This file is indexed.

/usr/share/maxima/5.32.1/src/comm2.lisp is in maxima-src 5.32.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
;;; -*-  Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;     The data in this file contains enhancments.                    ;;;;;
;;;                                                                    ;;;;;
;;;  Copyright (c) 1984,1987 by William Schelter,University of Texas   ;;;;;
;;;     All rights reserved                                            ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(in-package :maxima)
;;	** (c) Copyright 1982 Massachusetts Institute of Technology **

(macsyma-module comm2)

;;;; DIFF2

(declare-top (special $props $dotdistrib))

(defmfun diffint (e x)
  (let (a)
    (cond ((null (cdddr e))
	   (cond ((alike1 x (caddr e)) (cadr e))
		 ((and (not (atom (caddr e))) (atom x) (not (free (caddr e) x)))
		  (mul2 (cadr e) (sdiff (caddr e) x)))
		 ((or ($constantp (setq a (sdiff (cadr e) x)))
		      (and (atom (caddr e)) (free a (caddr e))))
		  (mul2 a (caddr e)))
		 (t (simplifya (list '(%integrate) a (caddr e)) t))))
	  ((alike1 x (caddr e)) (addn (diffint1 (cdr e) x x) t))
	  (t (addn (cons (if (equal (setq a (sdiff (cadr e) x)) 0)
			     0
			     (simplifya (list '(%integrate) a (caddr e)
					      (cadddr e) (car (cddddr e)))
					t))
			 (diffint1 (cdr e) x (caddr e)))
		   t)))))

(defun diffint1 (e x y)
  (let ((u (sdiff (cadddr e) x)) (v (sdiff (caddr e) x)))
    (list (if (pzerop u) 0 (mul2 u (maxima-substitute (cadddr e) y (car e))))
	  (if (pzerop v) 0 (mul3 v (maxima-substitute (caddr e) y (car e)) -1)))))

(defmfun diffsumprod (e x)
  (cond ((or (not ($mapatom x)) (not (free (cadddr e) x)) (not (free (car (cddddr e)) x)))
	 (diff%deriv (list e x 1)))
	((eq (caddr e) x) 0)
	(t (let ((u (sdiff (cadr e) x)))
	     (setq u (simplifya (list '(%sum)
				      (if (eq (caar e) '%sum) u (div u (cadr e)))
				      (caddr e) (cadddr e) (car (cddddr e)))
				t))
	     (if (eq (caar e) '%sum) u (mul2 e u))))))

(defmfun difflaplace (e x)
  (cond ((or (not (atom x)) (eq (cadddr e) x)) (diff%deriv (list e x 1)))
	((eq (caddr e) x) 0)
	(t ($laplace (sdiff (cadr e) x) (caddr e) (cadddr e)))))

(defmfun diff-%at (e x)
  (cond ((freeof x e) 0)
	((not (freeofl x (hand-side (caddr e) 'r))) (diff%deriv (list e x 1)))
	(t ($at (sdiff (cadr e) x) (caddr e)))))

(defmfun diffncexpt (e x)
  (let ((base* (cadr e))
	(pow (caddr e)))
    (cond ((and (mnump pow) (or (not (eq (ml-typep pow) 'fixnum)) (< pow 0))) ; POW cannot be 0
	   (diff%deriv (list e x 1)))
	  ((and (atom base*) (eq base* x) (free pow base*))
	   (mul2* pow (list '(mncexpt) base* (add2 pow -1))))
	  ((ml-typep pow 'fixnum)
	   (let ((deriv (sdiff base* x))
		 (ans nil))
	     (do ((i 0 (1+ i))) ((= i pow))
	       (push (list '(mnctimes) (list '(mncexpt) base* i)
			   (list '(mnctimes) deriv
				 (list '(mncexpt) base* (- pow 1 i))))
		     ans))
	     (addn ans nil)))
	  ((and (not (depends pow x)) (or (atom pow) (and (atom base*) (free pow base*))))
	   (let ((deriv (sdiff base* x))
		 (index (gensumindex)))
	     (simplifya
	      (list '(%sum)
		    (list '(mnctimes) (list '(mncexpt) base* index)
			  (list '(mnctimes) deriv
				(list '(mncexpt) base*
				      (list '(mplus) pow -1 (list '(mtimes) -1 index)))))
		    index 0 (list '(mplus) pow -1)) nil)))
	  (t (diff%deriv (list e x 1))))))

(defmfun stotaldiff (e)
  (cond ((or (mnump e) (constant e)) 0)
	((or (atom e) (member 'array (cdar e) :test #'eq))
	 (let ((w (mget (if (atom e) e (caar e)) 'depends)))
	   (if w (cons '(mplus)
		       (mapcar #'(lambda (x)
				   (list '(mtimes) (chainrule e x) (list '(%del) x)))
			       w))
	       (list '(%del) e))))
	((specrepp e) (stotaldiff (specdisrep e)))
	((eq (caar e) 'mnctimes)
	 (let (($dotdistrib t))
	   (add2 (ncmuln (cons (stotaldiff (cadr e)) (cddr e)) t)
		 (ncmul2 (cadr e) (stotaldiff (ncmuln (cddr e) t))))))
	((eq (caar e) 'mncexpt)
	 (if (and (ml-typep (caddr e) 'fixnum) (> (caddr e) 0))
	     (stotaldiff (list '(mnctimes) (cadr e)
			       (ncpower (cadr e) (1- (caddr e)))))
	     (list '(%derivative) e)))
	(t (addn (cons 0 (mapcar #'(lambda (x)
				     (mul2 (sdiff e x) (list '(%del simp) x)))
				 (extractvars (margs e))))
		 t))))

(defun extractvars (e &aux vars)
  (cond ((null e) nil)
	((atom (car e))
	 (cond ((not (maxima-constantp (car e)))
	        (cond ((setq vars (mget (car e) 'depends))
	               ;; The symbol has dependencies. Put the dependencies on
	               ;; the list of extracted vars.
	               (union* vars (extractvars (cdr e))))
	              (t
	               ;; Put the symbol on the list of extracted vars.
	               (union* (ncons (car e)) (extractvars (cdr e))))))
	     (t (extractvars (cdr e)))))
	((member 'array (cdaar e) :test #'eq)
	 (union* (ncons (car e)) (extractvars (cdr e))))
	(t (union* (extractvars (cdar e)) (extractvars (cdr e))))))

;;;; AT

;;dummy-variable-operators is defined in COMM, which uses it inside of SUBST1.
(declare-top (special atvars *atp* munbound dummy-variable-operators))

(defmfun $atvalue (exp eqs val)
  (let (dl vl fun)
    (cond ((notloreq eqs) (improper-arg-err eqs '$atvalue))
	  ((or (atom exp) (and (eq (caar exp) '%derivative) (atom (cadr exp))))
	   (improper-arg-err exp '$atvalue)))
    (cond ((not (eq (caar exp) '%derivative))
	   (setq fun (caar exp) vl (cdr exp) dl (listof0s vl)))
	  (t (setq fun (caaadr exp) vl (cdadr exp))
	     (dolist (v vl)
	       (setq dl (nconc dl (ncons (or (getf (cddr exp) v) 0)))))))
    (if (or (mopp fun) (eq fun 'mqapply)) (improper-arg-err exp '$atvalue))
    (atvarschk vl)
    (do ((vl1 vl (cdr vl1)) (l atvars (cdr l))) ((null vl1))
      (if (and (symbolp (car vl1)) (not (kindp (car vl1) '$constant)))
	  (setq val (maxima-substitute (car l) (car vl1) val))
	  (improper-arg-err (cons '(mlist) vl) '$atvalue)))
    (setq eqs (if (eq (caar eqs) 'mequal) (list eqs) (cdr eqs)))
    (setq eqs (do ((eqs eqs (cdr eqs)) (l)) ((null eqs) l)
		(if (not (member (cadar eqs) vl :test #'eq))
		    (improper-arg-err (car eqs) '$atvalue))
		(setq l (nconc l (ncons (cons (cadar eqs) (caddar eqs)))))))
    (setq vl (do ((vl vl (cdr vl)) (l)) ((null vl) l)
	       (setq l (nconc l (ncons (cdr (or (assoc (car vl) eqs :test #'eq)
						(cons nil munbound))))))))
    (do ((atvalues (mget fun 'atvalues) (cdr atvalues)))
	((null atvalues)
	 (mputprop fun (cons (list dl vl val) (mget fun 'atvalues)) 'atvalues))
      (when (and (equal (caar atvalues) dl) (equal (cadar atvalues) vl))
	(rplaca (cddar atvalues) val) (return nil)))
    (add2lnc fun $props)
    val))

(defprop %at simp-%at operators)

(defun simp-%at (expr ignored simp-flag)
  (declare (ignore ignored))
  (twoargcheck expr)
  (let* ((arg (simpcheck (cadr expr) simp-flag))
         (e (resimplify (caddr expr)))
         (eqn (if ($listp e)
                  (cons '(mlist simp) (cdr ($sort e)))
                  e)))
    (cond (($constantp arg) arg)
          ((alike1 eqn '((mlist))) arg)
          (t (eqtest (list '(%at) arg eqn) expr)))))

(defmfun $at (expr ateqs)
  (if (notloreq ateqs) (improper-arg-err ateqs '$at))
  (atscan (let ((*atp* t)) ($psubstitute ateqs expr)) ateqs))

(defun atscan (expr ateqs)
  (cond ((or (atom expr)
             (eq (caar expr) 'mrat)
             (like ateqs '((mlist))))
         expr)
        ((eq (caar expr) '%derivative)
         (or (and (not (atom (cadr expr)))
                  (let ((vl (cdadr expr)) dl)
                    (dolist (v vl)
                      (setq dl (nconc dl (ncons (or (getf (cddr expr) v) 0)))))
                    (atfind (caaadr expr)
                            (cdr ($psubstitute ateqs (cons '(mlist) vl)))
                            dl)))
             (list '(%at) expr ateqs)))
        ((member (caar expr) dummy-variable-operators :test #'eq)
         (list '(%at) expr ateqs))
        ((at1 expr))
        (t (recur-apply #'(lambda (x) (atscan x ateqs)) expr))))

(defun at1 (expr)
  (atfind (caar expr) (cdr expr) (listof0s (cdr expr))))

(defun atfind (fun vl dl)
  (do ((atvalues (mget fun 'atvalues) (cdr atvalues)))
      ((null atvalues))
    (and (equal (caar atvalues) dl)
	 (do ((l (cadar atvalues) (cdr l)) (vl vl (cdr vl)))
	     ((null l) t)
	   (if (and (not (equal (car l) (car vl)))
		    (not (eq (car l) munbound)))
	       (return nil)))
         (return (prog2
                    (atvarschk vl)
                    (substitutel vl atvars (caddar atvalues)))))))

(defun listof0s (llist)
  (do ((llist llist (cdr llist)) (l nil (cons 0 l)))
      ((null llist) l)))

(declare-top (special $ratfac genvar varlist $keepfloat))

(defmvar $logconcoeffp nil)

(defmfun $logcontract (e)
  (lgcreciprocal (logcon e))) ; E is assumed to be simplified.

(defun logcon (e)
  (cond ((atom e) e)
	((member (caar e) '(mplus mtimes) :test #'eq)
	 (if (not (lgcsimplep e)) (setq e (lgcsort e)))
         (cond ((mplusp e) (lgcplus e))
               ((mtimesp e) (lgctimes e))
               (t (logcon e))))
	(t (recur-apply #'logcon e))))

;; The logcontract algorithm for a sum.
;;
;; The function accumulates the arguments of things like log(a)+log(b) into a
;; list called LOG. It calls out to lgctimes to deal with things like
;; a*log(b). When all the arguments have been processed, it simplifies all the
;; logarithmic arguments using sratsimp.
(defun lgcplus (e)
  (let ((log) (notlogs))
    (dolist (arg (cdr e))
      (cond
        ((atom arg) (push arg notlogs))
        ;; Only gather up log(x), not log[x]. It's not particularly obvious
        ;; whether log(x)+log[y] should become log(x*y) or log[x*y], so we just
        ;; ignore the fact that log[x] is a logarithm.
        ((and (eq (caar arg) '%log)
              (not (member 'array (car arg))))
         (push (logcon (second arg)) log))
        ((eq (caar arg) 'mtimes)
         (let ((y (lgctimes arg)))
           (if (or (atom y) (not (eq (caar y) '%log)))
               (push y notlogs)
               (push (cadr y) log))))
        (t
         (push (logcon arg) notlogs))))
    (cond
      ((null log)
       (subst0 (cons '(mplus) (nreverse notlogs)) e))
      (t
       (let ((simplified-log (lgcsimp
                              (let (($ratfac t))
                                (sratsimp (muln log t))))))
         (addn (cons simplified-log notlogs) t))))))

;; The logcontract algorithm for a product
;;
;; The main transformation this does is of the form 3*log(x) => log(x^3). To
;; make this work, we find the first %log term and insert any coefficients we
;; find into that. Coefficients are identified by LOGCONCOEFFP, which checks the
;; $LOGCONCOEFFP user variable.
(defun lgctimes (e)
  ;; Apply logcontract to the arguments. It's possible that the subsequent
  ;; simplification means that the result isn't a product any more. In that
  ;; case, just return it.
  (setq e (subst0 (cons '(mtimes) (mapcar 'logcon (cdr e))) e))
  (if (not (mtimesp e))
      e
      (let ((log) (notlogs) (decints))
        (dolist (arg (cdr e))
          (cond ((and (null log) (not (atom arg))
                      (eq (caar arg) '%log) (not (equal (cadr arg) -1)))
                 (setq log (cadr arg)))
                ((logconcoeffp arg) (push arg decints))
                (t (setq notlogs (push arg notlogs)))))
        (cond
          ((or (null log) (null decints)) e)
          (t (muln (cons (lgcsimp (power log (muln decints t)))
                         notlogs)
                   t))))))

(defun lgcsimp (e)
  (cond ((atom e)
         ;; e.g. log(1) -> 0, or log(%e) -> 1
         (simplify (list '(%log) e)))
        ((and (mexptp e) (eq (cadr e) '$%e))
         ;; log(%e^expr) -> expr
         (simplify (list '(%log) e)))
        (t
         (list '(%log simp) e))))

;; Tests that its argument is a sum of terms that are "simple".
;;
;; A "simple" term is either completely free of logarithms, is a logarithm
;; itself, or is a number times a logarithm.
;;
;; This function assumes that its argument is not an atom.
(defun lgcsimplep (e)
  (flet ((lgc-nonsimple-arg-p (arg)
           (not (or (atom arg)
                    (eq (caar arg) '%log)
                    (not (isinop arg '%log))
                    ;; Product of a number with a logarithm e.g. 3*log(x)
                    (and (eq (caar arg) 'mtimes)
                         (null (cdddr arg))
                         (mnump (cadr arg))
                         (not (atom (caddr arg)))
                         (eq (caar (caddr arg)) '%log))))))
    (and (eq (caar e) 'mplus)
         (not (find-if #'lgc-nonsimple-arg-p (cdr e))))))

;; Sort the argument so that coefficients come before logarithms and logarithms
;; come before everything else.
(defun lgcsort (e)
  (let ((logs) (notlogs) (decints) (varlist))
    ;; Split the variables in E into logs, notlogs and coefficients. The list of
    ;; variables is calculated by NEWVAR (and stored in the special variable
    ;; VARLIST, which is why we have to bind it above).
    (dolist (var (newvar e))
      (cond
        ((and (not (atom var)) (eq (caar var) '%log)) (push var logs))
        ((logconcoeffp var) (push var decints))
        (t (push var notlogs))))
    (let* ((vl (nreconc decints (nconc (sort logs #'great)
                                       (nreverse notlogs))))
           (e1 (ratdisrep (ratrep e vl))))
      (if (alike1 e e1) e e1))))

;; lgcreciprocal performs the transformation log(1/x) => -log(x)
(defun lgcreciprocal (e)
  (let (num denom)
    (cond
      ((atom e) e)
      ((and (eq (caar e) '%log)
            (setq num (member ($num (cadr e)) '(1 -1) :test #'equal))
            (not (equal (setq denom ($denom (cadr e))) 1)))
       (list '(mtimes simp) -1
             (list '(%log simp) (if (= (car num) 1) denom (neg denom)))))
      (t (recur-apply #'lgcreciprocal e)))))

(defun logconcoeffp (e)
  (if $logconcoeffp
      (is `(($logconcoeffp) ,e))
      (maxima-integerp e)))

;;;; RTCON

(declare-top (special $radexpand $domain))

(defmvar $rootsconmode t)

(defun $rootscontract (e)	       ; E is assumed to be simplified
  (let ((radpe (and $radexpand (not (eq $radexpand '$all)) (eq $domain '$real)))
	($radexpand nil))
    (rtcon e radpe)))

(defun rtcon (e radpe)
  (cond ((atom e) e)
	((eq (caar e) 'mtimes)
	 (do ((x (cdr e) (cdr x)) (roots) (notroots) (y))
	     ((null x)
	      (cond ((null roots) (subst0 (cons '(mtimes) (nreverse notroots)) e))
		    (t (if $rootsconmode
			   (destructuring-let (((min gcd lcm) (rtc-getinfo roots)))
			     (cond ((and (= min gcd) (not (= gcd 1))
					 (not (= min lcm))
					 (not (eq $rootsconmode '$all)))
				    (setq roots
					  (rt-separ
					   (list gcd
						 (rtcon
						  (rtc-fixitup
						   (rtc-divide-by-gcd roots gcd)
						   nil) radpe)
						 1)
					   nil)))
				   ((eq $rootsconmode '$all)
				    (setq roots
					  (rt-separ (simp-roots lcm roots)
						    nil))))))
		       (rtc-fixitup roots notroots))))
	   (cond ((atom (car x))
		  (cond ((eq (car x) '$%i) (setq roots (rt-separ (list 2 -1) roots)))
			(t (setq notroots (cons (car x) notroots)))))
		 ((and (eq (caaar x) 'mexpt) (ratnump (setq y (caddar x))))
		  (setq roots (rt-separ (list (caddr y)
					      (list '(mexpt)
						    (rtcon (cadar x) radpe) (cadr y)))
					roots)))

		 ((and radpe (eq (caaar x) 'mabs))
		  (setq roots (rt-separ (list 2 `((mexpt) ,(rtcon (cadar x) radpe) 2) 1)
					roots)))
		 (t (setq notroots (cons (rtcon (car x) radpe) notroots))))))
	((and radpe (eq (caar e) 'mabs))
	 (power (power (rtcon (cadr e) radpe) 2) '((rat simp) 1 2)))
	(t (recur-apply #'(lambda (x) (rtcon x radpe)) e))))

;; RT-SEPAR separates like roots into their appropriate "buckets",
;; where a bucket looks like:
;; ((<denom of power> (<term to be raised> <numer of power>)
;;		     (<term> <numer>)) etc)

(defun rt-separ (a roots)
  (let ((u (assoc (car a) roots :test #'equal)))
    (cond (u (nconc u (cdr a))) (t (setq roots (cons a roots)))))
  roots)

(defun simp-roots (lcm root-list)
  (let (root1)
    (do ((x root-list (cdr x)))
	((null x) (push lcm root1))
      (push (list '(mexpt) (muln (cdar x) nil) (quotient lcm (caar x)))
	    root1))))

(defun rtc-getinfo (llist)
  (let ((m (caar llist)) (g (caar llist)) (l (caar llist)))
    (do ((x (cdr llist) (cdr x)))
	((null x) (list m g l))
      (setq m (min m (caar x)) g (gcd g (caar x)) l (lcm l (caar x))))))

(defun rtc-fixitup (roots notroots)
  (mapcar #'(lambda (x) (rplacd x (list (sratsimp (muln (cdr x) (not $rootsconmode))))))
	  roots)
  (muln (nconc (mapcar #'(lambda (x) (power* (cadr x) `((rat) 1 ,(car x))))
		       roots)
	       notroots)
	(not $rootsconmode)))

(defun rtc-divide-by-gcd (llist gcd)
  (mapcar #'(lambda (x) (rplaca x (quotient (car x) gcd))) llist)
  llist)

(defmfun $nterms (e)
  (cond ((zerop1 e) 0)
	((atom e) 1)
	((eq (caar e) 'mtimes)
	 (if (equal -1 (cadr e)) (setq e (cdr e)))
	 (do ((l (cdr e) (cdr l)) (c 1 (* c ($nterms (car l)))))
	     ((null l) c)))
	((eq (caar e) 'mplus)
	 (do ((l (cdr e) (cdr l)) (c 0 (+ c ($nterms (car l)))))
	     ((null l) c)))
	((and (eq (caar e) 'mexpt) (integerp (caddr e)) (plusp (caddr e)))
	 ($binomial (+ (caddr e) ($nterms (cadr e)) -1) (caddr e)))
	((specrepp e) ($nterms (specdisrep e)))
	(t 1)))

;;;; ATAN2

(declare-top (special $numer $logarc $trigsign))

;; atan2 distributes over lists, matrices, and equations
(defprop $atan2 (mlist $matrix mequal) distribute_over)

(defun simpatan2 (expr vestigial z)     ; atan2(y,x) ~ atan(y/x)
  (declare (ignore vestigial))
  (twoargcheck expr)
  (let (y x signy signx)
    (setq y (simpcheck (cadr expr) z)
          x (simpcheck (caddr expr) z))
    (cond ((and (zerop1 y) (zerop1 x))
           (merror (intl:gettext "atan2: atan2(0,0) is undefined.")))
          ( ;; float contagion
           (and (or (numberp x) (ratnump x))       ; both numbers
                (or (numberp y) (ratnump y))       ; ... but not bigfloats
                (or $numer (floatp x) (floatp y))) ; at least one float
           (atan2 ($float y) ($float x)))
          ( ;; bfloat contagion
           (and (mnump x)
                (mnump y)
                (or ($bfloatp x) ($bfloatp y)))    ; at least one bfloat
           (setq x ($bfloat x)
                 y ($bfloat y))
           (*fpatan y (list x)))
          ;; Simplifify infinities
          ((or (eq x '$inf)
               (alike1 x '((mtimes) -1 $minf)))
           ;; Simplify atan2(y,inf) -> 0
           0)
          ((or (eq x '$minf)
               (alike1 x '((mtimes) -1 $inf)))
           ;; Simplify atan2(y,minf) -> %pi for realpart(y)>=0 or 
           ;; -%pi for realpart(y)<0. When sign of y unknwon, return noun form.
           (cond ((member (setq signy ($sign ($realpart x))) '($pos $pz $zero)) 
                  '$%pi)
                 ((eq signy '$neg) (mul -1 '$%pi))
                 (t (eqtest (list '($atan2) y x) expr))))
          ((or (eq y '$inf)
               (alike1 y '((mtimes) -1 $minf)))
           ;; Simplify atan2(inf,x) -> %pi/2
           (div '$%pi 2))
          ((or (eq y '$minf)
               (alike1 y '((mtimes -1 $inf))))
           ;; Simplify atan2(minf,x) -> -%pi/2
           (div '$%pi -2))
          ((and (free x '$%i) (setq signx ($sign x))
                (free y '$%i) (setq signy ($sign y))
                (cond ((zerop1 y)
                       (cond ((eq signx '$neg) '$%pi)
                             ((member signx '($pos $pz)) 0)))
                      ((zerop1 x)
                       (cond ((eq signy '$neg) (div '$%pi -2))
                             ((member signy '($pos $pz)) (div '$%pi 2))))
                      ((alike1 y x)
                       (cond ((eq signx '$neg) (mul -3 (div '$%pi 4)))
                             ((member signx '($pos $pz)) (div '$%pi 4))))
                      ((alike1 y (mul -1 x))
                       (cond ((eq signx '$neg) (mul 3 (div '$%pi 4)))
                             ((member signx '($pos $pz)) (div '$%pi -4)))))))
          ($logarc
           (logarc '%atan2 (list ($logarc y) ($logarc x))))
          ((and $trigsign (eq t (mminusp* y)))
           (neg (take '($atan2) (neg y) x)))
          ;; atan2(y,x) = atan(y/x) + pi sign(y) (1-sign(x))/2
          ((eq signx '$pos)
           (take '(%atan) (div y x)))
          ((and (eq signx '$neg)
                (member (setq signy ($csign y)) '($pos $neg) :test #'eq))
           (add (take '(%atan) (div y x))
                (porm (eq signy '$pos) '$%pi)))
          ((and (eq signx '$zero) (eq signy '$zero))
           ;; Unfortunately, we'll rarely get here.  For example,
           ;; assume(equal(x,0)) atan2(x,x) simplifies via the alike1 case above
           (merror (intl:gettext "atan2: atan2(0,0) is undefined.")))
          (t (eqtest (list '($atan2) y x) expr)))))

;;;; ARITHF

(defmfun $fibtophi (e &optional (lnorecurse nil))
  (cond ((atom e) e)
	((eq (caar e) '$fib)
	 (setq e (cond (lnorecurse (cadr e)) (t ($fibtophi (cadr e) lnorecurse))))
	 (let ((phi (meval '$%phi)))
	   (div (add2 (power phi e) (neg (power (add2 1 (neg phi)) e)))
		(add2 -1 (mul2 2 phi)))))
	(t (recur-apply #'(lambda (x) ($fibtophi x lnorecurse)) e))))

(defmspec $numerval (l) (setq l (cdr l))
	  (do ((l l (cddr l)) (x (ncons '(mlist simp)))) ((null l) x)
	    (cond ((null (cdr l)) (merror (intl:gettext "numerval: expected an even number of arguments.")))
		  ((not (symbolp (car l)))
		   (merror (intl:gettext "numerval: expected a symbol; found ~M") (car l)))
		  ((boundp (car l))
		   (merror (intl:gettext "numerval: cannot declare a value because ~M is bound.") (car l))))
	    (mputprop (car l) (cadr l) '$numer)
	    (add2lnc (car l) $props)
	    (nconc x (ncons (car l)))))

(let (my-powers)
  (declare (special my-powers))

  (defmfun $derivdegree (e depvar var)
    (let (my-powers) (declare (special my-powers)) (derivdeg1 e depvar var) (if (null my-powers) 0 (maximin my-powers '$max))))

  (defun derivdeg1 (e depvar var)
    (cond ((or (atom e) (specrepp e)))
	  ((eq (caar e) '%derivative)
	   (cond ((alike1 (cadr e) depvar)
		  (do ((l (cddr e) (cddr l))) ((null l))
		    (cond ((alike1 (car l) var)
			   (return (setq my-powers (cons (cadr l) my-powers)))))))))
	  (t (mapc #'(lambda (x) (derivdeg1 x depvar var)) (cdr e))))))

;;;; BOX

;; Set the the property reversealias
(defprop mbox $box reversealias)
(defprop mlabox $box reversealias)

(defmfun $dpart (&rest args)
  (mpart args nil t nil '$dpart))

(defmfun $lpart (e &rest args)
  (mpart args nil (list e) nil '$lpart))

(defmfun $box (e &optional (l nil l?))
  (if l?
      (list '(mlabox) e (box-label l))
      (list '(mbox) e)))

(defmfun box (e label)
  (if (eq label t)
      (list '(mbox) e)
      ($box e (car label))))

(defun box-label (x)
  (if (atom x)
      x
      (coerce (mstring x) 'string)))

(defmfun $rembox (e &optional (l nil l?))
  (let ((label (if l? (box-label l) '(nil))))
    (rembox1 e label)))

(defun rembox1 (e label)
  (cond ((atom e) e)
	((or (and (eq (caar e) 'mbox)
		  (or (equal label '(nil)) (member label '($unlabelled $unlabeled) :test #'eq)))
	     (and (eq (caar e) 'mlabox)
		  (or (equal label '(nil)) (equal label (caddr e)))))
	 (rembox1 (cadr e) label))
	(t (recur-apply #'(lambda (x) (rembox1 x label)) e))))

;;;; MAPF

(declare-top (special scanmapp))

(defmspec $scanmap (l)
  (let ((scanmapp t))
    (resimplify (apply #'scanmap1 (mmapev l)))))

(defmfun scanmap1 (func e &optional (flag nil flag?))
  (let ((arg2 (specrepcheck e)) newarg2)
    (cond ((eq func '$rat)
	   (merror (intl:gettext "scanmap: cannot apply 'rat'.")))
	  (flag?
	   (unless (eq flag '$bottomup)
	     (merror (intl:gettext "scanmap: third argument must be 'bottomup', if present; found ~M") flag))
	   (if (mapatom arg2)
	       (funcer func (ncons arg2))
	       (subst0 (funcer func
			       (ncons (mcons-op-args (mop arg2)
						     (mapcar #'(lambda (u)
								 (scanmap1 func u '$bottomup))
							     (margs arg2)))))
		       arg2)))
	  ((mapatom arg2)
	   (funcer func (ncons arg2)))
	  (t
	   (setq newarg2 (specrepcheck (funcer func (ncons arg2))))
	     (cond ((mapatom newarg2)
		    newarg2)
		   ((and (alike1 (cadr newarg2) arg2) (null (cddr newarg2)))
		    (subst0 (cons (ncons (caar newarg2))
				  (ncons (subst0
					  (mcons-op-args (mop arg2)
							 (mapcar #'(lambda (u) (scanmap1 func u))
								 (margs arg2)))
					  arg2)))
			    newarg2))
		   (t
		    (subst0 (mcons-op-args (mop newarg2)
					   (mapcar #'(lambda (u) (scanmap1 func u))
						   (margs newarg2)))
			    newarg2)))))))

(defun subgen (form)	   ; This function does mapping of subscripts.
  (do ((ds (if (eq (caar form) 'mqapply) (list (car form) (cadr form))
	       (ncons (car form)))
	   (outermap1 #'dsfunc1 (simplify (car sub)) ds))
       (sub (reverse (or (and (eq 'mqapply (caar form)) (cddr form))
			 (cdr form)))
	    (cdr sub)))
      ((null sub) ds)))

(defun dsfunc1 (dsn dso)
  (cond ((or (atom dso) (atom (car dso))) dso)
	((member 'array (car dso) :test #'eq)
	 (cond ((eq 'mqapply (caar dso))
		(nconc (list (car dso) (cadr dso) dsn) (cddr dso)))
	       (t (nconc (list (car dso) dsn) (cdr dso)))))
	(t (mapcar #'(lambda (d) (dsfunc1 dsn d)) dso))))

;;;; GENMAT

(defmfun $genmatrix (a i2 &optional (j2 i2) (i1 1) (j1 i1))
  (let ((f) (l (ncons '($matrix))))
    (setq f (if (or (symbolp a) (hash-table-p a) (arrayp a))
		#'(lambda (i j) (meval (list (list a 'array) i j)))
	      #'(lambda (i j) (mfuncall a i j))))
    
    (if (notevery #'fixnump (list i2 j2 i1 j1))
      (merror (intl:gettext "genmatrix: bounds must be integers; found ~M, ~M, ~M, ~M") i2 j2 i1 j1))
 	 
    (if (or (> i1 i2) (> j1 j2))
      (merror (intl:gettext "genmatrix: upper bounds must be greater than or equal to lower bounds; found ~M, ~M, ~M, ~M") i2 j2 i1 j1))
 	 
    (dotimes (i (1+ (- i2 i1)))
      (nconc l (ncons (ncons '(mlist)))))
    (do ((i i1 (1+ i))
	 (l (cdr l) (cdr l)))
	((> i i2))
      (do ((j j1 (1+ j)))
	  ((> j j2))
	(nconc (car l) (ncons (funcall f i j)))))
    l))

; Execute deep copy for copymatrix and copylist.
; Resolves SF bug report [ 1224960 ] sideeffect with copylist.
; An optimization would be to call COPY-TREE only on mutable expressions.

(defmfun $copymatrix (x)
  (unless ($matrixp x)
    (merror (intl:gettext "copymatrix: argument must be a matrix; found ~M") x))
  (copy-tree x))

(defmfun $copylist (x)
  (unless ($listp x)
    (merror (intl:gettext "copylist: argument must be a list; found ~M") x))
  (copy-tree x))

(defmfun $copy (x)
  (copy-tree x))

;;;; ADDROW

(defmfun $addrow (m &rest rows)
  (declare (dynamic-extent rows))
  (cond ((not ($matrixp m))
         (merror
           (intl:gettext "addrow: first argument must be a matrix; found ~M")
          m))
        ((null rows) m)
        (t
         (let ((m (copy-tree m)))
           (dolist (r rows m)
             (setq m (addrow m r)))))))

(defmfun $addcol (m &rest cols)
  (declare (dynamic-extent cols))
  (cond ((not ($matrixp m)) (merror (intl:gettext "addcol: first argument must be a matrix; found ~M") m))
	((null cols) m)
	(t (let ((m ($transpose m)))
	     (dolist (c cols ($transpose m))
	       (setq m (addrow m ($transpose c))))))))

(defun addrow (m r)
  (cond ((not (mxorlistp r)) (merror (intl:gettext "addrow or addcol: argument must be a matrix or list; found ~M") r))
	((and (cdr m)
	      (or (and (eq (caar r) 'mlist) (not (= (length (cadr m)) (length r))))
		  (and (eq (caar r) '$matrix)
		       (not (= (length (cadr m)) (length (cadr r))))
		       (prog2 (setq r ($transpose r))
			   (not (= (length (cadr m)) (length (cadr r))))))))
	 (merror (intl:gettext "addrow or addcol: incompatible structure."))))
  (append m (if (eq (caar r) '$matrix) (cdr r) (ncons r))))

;;;; ARRAYF

(defmfun $arraymake (ary subs)
  (cond ((or (not ($listp subs)) (null (cdr subs)))
	 (merror (intl:gettext "arraymake: second argument must be a list of one or more elements; found ~M") subs))
	((eq (ml-typep ary) 'symbol)
	 (cons (cons (getopr ary) '(array)) (cdr subs)))
	(t (cons '(mqapply array) (cons ary (cdr subs))))))

(defmspec $arrayinfo (ary)
  (setq ary (cdr ary))
  (arrayinfo-aux (car ary) (getvalue (car ary))))

(defun arrayinfo-aux (sym val)
  (prog (arra ary)
     (setq arra val)
     (setq ary sym)
     (if (and arra
              (or (hash-table-p arra)
                  (arrayp arra)
                  (eq (marray-type arra) '$functional)))
	 (cond ((hash-table-p arra)
		(let ((dim1 (gethash 'dim1 arra)))
		  (return (list* '(mlist) '$hash_table (if dim1 1 t)
				 (loop for u being the hash-keys in arra using (hash-value v)
				    unless (eq u 'dim1)
				    collect
				    (if (progn v dim1) ;;ignore v
					u
					(cons '(mlist simp) u)))))))
	       ((arrayp arra)
		(return (let ((dims (array-dimensions arra)))
			  (list '(mlist) '$declared
				;; they don't want more info (array-type arra)
			        (length dims)
			        (cons '(mlist) (mapcar #'1- dims))))))
	       ((eq (marray-type arra) '$functional)
	        (return (arrayinfo-aux sym (mgenarray-content arra)))))
	 (let ((gen (safe-mgetl sym '(hashar array))) ary1)
           (when (null gen)
             (merror (intl:gettext "arrayinfo: ~M is not an array.") ary))
	   (setq ary1 (cadr gen))
	   (cond ((eq (car gen) 'hashar)
		  (setq ary1 (symbol-array ary1))
		  (return (append '((mlist simp) $hashed)
				  (cons (aref ary1 2)
					(do ((i 3 (1+ i)) (l)
					     (n (cadr (arraydims ary1))))
					    ((= i n) (sort l #'(lambda (x y) (great y x))))
					  (do ((l1 (aref ary1 i) (cdr l1)))
					      ((null l1))
					    (push (cons '(mlist simp) (caar l1)) l)))))))
		 (t (setq ary1 (arraydims ary1))
		    (return (list '(mlist simp)
				  (cond ((safe-get ary 'array)
					 (cdr (assoc (car ary1)
						     '((t . $complete) (fixnum . $integer)
						       (flonum . $float)) :test #'eq)))
					(t '$declared))
				  (length (cdr ary1))
				  (cons '(mlist simp) (mapcar #'1- (cdr ary1)))))))))))

;;;; ALIAS

(declare-top (special greatorder lessorder))

(defmspec $ordergreat (l)
  (if greatorder (merror (intl:gettext "ordergreat: reordering is not allowed.")))
  (makorder (setq greatorder (reverse (cdr l))) '_))

(defmspec $orderless (l)
  (if lessorder (merror (intl:gettext "orderless: reordering is not allowed.")))
  (makorder (setq lessorder (cdr l)) '|#|))

(defun makorder (l char)
  (do ((l l (cdr l))
       (n 101 (1+ n)))
      ((null l) '$done)
    (alias (car l)
	   (implode (nconc (ncons char) (mexploden n)
			   (exploden (stripdollar (car l))))))))

(defmfun $unorder ()
  (let ((l (delete nil
		 (cons '(mlist simp)
		       (nconc (mapcar #'(lambda (x) (remalias (getalias x))) lessorder)
			      (mapcar #'(lambda (x) (remalias (getalias x))) greatorder)))
		 :test #'eq)))
    (setq lessorder nil greatorder nil)
    l))

;;;; CONCAT

(defun $concat (&rest l)
  (when (null l)
    (merror (intl:gettext "concat: there must be at least one argument.")))
  (let ((result-is-a-string (or (numberp (car l)) (stringp (car l)))))
    (setq l (mapcan #'(lambda (x) (unless (atom x) (merror (intl:gettext "concat: argument must be an atom; found ~M") x)) (string* x)) l))
    (if result-is-a-string
      (coerce l 'string)
      (getalias (implode (cons '#\$ l))))))