/usr/share/maxima/5.32.1/src/csimp.lisp is in maxima-src 5.32.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; The data in this file contains enhancments. ;;;;;
;;; ;;;;;
;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
;;; All rights reserved ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; (c) Copyright 1980 Massachusetts Institute of Technology ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package :maxima)
(macsyma-module csimp)
(declare-top (special rsn* $factlim $exponentialize
var varlist genvar $%emode $ratprint
nn* dn* $errexp sqrt3//2 -sqrt3//2
$demoivre errorsw $keepfloat $ratfac))
(load-macsyma-macros rzmac)
(declare-top (special $nointegrate $lhospitallim $tlimswitch $limsubst
$abconvtest plogabs))
(setq $demoivre nil rsn* nil $nointegrate nil $lhospitallim 4
$tlimswitch t $limsubst nil $abconvtest nil
plogabs nil)
;; Simplified shortcuts of constant expressions involving %pi.
(defvar %p%i '((mtimes) $%i $%pi))
(defvar fourth%pi '((mtimes) ((rat simp) 1 4) $%pi))
(defvar half%pi '((mtimes) ((rat simp) 1 2) $%pi))
(defvar %pi2 '((mtimes) 2 $%pi))
(defvar half%pi3 '((mtimes) ((rat simp) 3 2) $%pi))
(defmvar $sumsplitfact t) ;= nil minfactorial is applied after a factocomb.
(loop for (a b) on
'(%sin %asin %cos %acos %tan %atan
%cot %acot %sec %asec %csc %acsc
%sinh %asinh %cosh %acosh %tanh %atanh
%coth %acoth %sech %asech %csch %acsch)
by #'cddr
do (putprop a b '$inverse) (putprop b a '$inverse))
(defmfun $demoivre (exp)
(let ($exponentialize nexp)
(cond ((atom exp) exp)
((and (eq (caar exp) 'mexpt) (eq (cadr exp) '$%e)
(setq nexp (demoivre (caddr exp))))
nexp)
(t (recur-apply #'$demoivre exp)))))
(defun demoivre (l)
(cond ($exponentialize
(merror (intl:gettext "demoivre: 'demoivre' and 'exponentialize' cannot both be true.")))
(t (setq l (islinear l '$%i))
(and l (not (equal (car l) 0))
(m* (m^ '$%e (cdr l))
(m+ (list '(%cos) (car l))
(m* '$%i (list '(%sin) (car l)))))))))
;; If expr is of the form a*var1+b where a is freeof var1
;; then (a . b) is returned else nil.
(defun islinear (expr var1)
(declare (special *islinp*))
(let ((a (let ((*islinp* t))
(sdiff expr var1))))
(if (freeof var1 a)
(cons a (maxima-substitute 0 var1 expr)))))
(defmfun $partition (e var1)
(prog (k)
(setq e (mratcheck e) var1 (getopr var1))
(cond (($listp e)
(return (do ((l (cdr e) (cdr l)) (l1) (l2) (x))
((null l) (list '(mlist simp)
(cons '(mlist simp) (nreverse l1))
(cons '(mlist simp) (nreverse l2))))
(setq x (mratcheck (car l)))
(cond ((free x var1) (setq l1 (cons x l1)))
(t (setq l2 (cons x l2)))))))
((mplusp e) (setq e (cons '(mtimes) (cdr e)) k 0))
((mtimesp e) (setq k 1))
(t
(merror (intl:gettext "partition: first argument must be a list or '+' or '*' expression; found ~M") e)))
(setq e (partition e var1 k))
(return (list '(mlist simp) (car e) (cdr e)))))
(defun partition (exp var1 k) ; k is 1 for MTIMES and 0 for MPLUS.
(prog (const varbl op)
(setq op (cond ((= k 0) '(mplus)) (t '(mtimes))))
(cond ((or (alike1 exp var1) (not (eq (caar exp) 'mtimes)))
(return (cons k exp))))
(setq exp (cdr exp))
loop (cond ((freeof var1 (car exp)) (setq const (cons (car exp) const)))
(t (setq varbl (cons (car exp) varbl))))
(cond ((null (setq exp (cdr exp)))
(return (cons (cond ((null const) k)
((null (cdr const)) (car const))
(t (simplifya (cons op (nreverse const)) t)))
(cond ((null varbl) k)
((null (cdr varbl)) (car varbl))
(t (simplifya (cons op (nreverse varbl)) t)))))))
(go loop)))
;;To use this INTEGERINFO and *ASK* need to be special.
;;(defun integerpw (x)
;; ((lambda (*ask*)
;; (integerp10 (ssimplifya (sublis '((z** . 0) (*z* . 0)) x))))
;; t))
;;(defun integerp10 (x)
;; ((lambda (d)
;; (cond ((or (null x) (not (free x '$%i))) nil)
;; ((mnump x) (integerp x))
;; ((setq d (assolike x integerinfo)) (eq d 'yes))
;; (*ask* (setq d (cond ((integerp x) 'yes) (t (needinfo x))))
;; (setq integerinfo (cons (list x d) integerinfo))
;; (eq d 'yes))))
;; nil))
(setq var (make-symbol "foo"))
(defun numden (e)
(prog (varlist)
(setq varlist (list var))
(newvar (setq e (fmt e)))
(setq e (cdr (ratrep* e)))
(setq dn*
(simplifya (pdis (ratdenominator e))
nil))
(setq nn*
(simplifya (pdis (ratnumerator e))
nil))))
(defun fmt (exp)
(let (nn*)
(cond ((atom exp) exp)
((mnump exp) exp)
((eq (caar exp) 'mexpt)
(cond ((and (mnump (caddr exp))
(eq ($sign (caddr exp)) '$neg))
(list '(mquotient)
1
(cond ((equal (caddr exp) -1)
(fmt (cadr exp)))
(t (list (list (caar exp))
(fmt (cadr exp))
(timesk -1 (caddr exp)))))))
((atom (caddr exp))
(list (list (caar exp))
(fmt (cadr exp))
(caddr exp)))
((and (mtimesp (setq nn* (sratsimp (caddr exp))))
(mnump (cadr nn*))
(equal ($sign (cadr nn*)) '$neg))
(list '(mquotient)
1
(list (list (caar exp))
(fmt (cadr exp))
(cond ((equal (cadr nn*) -1)
(cons '(mtimes)
(cddr nn*)))
(t (neg nn*))))))
((eq (caar nn*) 'mplus)
(fmt (spexp (cdr nn*) (cadr exp))))
(t (cons (ncons (caar exp))
(mapcar #'fmt (cdr exp))))))
(t (cons (delsimp (car exp)) (mapcar #'fmt (cdr exp)))))))
(defun spexp (expl dn*)
(cons '(mtimes) (mapcar #'(lambda (e) (list '(mexpt) dn* e)) expl)))
(defun subin (y x)
(cond ((not (among var x)) x)
(t (maxima-substitute y var x))))
;; Right-hand side (rhs) and left-hand side (lhs) of binary infix expressions.
;; These are unambiguous for relational operators, some other built-in infix operators,
;; and user-defined infix operators (declared by the infix function).
;; a - b and a / b are somewhat problematic, since subtraction and division are not
;; ordinarily represented as such (rather a - b = a + (-1)*b and a / b = a * b^(-1)).
;; Also, - can be unary. So let's not worry about - and / .
;; Other problematic cases: The symbols $< $<= $= $# $>= $> have a LED property,
;; but these symbols never appear in expressions returned by the Maxima parser;
;; MLESSP, MLEQP, MEQUAL etc are substituted. So ignore those symbols here.
(let
((relational-ops
;; < <= = # equal notequal >= >
'(mlessp mleqp mequal mnotequal $equal $notequal mgeqp mgreaterp
%mlessp %mleqp %mequal %mnotequal %equal %notequal %mgeqp %mgreaterp))
(other-infix-ops
;; := ::= : :: ->
'(mdefine mdefmacro msetq mset marrow
%mdefine %mdefmacro %msetq %mset %marrow)))
(defmfun $rhs (rel)
(if (atom rel)
0
(if (or (member (caar rel) (append relational-ops other-infix-ops) :test #'eq)
;; This test catches user-defined infix operators.
(eq (get (caar rel) 'led) 'parse-infix))
(caddr rel)
0)))
(defmfun $lhs (rel)
(if (atom rel)
rel
(if (or (member (caar rel) (append relational-ops other-infix-ops) :test #'eq)
;; This test catches user-defined infix operators.
(eq (get (caar rel) 'led) 'parse-infix))
(cadr rel)
rel))))
(defun ratgreaterp (x y)
(cond ((and (mnump x) (mnump y))
(great x y))
((equal ($asksign (m- x y)) '$pos))))
;; Simplify the exponential function of the type exp(p/q*%i*%pi+x) using the
;; periodicity of the exponential function and special values for rational
;; numbers with a denominator q = 2, 3, 4, or 6. e is the argument of the
;; exponential function. For float and bigfloat numbers in the argument e only
;; simplify for an integer representation or a half integral value.
;; The result is an exponential function with a simplified argument.
(defun %especial (e)
(prog (varlist y k kk j ans $%emode $ratprint genvar)
(let (($keepfloat nil) ($float nil))
(unless (setq y (pip ($ratcoef e '$%i))) (return nil))
;; Subtract the term y*%i*%pi from the expression e.
(setq k ($expand (add e (mul -1 '$%pi '$%i y)) 1))
;; This is a workaround to get the type (integer, float, or bigfloat)
;; of the expression. kk must evaluate to 1, 1.0, or 1.0b0.
;; Furthermore, if e is nonlinear, kk does not simplify to a number ONE.
;; Because of this we do not simplify something like exp((2+x)^2*%i*%pi)
(setq kk (div (sub ($expand e) k) (mul '$%i '$%pi y)))
;; Return if kk is not an integer or kk is ONE, but y not an integer
;; or a half integral value.
(if (not (or (integerp kk)
(and (onep1 kk)
(integerp (add y y)))))
(return nil))
(setq j (trigred y))
(setq ans (spang1 j t)))
(cond ((among '%sin ans)
(cond ((equal y j) (return nil))
((zerop1 k)
;; To preverse the type we add k into the result.
(return (power '$%e (mul '$%pi '$%i (add k j)))))
(t
;; To preserve the type we multiply kk into the result.
(return
(power '$%e (add (mul kk k) (mul kk '$%pi '$%i j))))))))
(setq y (spang1 j nil))
;; To preserve the type we multiply kk into the result.
(return (mul (power '$%e (mul kk k)) (add y (mul '$%i ans))))))
(defun trigred (r)
(prog (m n eo flag)
(cond ((numberp r) (return (cond ((even r) 0) (t 1)))))
(setq m (cadr r))
(cond ((minusp m) (setq m (- m)) (setq flag t)))
(setq n (caddr r))
loop (cond ((> m n)
(setq m (- m n))
(setq eo (not eo))
(go loop)))
(setq m (list '(rat)
(cond (flag (- m)) (t m))
n))
(return (cond (eo (addk m (cond (flag 1) (t -1))))
(t m)))))
(defun polyinx (exp x ind)
(prog (genvar varlist var $ratfac)
(setq var x)
(cond ((numberp exp)(return t))
((polyp exp)
(cond (ind (go on))
(t (return t))))
(t (return nil)))
on (setq genvar nil)
(setq varlist (list x))
(newvar exp)
(setq exp (cdr (ratrep* exp)))
(cond
((or (numberp (cdr exp))
(not (eq (car (last genvar)) (cadr exp))))
(setq x (pdis (cdr exp)))
(return (cond ((eq ind 'leadcoef)
(div* (pdis (caddr (car exp))) x))
(t (setq exp (car exp))
(div* (cond ((atom exp) exp)
(t
(pdis (list (car exp)
(cadr exp)
(caddr exp)))))
x))
))))))
(defun polyp (a)
(cond ((atom a) t)
((member (caar a) '(mplus mtimes) :test #'eq)
(every #'polyp (cdr a)))
((eq (caar a) 'mexpt)
(cond ((free (cadr a) var)
(free (caddr a) var))
(t (and (integerp (caddr a))
(> (caddr a) 0)
(polyp (cadr a))))))
(t (andmapcar #'(lambda (subexp)
(free subexp var))
(cdr a)))))
(defun pip (e)
(prog (varlist d c)
(newvar e)
(cond ((not (member '$%pi varlist :test #'eq)) (return nil)))
(setq varlist '($%pi))
(newvar e)
(let (($ratfac nil))
;; non-nil $ratfac changes form of CRE
(setq e (cdr (ratrep* e))))
(setq d (cdr e))
(cond ((not (atom d)) (return nil))
((equal e '(0 . 1))
(setq c 0)
(go loop)))
(setq c (ptterm (cdar e) 1))
loop (cond ((atom c)
(cond ((equal c 0) (return nil))
((equal 1 d) (return c))
(t (return (list '(rat) c d))))))
(setq c (ptterm (cdr c) 0))
(go loop)))
(defun spang1 (j ind)
(prog (ang ep $exponentialize $float $keepfloat)
(cond ((floatp j) (setq j (maxima-rationalize j))
(setq j (list '(rat simp) (car j) (cdr j)))))
(setq ang j)
(cond
(ind nil)
((numberp j)
(cond ((zerop j) (return 1)) (t (return -1))))
(t (setq j
(trigred (add2* '((rat simp) 1 2)
(list (car j)
(- (cadr j))
(caddr j)))))))
(cond ((numberp j) (return 0))
((mnump j) (setq j (cdr j))))
(return
(cond ((equal j '(1 2)) 1)
((equal j '(-1 2)) -1)
((or (equal j '(1 3))
(equal j '(2 3)))
(div ($sqrt 3) 2))
((or (equal j '(-1 3))
(equal j '(-2 3)))
(div ($sqrt 3) -2))
((or (equal j '(1 6))
(equal j '(5 6)))
'((rat simp) 1 2))
((or (equal j '(-1 6))
(equal j '(-5 6)))
'((rat simp) -1 2))
((or (equal j '(1 4))
(equal j '(3 4)))
(div 1 ($sqrt 2)))
((or (equal j '(-1 4))
(equal j '(-3 4)))
(div -1 ($sqrt 2)))
(t (cond ((mnegp ang)
(setq ang (timesk -1 ang) ep t)))
(setq ang (list '(mtimes simp)
ang
'$%pi))
(cond (ind (cond (ep (list '(mtimes simp)
-1
(list '(%sin simp) ang)))
(t (list '(%sin simp) ang))))
(t (list '(%cos simp) ang))))))))
(defun archk (a b v)
(simplify
(cond ((and (equal a 1) (equal b 1)) v)
((and (equal b -1) (equal 1 a))
(list '(mtimes) -1 v))
((equal 1 b)
(list '(mplus) '$%pi (list '(mtimes) -1 v)))
(t (list '(mplus) v (list '(mtimes) -1 '$%pi))))))
(defun genfind (h v)
;;; finds gensym coresponding to v h
(do ((varl (caddr h) (cdr varl))
(genl (cadddr h) (cdr genl)))
;;;is car of rat form
((eq (car varl) v) (car genl))))
|