((null llist) l)))
(declare-top (special $ratfac genvar varlist $keepfloat))
(defmvar $logconcoeffp nil)
(defmfun $logcontract (e)
(lgcreciprocal (logcon e))) ; E is assumed to be simplified.
(defun logcon (e)
(cond ((atom e) e)
((member (caar e) '(mplus mtimes) :test #'eq)
(if (not (lgcsimplep e)) (setq e (lgcsort e)))
(cond ((mplusp e) (lgcplus e))
((mtimesp e) (lgctimes e))
(t (logcon e))))
(t (recur-apply #'logcon e))))
;; The logcontract algorithm for a sum.
;;
;; The function accumulates the arguments of things like log(a)+log(b) into a
;; list called LOG. It calls out to lgctimes to deal with things like
;; a*log(b). When all the arguments have been processed, it simplifies all the
;; logarithmic arguments using sratsimp.
(defun lgcplus (e)
(let ((log) (notlogs))
(dolist (arg (cdr e))
(cond
((atom arg) (push arg notlogs))
;; Only gather up log(x), not log[x]. It's not particularly obvious
;; whether log(x)+log[y] should become log(x*y) or log[x*y], so we just
;; ignore the fact that log[x] is a logarithm.
((and (eq (caar arg) '%log)
(not (member 'array (car arg))))
(push (logcon (second arg)) log))
((eq (caar arg) 'mtimes)
(let ((y (lgctimes arg)))
(if (or (atom y) (not (eq (caar y) '%log)))
(push y notlogs)
(push (cadr y) log))))
(t
(push (logcon arg) notlogs))))
(cond
((null log)
(subst0 (cons '(mplus) (nreverse notlogs)) e))
(t
(let ((simplified-log (lgcsimp
(let (($ratfac t))
(sratsimp (muln log t))))))
(addn (cons simplified-log notlogs) t))))))
;; The logcontract algorithm for a product
;;
;; The main transformation this does is of the form 3*log(x) => log(x^3). To
;; make this work, we find the first %log term and insert any coefficients we
;; find into that. Coefficients are identified by LOGCONCOEFFP, which checks the
;; $LOGCONCOEFFP user variable.
(defun lgctimes (e)
;; Apply logcontract to the arguments. It's possible that the subsequent
;; simplification means that the result isn't a product any more. In that
;; case, just return it.
(setq e (subst0 (cons '(mtimes) (mapcar 'logcon (cdr e))) e))
(if (not (mtimesp e))
e
(let ((log) (notlogs) (decints))
(dolist (arg (cdr e))
(cond ((and (null log) (not (atom arg))
(eq (caar arg) '%log) (not (equal (cadr arg) -1)))
(setq log (cadr arg)))
((logconcoeffp arg) (push arg decints))
(t (setq notlogs (push arg notlogs)))))
(cond
((or (null log) (null decints)) e)
(t (muln (cons (lgcsimp (power log (muln decints t)))
notlogs)
t))))))
(defun lgcsimp (e)
(cond ((atom e)
;; e.g. log(1) -> 0, or log(%e) -> 1
(simplify (list '(%log) e)))
((and (mexptp e) (eq (cadr e) '$%e))
;; log(%e^expr) -> expr
(simplify (list '(%log) e)))
(t
(list '(%log simp) e))))
;; Tests that its argument is a sum of terms that are "simple".
;;
;; A "simple" term is either completely free of logarithms, is a logarithm
;; itself, or is a number times a logarithm.
;;
;; This function assumes that its argument is not an atom.
(defun lgcsimplep (e)
(flet ((lgc-nonsimple-arg-p (arg)
(not (or (atom arg)
(eq (caar arg) '%log)
(not (isinop arg '%log))
;; Product of a number with a logarithm e.g. 3*log(x)
(and (eq (caar arg) 'mtimes)
(null (cdddr arg))
(mnump (cadr arg))
(not (atom (caddr arg)))
(eq (caar (caddr arg)) '%log))))))
(and (eq (caar e) 'mplus)
(not (find-if #'lgc-nonsimple-arg-p (cdr e))))))
;; Sort the argument so that coefficients come before logarithms and logarithms
;; come before everything else.
(defun lgcsort (e)
(let ((logs) (notlogs) (decints) (varlist))
;; Split the variables in E into logs, notlogs and coefficients. The list of
;; variables is calculated by NEWVAR (and stored in the special variable
;; VARLIST, which is why we have to bind it above).
(dolist (var (newvar e))
(cond
((and (not (atom var)) (eq (caar var) '%log)) (push var logs))
((logconcoeffp var) (push var decints))
(t (push var notlogs))))
(let* ((vl (nreconc decints (nconc (sort logs #'great)
(nreverse notlogs))))
(e1 (ratdisrep (ratrep e vl))))
(if (alike1 e e1) e e1))))
;; lgcreciprocal performs the transformation log(1/x) => -log(x)
(defun lgcreciprocal (e)
(let (num denom)
(cond
((atom e) e)
((and (eq (caar e) '%log)
(setq num (member ($num (cadr e)) '(1 -1) :test #'equal))
(not (equal (setq denom ($denom (cadr e))) 1)))
(list '(mtimes simp) -1
(list '(%log simp) (if (= (car num) 1) denom (neg denom)))))
(t (recur-apply #'lgcreciprocal e)))))
(defun logconcoeffp (e)
(if $logconcoeffp
(is `(($logconcoeffp) ,e))
(maxima-integerp e)))
;;;; RTCON
(declare-top (special $radexpand $domain))
(defmvar $rootsconmode t)
(defun $rootscontract (e) ; E is assumed to be simplified
(let ((radpe (and $radexpand (not (eq $radexpand '$all)) (eq $domain '$real)))
($radexpand nil))
(rtcon e radpe)))
(defun rtcon (e radpe)
(cond ((atom e) e)
((eq (caar e) 'mtimes)
(do ((x (cdr e) (cdr x)) (roots) (notroots) (y))
((null x)
(cond ((null roots) (subst0 (cons '(mtimes) (nreverse notroots)) e))
(t (if $rootsconmode
(destructuring-let (((min gcd lcm) (rtc-getinfo roots)))
(cond ((and (= min gcd) (not (= gcd 1))
(not (= min lcm))
(not (eq $rootsconmode '$all)))
(setq roots
(rt-separ
(list gcd
(rtcon
(rtc-fixitup
(rtc-divide-by-gcd roots gcd)
nil) radpe)
1)
nil)))
((eq $rootsconmode '$all)
(setq roots
(rt-separ (simp-roots lcm roots)
nil))))))
(rtc-fixitup roots notroots))))
(cond ((atom (car x))
(cond ((eq (car x) '$%i) (setq roots (rt-separ (list 2 -1) roots)))
(t (setq notroots (cons (car x) notroots)))))
((and (eq (caaar x) 'mexpt) (ratnump (setq y (caddar x))))
(setq roots (rt-separ (list (caddr y)
(list '(mexpt)
(rtcon (cadar x) radpe) (cadr y)))
roots)))
((and radpe (eq (caaar x) 'mabs))
(setq roots (rt-separ (list 2 `((mexpt) ,(rtcon (cadar x) radpe) 2) 1)
roots)))
(t (setq notroots (cons (rtcon (car x) radpe) notroots))))))
((and radpe (eq (caar e) 'mabs))
(power (power (rtcon (cadr e) radpe) 2) '((rat simp) 1 2)))
(t (recur-apply #'(lambda (x) (rtcon x radpe)) e))))
;; RT-SEPAR separates like roots into their appropriate "buckets",
;; where a bucket looks like:
;; ((<denom of power> (<term to be raised> <numer of power>)
;; (<term> <numer>)) etc)
(defun rt-separ (a roots)
(let ((u (assoc (car a) roots :test #'equal)))
(cond (u (nconc u (cdr a))) (t (setq roots (cons a roots)))))
roots)
(defun simp-roots (lcm root-list)
(let (root1)
(do ((x root-list (cdr x)))
((null x) (push lcm root1))
(push (list '(mexpt) (muln (cdar x) nil) (quotient lcm (caar x)))
root1))))
(defun rtc-getinfo (llist)
(let ((m (caar llist)) (g (caar llist)) (l (caar llist)))
(do ((x (cdr llist) (cdr x)))
((null x) (list m g l))
(setq m (min m (caar x)) g (gcd g (caar x)) l (lcm l (caar x))))))
(defun rtc-fixitup (roots notroots)
(mapcar #'(lambda (x) (rplacd x (list (sratsimp (muln (cdr x) (not $rootsconmode))))))
roots)
(muln (nconc (mapcar #'(lambda (x) (power* (cadr x) `((rat) 1 ,(car x))))
roots)
notroots)
(not $rootsconmode)))
(defun rtc-divide-by-gcd (llist gcd)
(mapcar #'(lambda (x) (rplaca x (quotient (car x) gcd))) llist)
llist)
(defmfun $nterms (e)
(cond ((zerop1 e) 0)
((atom e) 1)
((eq (caar e) 'mtimes)
(if (equal -1 (cadr e)) (setq e (cdr e)))
(do ((l (cdr e) (cdr l)) (c 1 (* c ($nterms (car l)))))
((null l) c)))
((eq (caar e) 'mplus)
(do ((l (cdr e) (cdr l)) (c 0 (+ c ($nterms (car l)))))
((null l) c)))
((and (eq (caar e) 'mexpt) (integerp (caddr e)) (plusp (caddr e)))
($binomial (+ (caddr e) ($nterms (cadr e)) -1) (caddr e)))
((specrepp e) ($nterms (specdisrep e)))
(t 1)))
;;;; ATAN2
(declare-top (special $numer $logarc $trigsign))
;; atan2 distributes over lists, matrices, and equations
(defprop $atan2 (mlist $matrix mequal) distribute_over)
(defun simpatan2 (expr vestigial z) ; atan2(y,x) ~ atan(y/x)
(declare (ignore vestigial))
(twoargcheck expr)
(let (y x signy signx)
(setq y (simpcheck (cadr expr) z)
x (simpcheck (caddr expr) z))
(cond ((and (zerop1 y) (zerop1 x))
(merror (intl:gettext "atan2: atan2(0,0) is undefined.")))
( ;; float contagion
(and (or (numberp x) (ratnump x)) ; both numbers
(or (numberp y) (ratnump y)) ; ... but not bigfloats
(or $numer (floatp x) (floatp y))) ; at least one float
(atan2 ($float y) ($float x)))
( ;; bfloat contagion
(and (mnump x)
(mnump y)
(or ($bfloatp x) ($bfloatp y))) ; at least one bfloat
(setq x ($bfloat x)
y ($bfloat y))
(*fpatan y (list x)))
;; Simplifify infinities
((or (eq x '$inf)
(alike1 x '((mtimes) -1 $minf)))
;; Simplify atan2(y,inf) -> 0
0)
((or (eq x '$minf)
(alike1 x '((mtimes) -1 $inf)))
;; Simplify atan2(y,minf) -> %pi for realpart(y)>=0 or
;; -%pi for realpart(y)<0. When sign of y unknwon, return noun form.
(cond ((member (setq signy ($sign ($realpart x))) '($pos $pz $zero))
'$%pi)
((eq signy '$neg) (mul -1 '$%pi))
(t (eqtest (list '($atan2) y x) expr))))
((or (eq y '$inf)
(alike1 y '((mtimes) -1 $minf)))
;; Simplify atan2(inf,x) -> %pi/2
(div '$%pi 2))
((or (eq y '$minf)
(alike1 y '((mtimes -1 $inf))))
;; Simplify atan2(minf,x) -> -%pi/2
(div '$%pi -2))
((and (free x '$%i) (setq signx ($sign x))
(free y '$%i) (setq signy ($sign y))
(cond ((zerop1 y)
(cond ((eq signx '$neg) '$%pi)
((member signx '($pos $pz)) 0)))
((zerop1 x)
(cond ((eq signy '$neg) (div '$%pi -2))
((member signy '($pos $pz)) (div '$%pi 2))))
((alike1 y x)
(cond ((eq signx '$neg) (mul -3 (div '$%pi 4)))
((member signx '($pos $pz)) (div '$%pi 4))))
((alike1 y (mul -1 x))
(cond ((eq signx '$neg) (mul 3 (div '$%pi 4)))
((member signx '($pos $pz)) (div '$%pi -4)))))))
($logarc
(logarc '%atan2 (list ($logarc y) ($logarc x))))
((and $trigsign (eq t (mminusp* y)))
(neg (take '($atan2) (neg y) x)))
;; atan2(y,x) = atan(y/x) + pi sign(y) (1-sign(x))/2
((eq signx '$pos)
(take '(%atan) (div y x)))
((and (eq signx '$neg)
(member (setq signy ($csign y)) '($pos $neg) :test #'eq))
(add (take '(%atan) (div y x))
(porm (eq signy '$pos) '$%pi)))
((and (eq signx '$zero) (eq signy '$zero))
;; Unfortunately, we'll rarely get here. For example,
;; assume(equal(x,0)) atan2(x,x) simplifies via the alike1 case above
(merror (intl:gettext "atan2: atan2(0,0) is undefined.")))
(t (eqtest (list '($atan2) y x) expr)))))
;;;; ARITHF
(defmfun $fibtophi (e &optional (lnorecurse nil))
(cond ((atom e) e)
((eq (caar e) '$fib)
(setq e (cond (lnorecurse (cadr e)) (t ($fibtophi (cadr e) lnorecurse))))
(let ((phi (meval '$%phi)))
(div (add2 (power phi e) (neg (power (add2 1 (neg phi)) e)))
(add2 -1 (mul2 2 phi)))))
(t (recur-apply #'(lambda (x) ($fibtophi x lnorecurse)) e))))
(defmspec $numerval (l) (setq l (cdr l))
(do ((l l (cddr l)) (x (ncons '(mlist simp)))) ((null l) x)
(cond ((null (cdr l)) (merror (intl:gettext "numerval: expected an even number of arguments.")))
((not (symbolp (car l)))
(merror (intl:gettext "numerval: expected a symbol; found ~M") (car l)))
((boundp (car l))
(merror (intl:gettext "numerval: cannot declare a value because ~M is bound.") (car l))))
(mputprop (car l) (cadr l) '$numer)
(add2lnc (car l) $props)
(nconc x (ncons (car l)))))
(let (my-powers)
(declare (special my-powers))
(defmfun $derivdegree (e depvar var)
(let (my-powers) (declare (special my-powers)) (derivdeg1 e depvar var) (if (null my-powers) 0 (maximin my-powers '$max))))
(defun derivdeg1 (e depvar var)
(cond ((or (atom e) (specrepp e)))
((eq (caar e) '%derivative)
(cond ((alike1 (cadr e) depvar)
(do ((l (cddr e) (cddr l))) ((null l))
(cond ((alike1 (car l) var)
(return (setq my-powers (cons (cadr l) my-powers)))))))))
(t (mapc #'(lambda (x) (derivdeg1 x depvar var)) (cdr e))))))
;;;; BOX
;; Set the the property reversealias
(defprop mbox $box reversealias)
(defprop mlabox $box reversealias)
(defmfun $dpart (&rest args)
(mpart args nil t nil '$dpart))
(defmfun $lpart (e &rest args)
(mpart args nil (list e) nil '$lpart))
(defmfun $box (e &optional (l nil l?))
(if l?
(list '(mlabox) e (box-label l))
(list '(mbox) e)))
(defmfun box (e label)
(if (eq label t)
(list '(mbox) e)
($box e (car label))))
(defun box-label (x)
(if (atom x)
x
(coerce (mstring x) 'string)))
(defmfun $rembox (e &optional (l nil l?))
(let ((label (if l? (box-label l) '(nil))))
(rembox1 e label)))
(defun rembox1 (e label)
(cond ((atom e) e)
((or (and (eq (caar e) 'mbox)
(or (equal label '(nil)) (member label '($unlabelled $unlabeled) :test #'eq)))
(and (eq (caar e) 'mlabox)
(or (equal label '(nil)) (equal label (caddr e)))))
(rembox1 (cadr e) label))
(t (recur-apply #'(lambda (x) (rembox1 x label)) e))))
;;;; MAPF
(declare-top (special scanmapp))
(defmspec $scanmap (l)
(let ((scanmapp t))
(resimplify (apply #'scanmap1 (mmapev l)))))
(defmfun scanmap1 (func e &optional (flag nil flag?))
(let ((arg2 (specrepcheck e)) newarg2)
(cond ((eq func '$rat)
(merror (intl:gettext "scanmap: cannot apply 'rat'.")))
(flag?
(unless (eq flag '$bottomup)
(merror (intl:gettext "scanmap: third argument must be 'bottomup', if present; found ~M") flag))
(if (mapatom arg2)
(funcer func (ncons arg2))
(subst0 (funcer func
(ncons (mcons-op-args (mop arg2)
(mapcar #'(lambda (u)
(scanmap1 func u '$bottomup))
(margs arg2)))))
arg2)))
((mapatom arg2)
(funcer func (ncons arg2)))
(t
(setq newarg2 (specrepcheck (funcer func (ncons arg2))))
(cond ((mapatom newarg2)
newarg2)
((and (alike1 (cadr newarg2) arg2) (null (cddr newarg2)))
(subst0 (cons (ncons (caar newarg2))
(ncons (subst0
(mcons-op-args (mop arg2)
(mapcar #'(lambda (u) (scanmap1 func u))
(margs arg2)))
arg2)))
newarg2))
(t
(subst0 (mcons-op-args (mop newarg2)
(mapcar #'(lambda (u) (scanmap1 func u))
(margs newarg2)))
newarg2)))))))
(defun subgen (form) ; This function does mapping of subscripts.
(do ((ds (if (eq (caar form) 'mqapply) (list (car form) (cadr form))
(ncons (car form)))
(outermap1 #'dsfunc1 (simplify (car sub)) ds))
(sub (reverse (or (and (eq 'mqapply (caar form)) (cddr form))
(cdr form)))
(cdr sub)))
((null sub) ds)))
(defun dsfunc1 (dsn dso)
(cond ((or (atom dso) (atom (car dso))) dso)
((member 'array (car dso) :test #'eq)
(cond ((eq 'mqapply (caar dso))
(nconc (list (car dso) (cadr dso) dsn) (cddr dso)))
(t (nconc (list (car dso) dsn) (cdr dso)))))
(t (mapcar #'(lambda (d) (dsfunc1 dsn d)) dso))))
;;;; GENMAT
(defmfun $genmatrix (a i2 &optional (j2 i2) (i1 1) (j1 i1))
(let ((f) (l (ncons '($matrix))))
(setq f (if (or (symbolp a) (hash-table-p a) (arrayp a))
#'(lambda (i j) (meval (list (list a 'array) i j)))
#'(lambda (i j) (mfuncall a i j))))
(if (notevery #'fixnump (list i2 j2 i1 j1))
(merror (intl:gettext "genmatrix: bounds must be integers; found ~M, ~M, ~M, ~M") i2 j2 i1 j1))
(if (or (> i1 i2) (> j1 j2))
(merror (intl:gettext "genmatrix: upper bounds must be greater than or equal to lower bounds; found ~M, ~M, ~M, ~M") i2 j2 i1 j1))
(dotimes (i (1+ (- i2 i1)))
(nconc l (ncons (ncons '(mlist)))))
(do ((i i1 (1+ i))
(l (cdr l) (cdr l)))
((> i i2))
(do ((j j1 (1+ j)))
((> j j2))
(nconc (car l) (ncons (funcall f i j)))))
l))
; Execute deep copy for copymatrix and copylist.
; Resolves SF bug report [ 1224960 ] sideeffect with copylist.
; An optimization would be to call COPY-TREE only on mutable expressions.
(defmfun $copymatrix (x)
(unless ($matrixp x)
(merror (intl:gettext "copymatrix: argument must be a matrix; found ~M") x))
(copy-tree x))
(defmfun $copylist (x)
(unless ($listp x)
(merror (intl:gettext "copylist: argument must be a list; found ~M") x))
(copy-tree x))
(defmfun $copy (x)
(copy-tree x))
;;;; ADDROW
(defmfun $addrow (m &rest rows)
(declare (dynamic-extent rows))
(cond ((not ($matrixp m))
(merror
(intl:gettext "addrow: first argument must be a matrix; found ~M")
m))
((null rows) m)
(t
(let ((m (copy-tree m)))
(dolist (r rows m)
(setq m (addrow m r)))))))
(defmfun $addcol (m &rest cols)
(declare (dynamic-extent cols))
(cond ((not ($matrixp m)) (merror (intl:gettext "addcol: first argument must be a matrix; found ~M") m))
((null cols) m)
(t (let ((m ($transpose m)))
(dolist (c cols ($transpose m))
(setq m (addrow m ($transpose c))))))))
(defun addrow (m r)
(cond ((not (mxorlistp r)) (merror (intl:gettext "addrow or addcol: argument must be a matrix or list; found ~M") r))
((and (cdr m)
(or (and (eq (caar r) 'mlist) (not (= (length (cadr m)) (length r))))
(and (eq (caar r) '$matrix)
(not (= (length (cadr m)) (length (cadr r))))
(prog2 (setq r ($transpose r))
(not (= (length (cadr m)) (length (cadr r))))))))
(merror (intl:gettext "addrow or addcol: incompatible structure."))))
(append m (if (eq (caar r) '$matrix) (cdr r) (ncons r))))
;;;; ARRAYF
(defmfun $arraymake (ary subs)
(cond ((or (not ($listp subs)) (null (cdr subs)))
(merror (intl:gettext "arraymake: second argument must be a list of one or more elements; found ~M") subs))
((eq (ml-typep ary) 'symbol)
(cons (cons (getopr ary) '(array)) (cdr subs)))
(t (cons '(mqapply array) (cons ary (cdr subs))))))
(defmspec $arrayinfo (ary)
(setq ary (cdr ary))
(arrayinfo-aux (car ary) (getvalue (car ary))))
(defun arrayinfo-aux (sym val)
(prog (arra ary)
(setq arra val)
(setq ary sym)
(if (and arra
(or (hash-table-p arra)
(arrayp arra)
(eq (marray-type arra) '$functional)))
(cond ((hash-table-p arra)
(let ((dim1 (gethash 'dim1 arra)))
(return (list* '(mlist) '$hash_table (if dim1 1 t)
(loop for u being the hash-keys in arra using (hash-value v)
unless (eq u 'dim1)
collect
(if (progn v dim1) ;;ignore v
u
(cons '(mlist simp) u)))))))
((arrayp arra)
(return (let ((dims (array-dimensions arra)))
(list '(mlist) '$declared
;; they don't want more info (array-type arra)
(length dims)
(cons '(mlist) (mapcar #'1- dims))))))
((eq (marray-type arra) '$functional)
(return (arrayinfo-aux sym (mgenarray-content arra)))))
(let ((gen (safe-mgetl sym '(hashar array))) ary1)
(when (null gen)
(merror (intl:gettext "arrayinfo: ~M is not an array.") ary))
(setq ary1 (cadr gen))
(cond ((eq (car gen) 'hashar)
(setq ary1 (symbol-array ary1))
(return (append '((mlist simp) $hashed)
(cons (aref ary1 2)
(do ((i 3 (1+ i)) (l)
(n (cadr (arraydims ary1))))
((= i n) (sort l #'(lambda (x y) (great y x))))
(do ((l1 (aref ary1 i) (cdr l1)))
((null l1))
(push (cons '(mlist simp) (caar l1)) l)))))))
(t (setq ary1 (arraydims ary1))
(return (list '(mlist simp)
(cond ((safe-get ary 'array)
(cdr (assoc (car ary1)
'((t . $complete) (fixnum . $integer)
(flonum . $float)) :test #'eq)))
(t '$declared))
(length (cdr ary1))
(cons '(mlist simp) (mapcar #'1- (cdr ary1)))))))))))
;;;; ALIAS
(declare-top (special greatorder lessorder))
(defmspec $ordergreat (l)
(if greatorder (merror (intl:gettext "ordergreat: reordering is not allowed.")))
(makorder (setq greatorder (reverse (cdr l))) '_))
(defmspec $orderless (l)
(if lessorder (merror (intl:gettext "orderless: reordering is not allowed.")))
(makorder (setq lessorder (cdr l)) '|#|))
(defun makorder (l char)
(do ((l l (cdr l))
(n 101 (1+ n)))
((null l) '$done)
(alias (car l)
(implode (nconc (ncons char) (mexploden n)
(exploden (stripdollar (car l))))))))
(defmfun $unorder ()
(let ((l (delete nil
(cons '(mlist simp)
(nconc (mapcar #'(lambda (x) (remalias (getalias x))) lessorder)
(mapcar #'(lambda (x) (remalias (getalias x))) greatorder)))
:test #'eq)))
(setq lessorder nil greatorder nil)
l))
;;;; CONCAT
(defun $concat (&rest l)
(when (null l)
(merror (intl:gettext "concat: there must be at least one argument.")))
(let ((result-is-a-string (or (numberp (car l)) (stringp (car l)))))
(setq l (mapcan #'(lambda (x) (unless (atom x) (merror (intl:gettext "concat: argument must be an atom; found ~M") x)) (string* x)) l))
(if result-is-a-string
(coerce l 'string)
(getalias (implode (cons '#\$ l))))))
|